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PREFACE

The theory of fields has traditionally been considered a basic part
of abstract algebra. In modern mathematics, however, the abundance
of algebraic ideas which have been introduced has established the
importance of the theory of fields not only in algebra but through-
out all areas of mathematics as well. There are many topics that
require discussion in the mathematics courses frequently offered in
colleges and universities. Consequently, it is not unusual to have
too few lecture hours devoted to the theory of fields.

In view of this, the author wished to publish a book on field
theory, rich in topical variety, necessitating few prerequisites,
and conveniently sized, that would allow any student to advance his
study.

In this book, it is assumed that the reader is familiar with
the basic definitions and results on set theory and determinants,
and therefore these results are stated explicitly and without proof.
In addition, some basic results on group theory and ring theory will
be needed; proofs for these results are given.

Thus the main text of this volume initially consists of prelim-
inaries on groups and rings (Chapters 1 and 2) and in subsequent
chapters (Chapters 3 to 7) focuses on several important topics on
fields, such as algebraic and transcendental extensions, valuations,

ordered fields, and Galois theory of algebraic extensions.

M. Nagata

Jid
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CHAPTER 0

CONVENTIONS AND BASIC RESULTS ON SET THEORY

0.0  NOTATION

We assume that the reader is familiar with fundamental concepts in
set theory such as sets, elements, subsets, the empty set, unions of
sets and intersections of sets. We use the following symbols.

a € M means that a is an element of M.

€
¢ a ¢ M means that is not an element of M.

In

a
N ¢ M means that N is a subset of M.

c N ¢ M means that N

that N cM and N # M. (Note that often in the literature

is a proper subset of M, namely

N <M means that N is a subset of M. The usage is dif-
ferent from ours.)
£ N¢ZM means that N is not a subset of M.

u,n Union and intersection, respectively. Namely, the union

and the intersection of sets Ml’ %55 Mn are denoted by
n

M1 u Mr21 u u Mn (or Ui Mi) and M1 n M2 n n Mn

(or Nio1 Mi) respectively. If a family of sets MA is

indexed by a set A, then the union and the intersection of
these MA are denoted by Uned MA (or, simply, Uy MA or
UMX) and nXeA M (or, simply, nAMA or an), respec-
tively.
{ ]} When P is a condition and M is a set, the set of elements

of M satisfying the condition P is denoted by
{a € M | P} or simply by {a | P} .

- When B is a subset of a set A, we denote by A - B the
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complement of B in A (i.e., f{a e A | a ¢ B} ).
%, The product of sets M, -oos M, de., {(al,..., an)l

a; € Mi}’ is denoted by M; x My x =+« x M . For a family
of sets MA (A € A), the product of these sets MA is
denoted by HAEA MA'

N The set of natural numbers, i.e., N = {1,2,3,... }.

0.1  MAPPINGS

A mapping f of a set M into a set N is a correspondence which
associates with each element of M a single element of N. If n
(eN) is associated with m (eM) (the circumstance is often expressed
by m "~ n) by f, then n is called the image of m under f.

In expressing images, two types of notation are commonly used. One

is fm and the other is mf. If M1 is a subset of M, then fM1 =
{fm | m € Ml} or Mf = {nf | m e Ml} is called the image of M
f

under f. If fM =N or M =N, then we say that f is a mapping
of M onto N and that f is surjective. For a subset N' of N,
{x eM | fx € N' (or f e N')} 1is called the inverse image of N
under f and is demoted by £ L (N'). If, for neN, £ l({n})
consists of a single element m, then m is also called tbf inverse
image of n under f and m is denoted by £fln or mf If f
is surjective and if every element n of N has the inverse image,
then the mapping £t is well defined, which is called the inverse
of f. Note that this condition is that f gives a one-one corre-
spondence.

The projection of the product set M1 x M2 X see X Mn into Mi
is defined by the correspondence (al,...,an) > a; . Projections in
the case of the product of an infinite number of sets MA are defined
similarly. Note that projections are surjective unless some MA is
empty.

Assume that f is a mapping of a set M into a set N and that
g is a mapping of the set N into a set P. Then the composition
of these mappings is defined by associating with each element m of

M the image under g of the image of m under f. In case we are
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using notation of type mf, the product (i.e., the result of the
composition) of the mappings f and g is denoted by fg. In case
we are using notation of type fm, the product is denoted by gf.

fg and

The reason is that, under the notation, we have (mf)g =m
g(fm) = (gf)m.

For each set M, there is defined the cardinality of M, which
is denoted by #(M). If M consists only of a finite number of
elements, then M is called a finite set, and #(M) is the number
of elements of M. [If M is the empty set, then #(M) = 0.] The
cardinality of the set N of natural numbers is said to be countably

infinite. (Countable means finite or countably infinite.) The

cardinality of the set of real numbers is called the cardinality of
continuum. Multiplication of cardinalities is defined by #(M) x #(N)
= #(M x N). In the case of finite cardinalities, the multiplication
coincides with that of numbers. But, as for infinite cardinalities,
the multiplication is quite different from the case of numbers; cf.
Theorem 0.1.3 below. In general, we define that #(M) = #(N) if
and only if there is a one-one correspondence between M and N.

We define also that #(M) = #(N) if and only if there is a subset

M' of M such that #(M') = #(N). Hence #(M) > #(N) means that
#(M) = #(N) and #(M) # #(N). Under the definition, we see obviously
that #(M) > #(N) and #(N) > #(L) imply #(M) > #(L). Furthermore,
the following theorem holds.

THEOREM 0.1.1 (Bernstein) If M and N are sets, then either
#(M) 2 #(N) or #(N) = #(M). If both of these inequalities hold,
then #(M) = #(N).

Some other important theorems on cardinality are:

THEOREM 0.1.2 For an arbitrary set M, let S(M) be the set
of all subsets of M. Then it holds that

#(S(M) > #(M)

If #(M) is countably infinite, then #(S(M)) is the cardinality

of continuum. In particular, the set of real numbers is not countable.
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THEOREM 0.1.3 If M is an infinite set, then

M) = #(M x M)

We omit the proofs of these results.

0.2 ORDERED SET

If a relation 2= is defined on a set M (i.e., for each pair of
elements a, b of M, it is well determined whether a > b or not)
and if the relation satisfies the following three conditions, then

we say that 2= is an order and that M is an ordered set:

(1) a 2a for every a € M (reflexive property).
(2) a
(3) a=2b, b=2c imply a 2 c (transitive property).

v

b, b 2a imply a =b (asymmetric property).

a >b means a >2b and a # b, and we say usually in such a

case that a 1is larger (or greater) than b, or that b is smaller

than a. a <b (or a <b) means b >a (or b 2 a, respectively).
The notion of an ordered set is actually a pair of a set M and an
order 2= defined on it. Therefore, if a set M has two orders
2 and <, then M with 2 and M with < are distinct from
each other. Therefore in order to express that M is an ordered
set with order 2, we often say that (M,2 is an ordered set.

For a set N, let S(N) be the set of subsets of N. Then by

the containment relation 2, (S(N),2) is an ordered set. When

we deal with a subset of S(N), we understand it as a subset of this
ordered set.
Assume that (M,2 is an ordered set. Then we can define

another order < on the same set M by defining
a<b if and only if b 2 a

This new order is called the dual of the former.

We say that an ordered set (M,2) is linearly ordered if for

each pair of elements a, b of M, it holds either a >b or b >
a.

A subset of an ordered set is obviously an ordered set, and a
subset of a linearly ordered set is a linearly ordered set.

Let S be a subset of an ordered set (M,2), and let a be an
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element of S. (i) If there isno b in S which is greater than
a, then we say that a 1is a maximal element of S. (ii) If a is

larger than any other elements of S, then we say that a is the

largest (or greatest) element of S. An element y of M is called

a lower bound of S if y 1is smaller than any element (except Yy
in case y is in S) of S. If the set of lower bounds of S has
the largest element, say =z, then z 1is called the infimum of S
and is denoted by inf S.

Considering the dual (hence, interchanging large and small),
we define minimal elements, the smallest element, upper bound and
the supremum of S. This last is denoted by sup S.

Note that S may not have any of minimal element, maximal ele-
ment, infimum, supremum, etc. Even if S has the infimum, inf S
may not be an element of S.

We say that the maximum condition (or the minimum condition)

is satisfied by an ordered set M if every nonempty subset S of
M has at least one maximal element (or minimal element, respective-

ly). We say that the ascending chain condition holds in an ordered

set (M,= if, for every ascending chain a; < a, < eee < a, < e

of infinite length in M, there is a natural number N such that
a, = ay for every m > N. This condition is equivalent to the
statement that there is no properly ascending chain of infinite

length in M. We define the descending chain condition in the dual

way. Then we have:

THEOREM 0.2.1 The maximum conditon is equivalent to the ascend-
ing chain condition. Similarly, the descending chain condition is
equivalent to the minimum condition.

PROOF : If there is a properly ascending chain a; <a, < o<
a, < ¢++ of infinite length, then the set of all a; has no maximal
element. Conversely, if S is a nonempty subset which has no maximal
element, then starting with an arbitrary element a of S we have

1
a properly ascending chain a; <a, <0< a, of element of S.
Then, since S has no maximal element, there is an+1 (eS) which
is larger than a . Thus we have such a chain of infinite length.

This proves the theorem, taking account of the dual. QED
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If the minimum condition holds in a linearly ordered set M, then
we say that M is a well-ordered set and that the order of M is a
well-order.

Let (MI,Z), Aeir (Mn,z) be ordered sets. Then we can define
a new order = in the product set M1 x M2 X see x Mn as follows:

(al,...,an) > (bl,...,bn) if and only if there is one i such
that a; > bi and such that, for every j smaller than i, it holds
that aj = b..

J
This new order is called the lexicographical order.

In closing this section, we recall a well-known and important
theorem, the Zorn lemma. For this purpose, we define the notion of
an inductive set to be a nonempty ordered set M in which every
nonempty well-ordered subset S has the supremum sup S in M.

Now:

ZORN LEMMA If M 1is an inductive set, then there is a maximal
element of M.

0.3 CLASSIFICATION
A classification on a set M means to express M as a disjoint
union of nonempty subsets CA (A runs through a set M), namely,
(i) M= Uy CA’ (ii) if CA n Cu is not empty then CA = CU’ and
(iii) each CA is not empty. Each CA is called a class, and if
a belongs to CA then a is called a representative of CA‘

If a relation = defined on a set M satisfies the following

three conditions, then we say that = is an equivalence relation:

(1) a=a for every a e M (reflexive property).
(2) a
(3) a=b,b=c¢c imply a = ¢ (transitive property).

b implies b = a (symmetric property).

As is well known, the notion of classification is closely related

to that of equivalence relation. Namely,

THEOREM 0.3.1  Assume that a set M is the union of nonempty
subsets Cy (Xeh). Define a relation = by that a = b if and only
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if there is A such that both a and b are in Cy- Then the
relation = is an equivalence relation if and only if these CA

give a classification on M.

The proof is easy.

EXERCISE 0.2

1. ((Mathematical) induction) Let M be an ordered set satisfying
the minimum condition. Assume that there is given a statement

Pa for each element a of M. Then all Pa (a € M) are true

if the following is true :
If aeM and if Pb is true for every b such that
a >b e M, then Pa is true.
2. Let W be a well-ordered set and let {Mw | w e W} be a set
of ordered sets indexed by W. Generalize the definition of the
lexicographical order to the product set HMW.
3. Let Ml’ 5 65 Mn be ordered sets and consider the lexicographical

order on M, x ees x Mn.

1
(i) Prove that if Ml’ 8 Mn are linearly ordered, then

M1 X e eie x Mn is also linearly ordered.
(ii) Prove that if Ml’ oy Mn are well-ordered, then

M1 X eee x Mn is also well-ordered.



CHAPTER 1

GROUPS

In this chapter, we recall some basic notions on groups which we need
later. We assume that the readers are familiar with some elementary

properties of rational integers.t

151 GROUPS AND SEMIGROUPS

A binary operation, often simply called an operation, on a set M is
a mapping Y of the product set M x M into M. The operation is
said to be commutative if Y(a,b) = Y(b,a) for every (a,b) e M x M.
A binary operation is often called either a multiplication or an
addition. If Y is called a multiplication, then V(a,b) is called
the product of a and b; it is quite common that Y(a,b) is denoted
by ab in this case, and we follow the custom. If ¢ 1is called an
addition, then Y(a,b) is called the sum of a and b and is denoted
by a + b; it is quite common to assume that an addition is commuta-
tive, and we follow this too.

A semigroup is a set G with a binary operation, say a multipli-

cation, satisfying associativity, i.e.,
a(bc) = (ab)c for arbitrary a,b,c € G

If a semigroup G has an element e such that ea = ae = a

for every a € G, then such e is unique (see Proposition 1.1.1

T As we shall study later in Chap. 3, there is the notion of
algebraic integers. Therefore, integers 0, *1, *2, ... are called
rational integers.
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below) and is called the identity of G; it is denoted by 1 or
more explicitly by 1G' Assume that a semigroup G has the identity.
If, for an element a of G, there is an element a' such that aa' =
a'a = 1, then such a' is unique (Proposition 1.1.1) and is called
the inverse of a; it is denoted by a'l. An element a of G
having its inverse is called an invertible element of G.

A semigroup is called a group if (1) it is a semigroup with
identity and (2) every element is invertible in the semigroup.

If the operation of a semigroup (or a group) is commutative,
then the semigroup (or the group) is said to be commutative. A
commutative group is sometimes called an abelian group.
v If a set M is a group with addition +, then the identity is
Ealied zero, denoted by 0, and the inverse of an element a is
Eaiied the minus of a and is denoted by -a. M itself is called

a module or an additive group.

PROPOSITION 1.1.1 In a semigroup G with identity, there is

only one identity; for each a € G, the inverse a_1 is unique if

it exists, and then (a_l)_1 = a

PROOF: If 1' is another identity, the 1 = 11' = 1'. If a'
is another inverse of a, then g™t = a_l(aa') = (a_la)a' = a',
a 1is an inverse of a-l, and hence (a_l)_1 = a. QED

If a subset H of a group G forms a group under the restriction
of the operation of G to H, then we say that H is a subgroup of
G. Submodules and subsemigroups are defined similarly.

If H

section of these HA is a subgroup. Therefore, when a subset S

A (A € A) are subgroups of a group G, then the inter-

of a group G is given, the intersection D of all subgroups contain-
ing S 1is the smallest subgroup containing S. D is therefore called
the group generated by S and is denoted by <S>. If a subgroup

H is generated by a subset S, then S is called a system of
generators for H. A group generated by a single element is called

a cyclic group. When H and K are subgroups of a group G, the
subgroup generated by H U K is denoted by H VvV K. Similar notation

is employed for the subgroup generated by many subgroups.
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THEOREM 1.1.2  For a nonempty subset H of a group G, each
of the following two is necessary and sufficient for H to be a
subgroup:

(1) ab

(2) a_lb € H for arbitrary a,b e H.

L el for arbitrary a,b e H.

PROOF: Necessity is obvious. Assume that (1) holds good.
Let a € H. It holds that a,a € H which implies 1 = aa_l e H
and then 1,a € H which implies 5"t ¢ H. Now, if a,b € H, then
a,b-l € H; hence ab = a(b_l)-1 € H. Sufficiency of (2) is similar.

QED

If H, K are subsets of a group G, we denote by HK the set
{hk | h e H, k € K} (in case of an additive group, H + K =
{h + k f h € H, k € K}). Hence, in particular, when H is a subgroup
and a is an element of G, we denote by Ha the set {ha | h € H}
and by aH the set {ah | h ¢ H} (in the additive case, H + a =
th+a|heH). Ha (or aH) is called the right (or left,

respectively) residue class (or coset) of a modulo H. The set

of all right (or left) residue classes of elements of G modulo H
is denoted by H\G (or G/H, respectively).

PROPOSITION 1.1.3 Under the circumstances above,

(1) aH = bH if and only if b la e H.

(2) Ha = Hb if and only if ab™} e H.

(3) aH # bH if and only if aH n bH is empty.

(4) Ha # Hb if and only if Ha n Hb is empty.

PROOF: If aH = bH, then a = bh with h e H; hence b_la € H.
Conversely, if b-la € H, then a € bH and aH c bH. Similarly,
bH < aH because b = ah™!. (2) is similar. If c e aH n bH, then
by (1) we have aH = cH = bH. Since the converse is obvious, we have

(3). (4) is similar. QED

The result stated above shows that G/H and H\G are giving
classifications on G.

For a group G, #(G) is called the order of G. If #(G) is
finite, we call G a finite group. For an element a of G, the

order of the cyclic group <a> is called the order of the element a.



