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PREFACE

It has increasingly been recognized that our society is undergoing a significant
transformation, usually described as a transition from an industrial to an infor-
mation society. There is little doubt that this transition is strongly connected with
the emergence and development of computer technology and with the associated
intellectual activities resulting in new fields of inquiry such as systems science,
information science, decision analysis, or artificial intelligence.

Advances in computer technology have been steadily extending our capa-
bilities for coping with systems of an increasingly broad range, including systems
that were previously intractable to us by virtue of their nature and complexity.
While the level of complexity we can manage continues to increase, we begin to
realize that there are fundamental limits in this respect. As a consequence, we
begin to understand that the necessity for simplification of systems, many of which
have become essential for characterizing certain currently relevant problem sit-
uations, is often unavoidable. In general, a good simplification should minimize
the loss of information relevant to the problem of concern. Information and com-
plexity are thus closely interrelated.

One way of simplifying a very complex system—perhaps the most significant
one—is to allow some degree of uncertainty in its description. This entails an
appropriate aggregation or summary of the various entities within the system.
Statements obtained from this simplified system are less precise (certain), but
their relevance to the original system is fully maintained. That is, the information
loss that is necessary for reducing the complexity of the system to a manageable
level is expressed in uncertainty. The concept of uncertainty is thus connected
with both complexity and information.

It is now realized that there are several fundamentally different types of
uncertainty and that each of them plays a distinct role in the simplification prob-
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viii Preface

lem. A mathematical formulation within which these various types of uncertainty
can be properly characterized and investigated is now available in terms of the
theory of fuzzy sets and fuzzy measures.

The primary purpose of this book is to bring this new mathematical formalism
into the education system, not merely for its own sake, but as a basic framework
for characterizing the full scope of the concept of uncertainty and its relationship
to the increasingly important concepts of information and complexity. It should
be stressed that these concepts arise in virtually all fields of inquiry; the usefulness
of the mathematical framework presented in this book thus transcends the artificial
boundaries of the various areas and specializations in the sciences and professions.
This book is intended, therefore, to make an understanding of this mathematical
formalism accessible to students and professionals in a broad range of disciplines.
It is written specifically as a text for a one-semester course at the graduate or
upper division undergraduate level that covers the various issues of uncertainty,
information, and complexity from a broad perspective based on the formalism of
fuzzy set theory. It is our hope that this book will encourage the initiation of new
courses of this type in the various programs of higher education as well as in
programs of industrial and continuing education. The book is, in fact, a by-product
of one such graduate level course, which has been taught at the State University
of New York at Binghamton for the last three years.

No previous knowledge of fuzzy set theory or information theory is required
for an understanding of the material in this book, thus making it a virtually self-
contained text. Although we assume that the reader is familiar with the basic
notions of classical (nonfuzzy) set theory, classical (two-valued) logic, and prob-
ability theory, the fundamentals of these subject areas are briefly overviewed in
the book. In addition, the basic ideas of classical information theory (based on
the Hartley and Shannon information measures) are also introduced. For the
convenience of the reader, we have included in Appendix B a glossary of the
symbols most frequently used in the text.

Chapters 1-3 cover the fundamentals of fuzzy set theory and its connection
with fuzzy logic. Particular emphasis is given to a comprehensive coverage of
operations on fuzzy sets (Chap. 2) and to various aspects of fuzzy relations (Chap.
3). The concept of general fuzzy measures is introduced in Chap. 4, but the main
focus of this chapter is on the dual classes of belief and plausibility measures
along with some of their special subclasses (possibility, necessity, and probability
measures); this chapter does not require a previous reading of Chapters 2 and 3.
Chapter 5 introduces the various types of uncertainty and discusses their relation
to information and complexity. Measures of the individual types of uncertainty
are investigated in detail and proofs of the uniqueness of some of these are included
in Appendix A. The classical information theory (based on the Hartley and Shan-
non measures of uncertainty) is overviewed, but the major emphasis is given to
the new measures of uncertainty and information that have emerged from fuzzy
set theory. While Chapters 1-5 focus on theoretical developments, Chap. 6 offers
a brief look at some of the areas in which successful applications of this mathe-
matical formalism have been made. Each section of Chap. 6 gives a brief overview
of a major area of application along with some specific illustrative examples. We
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Figure P.1. Prerequisite dependencies among chapters of this book.

have attempted to provide the reader with a flavor of the numerous and diverse
areas of application of fuzzy set theory and information theory without attempting
an exhaustive study of each one. Ample references are included, however, which
will allow the interested reader to pursue further study in the application area of
concern.

The prerequisite dependencies among the individual chapters are expressed
by the diagram in Fig. P.1. It is clear that the reader has some flexibility in studying
the material; for instance, the chapters may be read in order, or the study of Chap.
4 may preceed that of Chaps. 2 and 3.

In order to avoid interruptions in the main text, virtually all bibliographical,
historical, and other side remarks are incorporated into the notes that follow each
individual chapter. These notes are uniquely numbered and are only occasionally
referred to in the text.

When the book is used at the undergraduate level, coverage of some or all
of the proofs of the various mathematical theorems may be omitted, depending
on the background of the students. At the graduate level, on the other hand, we
encourage coverage of most of these proofs in order to effect a deeper under-
standing of the material. In all cases, the relevance of the material to the specific
area of student interest or study can be emphasized with additional application-
oriented readings; the notes to Chap. 6 contain annotated references to guide in
the selection of such readings from the literature.

Chapters 1-5 are each followed by a set of exercises, which are intended
to enhance an understanding of the material presented in the chapter. The so-
lutions to a selected subset of these exercises are provided in the instructor’s
manual; the remaining exercises are left unanswered so as to be suitable for ex-
amination use. Further suggestions for the use of this book in the teaching context
can be found in the instructor’s manual.

George J. Klir and Tina A. Folger
Binghamton, New York
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CRrisp SETSs AND Fuzzy SETS

1.1 INTRODUCTION

The process and progress of knowledge unfolds into two stages: an attempt to
know the character of the world and a subsequent attempt to know the character
of knowledge itself. The second reflective stage arises from the failures of the
first; it generates an inquiry into the possibility of knowledge and into the limits
of that possibility. It is in this second stage of inquiry that we find ourselves today.
As a result, our concerns with knowledge, perceptions of problems and attempts
at solutions are of a different order than in the past. We want to know not only
specific facts or truths but what we can and cannot know, what we do and do
not know, and how we know at all. Our problems have shifted from questions of
how to cope with the world (how to provide ourselves with food, shelter, and so
on), to questions of how to cope with knowledge (and ignorance) itself. Ours has
been called an ‘‘information society,”” and a major portion of our economy is
devoted to the handling, processing, selecting, storing, disseminating, protecting,
collecting, analyzing, and sorting of information, our best tool for this being, of
course, the computer.

Our problems are seen in terms of decision, management, and prediction;
solutions are seen in terms of faster access to more information and of increased
aid in analyzing, understanding and utilizing the information that is available and
in coping with the information that is not. These two elements, large amounts of
information coupled with large amounts of uncertainty, taken together constitute
the ground of many of our problems today: complexity. As we become aware of
how much we know and of how much we do not know, as information and un-
certainty themselves become the focus of our concern, we begin to see our prob-
lems as centering around the issue of complexity.
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The fact that complexity itself includes both the element of how much we
know, or how well we can describe, and the element of how much we do not
know, or how uncertain we are, can be illustrated with the simple example of
driving a car. We can probably agree that driving a car is (at least relatively)
complex. Further, driving a standard transmission or stick-shift car is more com-
plex than driving a car with an automatic transmission, one index of this being
that more description is needed to cover adequately our knowledge of driving in
the former case than in the latter. Thus, because more knowledge is involved in
the driving of a standard-transmission car (we must know, for instance, the rev-
olutions per minute of the engine and how to use the clutch), it is more complex.
However, the complexity of driving also involves the degree of our uncertainty;
for example, we do not know precisely when we will have to stop or swerve to
avoid an obstacle. As our uncertainty increases—for instance, in heavy traffic or
on unfamiliar roads—so does the complexity of the task. Thus, our perception
of complexity increases both when we realize how much we know and when we
realize how much we do not know.

How do we manage to cope with complexity as well as we do, and how
could we manage to cope better? The answer seems to lie in the notion of sim-
plifying complexity by making a satisfactory trade-off or compromise between
the information available to us and the amount of uncertainty we allow. One option
is to increase the amount of allowable uncertainty by sacrificing some of the
precise information in favor of a vague but more robust summary. For instance,
instead of describing the weather today in terms of the exact percentage of cloud
cover (which would be much too complex), we could just say that it is sunny,
which is more uncertain and less precise but more useful. In fact, it is important
to realize that the imprecision or vagueness that is characteristic of natural lan-
guage does not necessarily imply a loss of accuracy or meaningfulness. It is, for
instance, generally more meaningful to give travel directions in terms of city
blocks than in terms of inches, although the former is much less precise than the
latter. It is also more accurate to say that it is usually warm in the summer than
to say that it is usually 72° in the summer. In order for a term such as sunny to
accomplish the desired introduction of vagueness, however, we cannot use it to
mean precisely 0 percent cloud cover. Its meaning is not totally arbitrary, how-
ever; a cloud cover of 100 percent is not sunny and neither, in fact, is a cloud
cover of 80 percent. We can accept certain intermediate states, such as 10 or 20
percent cloud cover, as sunny. But where do we draw the line? If, for instance,
any cloud cover of 25 percent or less is considered sunny, does this mean that a
cloud cover of 26 percent is not? This is clearly unacceptable since 1 percent of
cloud cover hardly seems like a distinguishing characteristic between sunny and
not sunny. We could, therefore, add a qualification that any amount of cloud
cover 1 percent greater than a cloud cover already considered to be sunny (that
is, 25 percent or less) will also be labeled as sunny. We can see, however, that
this definition eventually leads us to accept all degrees of cloud cover as sunny,
no matter how gloomy the weather looks! In order to resolve this paradox, the
term sunny may introduce vagueness by allowing some sort of gradual transition
from degrees of cloud cover that are considered to be sunny and those that are
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not. This is, in fact, precisely the basic concept of the fuzzy set, a concept that
is both simple and intuitively pleasing and that forms, in essence, a generalization
of the classical or crisp set.

The crisp set is defined in such a way as to dichotomize the individuals in
some given universe of discourse into two groups: members (those that certainly
belong in the set) and nonmembers (those that certainly do not). A sharp, un-
ambiguous distinction exists between the members and nonmembers of the class
or category represented by the crisp set. Many of the collections and categories
we commonly employ, however (for instance, in natural language), such as the
classes of tall people, expensive cars, highly contagious diseases, numbers much
greater than 1, or sunny days, do not exhibit this characteristic. Instead, their
boundaries seem vague, and the transition from member to nonmember appears
gradual rather than abrupt. Thus, the fuzzy set introduces vagueness (with the
aim of reducing complexity) by eliminating the sharp boundary dividing members
of the class from nonmembers. A fuzzy set can be defined mathematically by
assigning to each possible individual in the universe of discourse a value repre-
senting its grade of membership in the fuzzy set. This grade corresponds to the
degree to which that individual is similar or compatible with the concept repre-
sented by the fuzzy set. Thus, individuals may belong in the fuzzy set to a greater
or lesser degree as indicated by a larger or smaller membership grade. These
membership grades are very often represented by real-number values ranging in
the closed interval between 0 and 1. Thus, a fuzzy set representing our concept
of sunny might assign a degree of membership of 1 to a cloud cover of 0 percent,
8 to a cloud cover of 20 percent, .4 to a cloud cover of 30 percent and 0 to a
cloud cover of 75 percent. These grades signify the degree to which each per-
centage of cloud cover approximates our subjective concept of sunny, and the
set itself models the semantic flexibility inherent in such a common linguistic
term. Because full membership and full nonmembership in the fuzzy set can still
be indicated by the values of 1 and 0, respectively, we can consider the crisp set
to be a restricted case of the more general fuzzy set for which only these two
grades of membership are allowed.

Research on the theory of fuzzy sets has been abundant, and in this book
we present an introduction to the major developments of the theory. There are,
however, several types of uncertainty other than the type represented by the fuzzy
set. The classical probability theory, in fact, represents one of these alternative
and distinct forms of uncertainty. Understanding these various types of uncer-
tainty and their relationships with information and complexity is currently an area
of active and promising research. Therefore, in addition to offering a thorough
introduction to the fuzzy set theory, this book provides an overview of the larger
framework of issues of uncertainty, information, and complexity and places the
fuzzy set theory within this framework of mathematical explorations.

In addition to presenting the theoretical foundations of fuzzy set theory and
associated measures of uncertainty and information, the last chapter of this book
offers a glimpse at some of the successful applications of this new conceptual
framework to real-world problems. As general tools for dealing with complexity
independent of the particular content of concern, the theory of fuzzy sets and the
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various mathematical representations and measurements of uncertainty and in-
formation have a virtually unrestricted applicability. Indeed, possibilities for ap-
plication include any field that examines how we process or act on information,
make decisions, recognize patterns, or diagnose problems or any field in which
the complexity of the necessary knowledge requires some form of simplification.
Successful applications have, in fact, been made in fields as numerous and diverse
as engineering, psychology, artificial intelligence, medicine, ecology, decision
theory, pattern recognition, information retrieval, sociology, and meteorology.
Few fields remain, in fact, in which conceptions of the major problems and ob-
stacles have not been reformulated in terms of the handling of information and
uncertainty. While the diversity of successful applications has thus been expand-
ing rapidly, the theory of fuzzy sets in particular and the mathematics of uncer-
tainty and information in general have been achieving a secure identity as valid
and useful extensions of classical mathematics. They will undoubtedly continue
to constitute an important framework for further investigations into rigorous rep-
resentations of uncertainty, information, and complexity.

1.2 CRISP SETS: AN OVERVIEW

This text is devoted to an examination of fuzzy sets as a broad conceptual frame-
work for dealing with uncertainty and information. The reader’s familiarity with
the basic theory of crisp sets is assumed. Therefore, this section is intended to
serve simply to refresh the basic concepts of crisp sets and to introduce notation
and terminology useful for our discussion of fuzzy sets.

Throughout this book, sets are denoted by capital letters and their members
by lower-case letters. The letter X denotes the universe of discourse, or universal
set. This set contains all the possible elements of concern in each particular con-
text or application from which sets can be formed. Unless otherwise stated, X is
assumed in this text to contain a finite number of elements.

To indicate that an individual object x is a member or element of a set A,
we write

x € A.
Whenever x is not an element of a set A, we write
x £ A.

A set can be described either by naming all its members (the list method)
or by specifying some well-defined properties satisfied by the members of the set
(the rule method). The list method, however, can be used only for finite sets. The
set A whose members are a;, a», . . . , a, is usually written as

A z{alsa27'-'van}’

and the set B whose members satisfy the properties P,, P,, . . ., P, is usually
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¥

Figure 1.1. Example of sets in R? that are either convex (A;—As) or nonconvex
(As—Ao).

written as
B = {b| b has properties Py, P2, . . . , Pa},

where the symbol | denotes the phrase “‘such that.”

An important and frequently used universal set is the set of all points in the
n-dimensional Euclidean vector space R” (i.e., all n-tuples of real numbers). Sets
defined in terms of R” are often required to possess a property referred to as
convexity. A set A in R” is called convex if, for every pair of points*

r=(r;|i€N, and s = (si]i €N,
in A and every real number \ between 0 and 1, exclusively, the point
t=0rn+ 0 = Nsi|i €Ny

is also in A. In other words, a set A in R” is convex if, for every pair of points
r and s in A, all points located on the straight line segment connecting r and s are
also in A. Examples of convex and nonconvex sets in R? are given in Fig. 1.1.

* N subscripted by a positive integer is used in this text to denote the set of all integers from
1 through the value of the subscript; that is, N =2 00505
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A set whose elements are themselves sets is often referred to as a family of
sets. It can be defined in the form

{A;|i €1},

where i and I are called the set identifier and the identification set, respectively.
Because the index i is used to reference the sets A;, the family of sets is also
called an indexed set.

If every member of set A is also a member of set B—that is, if x € A implies
x € B—then A is called a subset of B, and this is written as

A CB.

Every set is a subset of itself and every set is a subset of the universal set. If
A C Band B C A, then A and B contain the same members. They are then called
equal sets; this is denoted by

A = B.
To indicate that A and B are not equal, we write
A # B.

If both A C B and A # B, then B contains at least one individual that is not a
member of A. In this case, A is called a proper subset of B, which is denoted by

A CB.

The set that contains no members is called the empty set and is denoted by
. The empty set is a subset of every set and is a proper subset of every set
except itself.

The process by which individuals from the universal set X are determined
to be either members or nonmembers of a set can be defined by a characteristic,
or discrimination, function. For a given set A, this function assigns a value p.(x)
to every x € X such that

(x) = 1 ifand only if x € A,
Pat™ = 10 if and only if x £ A.

Thus, the function maps elements of the universal set to the set containing 0 and
1. This can be indicated by

IJ'A:X'_) {0, 1}

The number of elements that belong to a set A is called the cardinality of
the set and is denoted by | A |. A set that is defined by the rule method may
contain an infinite number of elements.

The family of sets consisting of all the subsets of a particular set A is referred
to as the power set of A and is indicated by P(A). It is always the case that

| P(A) | = 24,

The relative complement of a set A with respect to set B is the set containing
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all the members of B that are not also members of A. This can be written B —
A. Thus,

B—-—A={x|x€¢B and x £ A}.

If the set B is the universal set, the complement is absolute and is usually denoted
by A. Complementation is always involutive; that is, taking the complement of a
complement yields the original set, or

A= A.

The absolute complement of the empty set equals the universal set, and the ab-
solute complement of the universal set equals the empty set. That is,

T = X,
and
X =0.

The union of sets A and B is the set containing all the elements that belong
either to set A alone, to set B alone, or to both set A and set B. This is denoted
by A U B. Thus,

AUB={x|x€A or x¢€B}

The union operation can be generalized for any number of sets. For a family of
sets {A; | i € I}, this is defined as

U A; = {x|x € A, for some i € I}.

i€l
The union of any set with the universal set yields the universal set, whereas the
union of any set with the empty set yields the set itself. We can write this as
AUX =X
and
AUY = A.

Because all the elements of the universal set necessarily belong either to a set A
or to its absolute complement, A, the union of A and A yields the universal set.
Thus,

AUA =X,

This property is usually called the law of excluded middle.
The intersection of sets A and B is the set containing all the elements be-
longing to both set A and set B. It is denoted by A N B. Thus,

ANB={x|x¢€Aandx € B}.
The generalization of the intersection for a family of sets {A; | i € I} is defined as

MA; ={x|x€Aforallice€l.

i€l



