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FOREWORD

Apvances IN CHEMISTRY SERIES was founded in 1949 by the
American Chemical Society as an outlet for symposia and
collections of data in special areas of topical interest that could
not be accommodated in the Society’s journals. It provides a
medium for symposia that would otherwise be fragmented,
their papers distributed among several journals or not pub-
lished at all. Papers are reviewed critically according to ACS
editorial standards and receive the careful attention and proc-
essing characteristic of ACS publications. Volumes in the
ApvaNces IN CHEMISTRY SERIES maintain the integrity of the
symposia on which they are based; however, verbatim repro-
ductions of previously published papers are not accepted.
Papers may include reports of research as well as reviews since
symposia may embrace both types of presentation.
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Practical Calculations of the Equation of
State of Fluids and Fluid Mixtures Using
Perturbation Theory and Related Theories

DOUGLAS HENDERSON
IBM Research Laboratory, San Jose, CA 95193

The properties of a fluid are determined largely by short-
range repulsive forces. The long-range attractive forces can
be considered to be perturbations. Using these concepts, a
perturbation theory of fluids is developed. In addition, the
relationship of empirical equations of state to the perturba-
tion theory is examined. The major weakness of most
empirical equations is the use of the van der Waals free-
volume term, (V-Nb), to represent the contributions of the
repulsive forces. Replacement of this term by more satisfac-
tory expressions results in better agreement with experiment.

The requirements of an equation of state from a theoretical chemist

and a chemical engineer are somewhat different. The theoretical
chemist desires to understand the origin of the properties of the fluid he
is studying and often is less interested in obtaining highly accurate
agreement with experimental data. On the other hand, the chemical
engineer wants a simple, empirical equation of state which is in close
agreement with experimental data. The question of whether this empirical
equation of state has any theoretical basis is less interesting.

Because of this apparent divergence of interests and needs, there
has been little interaction between theoretical chemists and chemical
engineers working on the equation of state of fluids. This is unfortunate
because the requirements of the two groups are compatible. No theore-
tician would claim to understand fully some phenomena if he could not
obtain reasonable quantitative agreement with experiment. On the other
hand, an empirical equation of state with a weak or even faulty theoretical
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2 EQUATIONS OF STATE

basis is no more than an interpolation scheme and is quite useless for
extrapolation to thermodynamic states for which experimental data are
not available. Presumably chemical engineers would prefer to have some
predictive capability and if the results of the theoretician can be expressed
in some useful form which is convenient for quick calculation, chemical
engineers would be interested.

I assume that this gap between theoretical chemists and chemical
engineers exists because, until very recently, theoreticians had little to
offer concerning the theory of fluids. However, during the past decade
rapid progress has been made in this area and an attempt to bridge this
gap now seems appropriate. This is an ambitious task and given the
deadlines which are an unavoidable part of any conference, it is not a
task that I would claim to accomplish fully here. However, I hope that
this chapter will contribute to the bridging of this gap.

I shall attempt to survey recent progress in the theory of dense
fluids. I will provide references to all of the major techniques. However,
I will emphasize perturbation theory because I feel that this is the
technique which is most interesting to chemical engineers. Further, I
will show that the perturbation theory can be used in part to justify
common empirical equations of state. Many of these equations are well
founded in theory. However, we shall see that there is one term which
seems to appear in all empirical equations of state. This term has
absolutely no theoretical basis and it should be discarded and replaced
by a more satisfactory expression.

Some General Considerations

The basic result in statistical mechanics is that the probability of a
system being in a state specified by an energy E; is proportional to the
Boltzmann factor exp{ — BE;}, where 8§ = 1/kT. With this result, thermo-
dynamic properties may be specified. For example, the thermodynamic
energy is

; E;exp {—BE;}

Tk
2 exp {(—BE)

47 aanN
B’

where
Zy = exp {—pA}
— 2. exp {—BED (2)
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is called the partition function and A is the Helmholtz free energy (i.e.,
A = U — TS). With exception of a few fluids, such as helium and
hydrogen, the energy levels E; form a continuum and the sum in Equa-
tion 2 can be replaced by an integral. Thus, for a system of N molecules

2y — g7 e (—BH) dp, da, ®)

where the p’s and ¢’s are the generalized momenta and coordinates, s is
the number of degrees of freedom, and 4 is the Hamiltonian of the
system. The factor h* arises from the volume associated with quantum
states in phase space and the factor N! appears because the molecules in
a fluid are indistinguishable.

Generally the molecules of the fluid will have internal degrees of
freedom. If these internal degrees of freedom are independent of the
density of the fluid (as is often the case) they make no contribution to
the equation of state and can be ignored. Since I am interested only in
presenting general principles, I will ignore the contribution of internal
degrees of freedom and assume that

N p?
O’~/=;2m+q’(f1, o w TF) (4)

where & is the potential energy of the molecules and depends only upon
the positions of the center of mass. The theory of fluids in which internal
degrees of freedom contribute to the equation of state is still under
development. Using Equation 4, the partition function becomes

-3N

ZN=§T!fexp (—Bo)dry . . . dry (5)

where A = h/(2rmkT )2,

To make further progress the form of ® must be specified. Generally
the potential energy will contain terms involving the coordinates of pairs,
triplets, quadruplets, etc., of molecules. A few calculations of the equa-
tion of state of a fluid with such a general form for & have been made.
However, the common practice is to assume pair-wise additivity:

®(ry, . .., ry) = 2 u(ry) (6)

i<J

In this case, u(r) is not the correct pair interaction but some effective
pair interaction which simulates the multibody terms.
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Often

u(r) = ep(r/o) (7)

where ¢ is some universal function which is applicable to a wide class of
substances. Substitution of Equation 7 into Equation 5 leads to the law
of corresponding states which states that for such substances the thermo-
dynamic functions are also universal functions that are scaled by appro-
priate combinations of € and o. Thus,

P* — (", T*) 8)

where P* — Po®/e, p* — po®, and T* = kT/e are the reduced pressure,
density, and temperature.

The above form of the law of corresponding states may seem unsuit-
able for a chemical engineer since it seems to require the determination of
u(r) for the fluid of interest. However, if the temperature and density
of the fluid at some fundamental state (e.g. the critical point or the
triple point) are known, then ¢ and ¢ may be determined using the law
of corresponding states. For example,

€=Cch

(9)

o = Co Vc

where T, and V. are the critical temperature and volume and ¢; and c
are universal constants. Thus, an equivalent statement of the law of
corresponding states is

P/P.=g(V/Ve, T/T.) (10)

where P, is the critical pressure.
One useful test of the law of corresponding states is the invariance
of certain dimensionless terms: e.g., for many fluids

2 = P.V./NkT. ~ 0.291 (11)

As we would expect, there are deviations from Equation 11 for fluids
with internal degrees of freedom.

Computer Simulations and Integral Equations

I would like to turn to the question of the calculation of the partition
function. There are three methods of obtaining Zy and the thermodynamic
properties. I will consider two of these methods in this section and the
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third in the next section. The first method is computer simulation. In
this method a set of about 100 molecules in a box with periodic boundary
conditions (to minimize surface effects) is considered and either the time
or statistical evolution of the system followed. A detailed review (I) is
available so I will not consider this method in detail. The method involves
large computations and will not become a routine tool in chemical
engineering. However, it is completely general: to date it is the only
technique generally applicable to molecules with internal degrees of
freedom. Further, it provides (in principle) complete information about
the system, including the h-body distribution functions,

fexp {—B®}dry,1 . . . dry
glry, . .., 1) =V (12)
fexp {—p®}dr; . . . dry

as well as the thermodynamic functions. Computer simulations do not
give Zy directly. However, derivatives of Zy are obtained and Zy can be
obtained by integration over a series of states. The only limits on the
computer simulation method are our ingenuity in programming the
computer and our ability to cope with the numerical data. The later
limitation is nontrivial and prevents detailed consideration of four- and
higher-body distribution functions. F inally, we may regard the computer
simulation methods as either an experimental or a theoretical tool.
Generally speaking it is used as an experimental tool for providing data
with which theoretical calculations may be compared. Apart from statis-
tical problems and the question of whether the box contains a sufficiently
large number of molecules, the method is exact. The results of some com-
puter simulations of hard spheres are given in F igure 1.

The second method is the integral equation method. In this approach
some approximate integral equation for the radial distribution function,
g(r), is formulated and solved. For the simple molecules without internal
degrees of freedom which I am considering, the radial distribution
function (RDF) is the pair (h — 2) distribution function (PDF) defined
by Equation 12. The integral equation method involves much less com-
puter usage than do the computer simulations but still involves enough
to make its use as a routine chemical-engineering tool unlikely.

However, in certain cases where these integral equations yield
analytical solutions, the method will be interesting to chemical engineers.
For instance, Wertheim (2,3) and Thiele (4) have solved the Percus—
Yevick (PY) equation for the hard-sphere potential, where

u(r)={:)°’::g (13)
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pV
NkT

Figure 1. Equation of state of the hard-sphere fluid. The points give
computer simulation results and curves give the results of three approxi-
mations.
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They showed that

A/NkT—=3InA—1+1Inp—In (1 —y) +%1,(1i__—# (14)

and

1 o <o ot
P/pkT = 0 =g (15)

where 5 — 7pd®/6. Equation 15 is compared with computer simulations
in Figure 1. They showed further that the Laplace transform of g(r) is
given by

G (s) ———fw 2g (x) exp (—sz)dx

™ sL(s)
~ 12y5[L(s) + exp (s)S(s)]

(16)

where x — r/o,

L(s) =129[1 + 29 + (1 4 /2)s] (17)

and

S(s) = —129(1 + 2y) 4 18y + 6y(1 — 7)s> + (1 — 4)2%® (18)

Smith and Henderson (5) have inverted G(s) analytically for 1 < x < 5.
For the hard-sphere potential, these PY results for A, P, and g(r) are in
good agreement with computer simulations.

A second case of potential interest to chemical engineers is Waisman’s
solution (6) of the mean sperical approximation (MSA) integral equation
for the case where

_ joyr<o
i o { —eexp {—z(z —1)}/z,r> o (19)

and x — r/o. Waisman’s solution is implicit and involves the solution of
six nonlinear equations. However, Henderson (7) has shown recently
that a good parametrization of Waisman’s solution is given by

A/NET = A,/NET — Bevy/2 — (Be)2v2/4 —
(Be)®v3/6 — (Be)*v,4/8 (20)
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where A, is given by Equation 14,

"= T 5 o
Vg =~ 1—22 pll —q '™ (22)
Vg :1&%42—)772(1 —alfae (23)
oy o 1T2B(11/2 — 867 +36™) () - 1, ol

75

and

e -23/24
c—UB=08TN 1y po2pata)e]  (25)
Equation 21 gives the exact result for v; in the MSA. The expressions
for v,, vs, and vy are parametrizations. Equation 21 is analytical and
quite easy to use. For most cases, v, 03, and v, are small when compared
with v; so that it is best to use Equation 21 for v; rather than some
approximation. However, if one wishes, simplifications can be obtained
from an expansion of Equation 21 in powers of p and z. One possibility
is

142 7422
vy = 24— [1 + Toa TG 1% n] (26)

Except for z = o, most of the contribution to v; comes from the first
term. The limit z — o is mainly of mathematical interest. In most
situations of physical interest z is small.

We refer to the literature (1) for a discussion of the derivation of
the various integral equations and for details regarding their solution
(usually numerical) for other cases.

Perturbation Theory

Perturbation theory is the oldest of the three methods. We will see
that it dates back to van der Waals. However, its utility was not
appreciated by theorists until the last decade.

In perturbation theory we assume that we have full knowledge of
some reference system (or unperturbed system) whose properties we will
denote by a subscript 0. We may have obtained this knowledge by means
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of some computer simulations or from the solution of some integral
equation. Usually, this reference system is taken to be the hard-sphere
fluid, where

={oo, r<d 27
uo (1) Po. 2o (27)

We assume that, to some approximation, the pair potential is u,(r) and a
small perturbation. The simplest case is

u(r) = uo(r) + ew(r) (28)

If the free energy is expanded in powers of ¢, we have

A — 4o _ 3 (ge)n A,/Nk

o S ST TLPR (29)
where

Al/NkT=—; pfw(r)go(r) dr (30)

and go(r) is the RDF of the reference system. The higher-order A,
involves integrals over higher-order distribution functions.

If the reference system is the hard-sphere system, A, may be calcu-
lated from Equation 14. Carnahan and Starling (8) have proposed a
slight modification of Equation 14 which is slightly more accurate. Using
the Carnahan and Starling expression is certainly recommended; however,
I wish to give the following warning. The analogue of the Carnahan and
Starling equation of state becomes very inaccurate for a mixture of hard
spheres when one of the components in the mixture is very large whereas
the analogue of Equation 14 remains accurate. In as much as the Carna-
han and Starling-type expression is in better agreement with computer
simulations for hard-sphere mixtures for diameter ratios at least as large
as 3:1, it is probable that this deficiency probably is irrelevant to any
practical calculation. However, one should be wary not only to avoid
application of the Carnahan and Starling-type expression for extremely
large diameter ratios but to examine carefully any predictions based on
the use of this expression in situations in which it has not been studied
in detail. For a hard-sphere reference fluid, go(r) and thus A;, can be
obtained either from the PY hard-sphere results (5) or from computer
simulations (9, 10). For most cases, A; must be obtained by numerical
integration. However, if

w(r) = —eexp {—z(x — 1)}/x (31)
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where x — r/o and the PY go(r) are used, Equation 16 may be used to
yield
2L (2)

L) +50) s

ANET = —

The similarity to Equation 21 is not accidental.
If a hard-sphere reference fluid is used, the second-order term has

the form

Ag/NET — —mpd® f * 2w (rd) 20 (r) dr
1
"7 wrd)w (rad) Fo(ry,rs) dry drs (33)
+flf1wr1 w(re o(r1, 72 1

Barker and Henderson (10) have given a convenient parametrization of
Fo(ry, r2) for the hard-sphere reference fluid.

So far all we have is formalism. One could argue that there is no
reason to believe that Equation 29 is useful except at high temperatures,
where Be is small. The utility of perturbation theory even at temperatures
as low as the triple point, was first pointed out a decade ago by Barker
and Henderson (1I) who argued that the relevant parameter in deter-
mining the convergence of Equation 29 was not the smallness of Be but
the smallness of the effect of the perturbation on the structure of the
fluid. They noted that A; gives the effect of w(r) on the thermodynamic
properties in the absence of any changes in structure and that A, gives
the effect of changes in structure. At high densities such changes in
structure are suppressed because the molecules are packed tightly. There-
fore, A, is small compared with A; (as is observed by direct calculation
of A; and A,). The higher-order A, are even smaller and, as Barker and
Henderson suggested, can be neglected in most calculations.

At lower densities, particularly near the critical point, changes in
structure are easier and the convergence of the perturbation expansion is
slower. But even there, second-order perturbation theory gives quite
reasonable results.

All of this makes sense as long as u(r) is the hard-sphere potential
plus ew(r). Unfortunately, the potentials which occur in real applications
are not of this form. Nevertheless, following Barker and Henderson (12),
we can write

u(r) = uo(r) + ew(r) (34)

where uy(r) and w(r) are the positive and negative parts of u(r). Thus,
we can use Equations 29 and 30. However, we now have an unfamiliar
reference fluid. Fortunately, for most applications uo(r) is very steep



