53

LNCS 3622

Tutorial

5th International School, AFP 2004
Tartu, Estonia, August 2004
Revised Lectures

@ Springer

-
> — /

: j’jVarmo Vene Tarmo Uustalu (Eds.)

Advanced
Functional
Programming

5th International School, AFP 2004
Tartu, Estonia, August 14 — 21, 2004
Revised Lectures

‘\"‘-.. .,.,,.,,,,.w‘f

E200600007

@ Springer

Volume Editors

Varmo Vene

University of Tartu

Department of Computer Science
J. Liivi 2, EE-50409 Tartu, Estonia
E-mail: varmo@cs.ut.ee

Tarmo Uustalu

Institute of Cybernetics

Akadeemia tee 21, EE-12618 Tallinn, Estonia
E-mail: tarmo@cs.ioc.ee

Library of Congress Control Number: 2005931987

CR Subject Classification (1998): D.1.1, D.1,D3,FE3,D.2

ISSN 0302-9743
ISBN-10 3-540-28540-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28540-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11546382 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3622

Preface

This volume contains the revised lecture notes corresponding to nine of the
lecture courses presented at the 5th International School on Advanced Functional
Programming, AFP 2004, held in Tartu, Estonia, August 14-21, 2004.

The goal of the AFP schools is to inform the wide international communities
of computer science students and software production professionals about the
new and important developments in the area of functional programming. The
schools put a special emphasis on practical applications of advanced techniques.
The Tartu school was preceded by four earlier schools in Bastad, Sweden (1995,
LNCS 925), Olympia, WA, USA (1996, LNCS 1129), Braga, Portugal (1998,
LNCS 1608) and Oxford, UK (2002, LNCS 2638).

The scientific programme of AFP 2004 consisted of five preparatory (“in-
termediate”) courses, given by John Hughes (Chalmers University of Technol-
ogy, Goteborg, Sweden), Doaitse Swierstra (Universiteit Utrecht, The Nether-
lands) and Rinus Plasmeijer (Radboud Universiteit Nijmegen, The Netherlands),
and nine regular (“advanced”) courses, presented by Atze Dijkstra (Universiteit
Utrecht, The Netherlands), Doaitse Swierstra, John Hughes, Conor McBride
(University of Nottingham, UK), Alberto Pardo (Universidade de la Republica,
Montevideo, Uruguay), Rinus Plasmeijer, Bernard Pope (University of Mel-
bourne, Australia), Peter Thiemann (Universitat Freiburg, Germany), and Si-
mon Thompson (University of Kent, UK). There was also a student session.

The school attracted a record number of 68 participants from 16 countries
(inclusive of the lecturers and organizers).

This volume contains the notes for the advanced courses. Following the school,
the lecturers revised the notes they had prepared for the school. The revised
notes were each carefully checked by two or three second readers selected from
among the most qualified available and then revised once more by the lecturers.
We are proud to commend the final texts to everyone wishing to acquire first-
hand knowledge about some of the exciting and trendsetting developments in
functional programming.

We are grateful to our sponsors, to the Faculty of Mathematics and Com-
puter Science of the University of Tartu, to the lecturers and the second readers
for their hard work on the oral presentations, and the notes, and to all our
participants. You made the school what it was.

Tartu and Tallinn, June 2005 Varmo Vene
Tarmo Uustalu

Organization

Host Institution

AFP 2004 was organized by the Department of Computer Science of the Univer-
sity of Tartu in cooperation with the Center for Dependable Computing (CDC),
an Estonian center of excellence in research.

Programme Committee

Varmo Vene (University of Tartu, Estonia) (chairman)
Johan Jeuring (Universiteit Utrecht, The Netherlands)
Tarmo Uustalu (Institute of Cybernetics, Tallinn, Estonia)

Organizing Committee

Varmo Vene (University of Tartu, Estonia) (chairman)
Héarmel Nestra (University of Tartu, Estonia)

Vesal Vojdani (University of Tartu, Estonia)

Tarmo Uustalu (Institute of Cybernetics, Tallinn, Estonia)

Second Readers

Venanzio Capretta (University of Ottawa, Canada)

James Cheney (University of Edinburgh, UK)

Catarina Coquand (Chalmers University of Technology, Sweden)
Jeremy Gibbons (University of Oxford, UK)

Thomas Hallgren (Oregon Graduate Institute, Portland, OR, USA)
Michael Hanus (Christian-Albrechts-Universitét zu Kiel, Germany)
Johan Jeuring (Universiteit Utrecht, The Netherlands)

Jerzy Karczmarczuk (Université Caen, France)

Ralf Lammel (CWI, Amsterdam, The Netherlands)

Andres Loh (Universiteit Utrecht, The Netherlands)

Nicolas Magaud (University of New South Wales, Sydney, Australia)
Simon Marlow (Microsoft Research, Cambridge, UK)

Ross Paterson (City University, London, UK)

Simon Peyton Jones (Microsoft Research, Cambridge, UK)

Colin Runciman (University of York, UK)

Tim Sheard (Portland State University, Portland, OR, USA)

Joost Visser (Universidade do Minho, Braga, Portugal)

Eric Van Wyk (University of Minnesota, Minneapolis, MN, USA)

VIII Organization

Sponsoring Institutions

Tiigriiilikool programme of the Estonian Information Technology Foundation

National Centers of Excellence programme of the Estonian Ministry of Education
and Research

EU FP5 IST programme via the thematic network project APPSEM II

Lecture Notes in Computer Science

For information about Vols. 1-3591

please contact your bookseller or Springer

Vol. 3710: M. Barni, I. Cox, T. Kalker, H.J. Kim (Eds.),
Digital Watermarking. XII, 485 pages. 2005.

Vol. 3703: F. Fages, S. Soliman (Eds.), Principles and
Practice of Semantic Web Reasoning. VIII, 163 pages.
2005.

Vol. 3702: B. Beckert (Ed.), Automated Reasoning with
Analytic Tableaux and Related Methods. XIII, 343 pages.
2005. (Subseries LNAI).

Vol. 3698: U. Furbach (Ed.), KI 2005: Advances in Artifi-
cial Intelligence. XIII, 409 pages. 2005. (Subseries LNAI).

Vol. 3697: W. Duch, J. Kacprzyk, E. Oja, S. Zadrozny
(Eds.), Artificial Neural Networks: Formal Models and
Their Applications - ICANN 2005, Part II. XXXII, 1045
pages. 2005.

Vol. 3696: W. Duch, J. Kacprzyk, E. Oja, S. Zadrozny
(Eds.), Artificial Neural Networks: Biological Inspirations
- ICANN 2005, Part I. XXXI, 703 pages. 2005.

Vol. 3687: S. Singh, M. Singh, C. Apte, P. Perner (Eds.),
Pattern Recognition and Image Analysis, Part II. XXV,
809 pages. 2005.

Vol. 3686: S. Singh, M. Singh, C. Apte, P. Perner (Eds.),
Pattern Recognition and Data Mining, Part I. XX VI, 689
pages. 2005.

Vol. 3684: R. Khosla, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part IV. LXXIX, 933 pages. 2005. (Subseries
LNAI).

Vol. 3683: R. Khosla, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part III. LXXIX, 1397 pages. 2005. (Sub-
series LNAI).

Vol. 3682: R. Khosla, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part II. LXXIX, 1371 pages. 2005. (Sub-
series LNAI).

Vol. 3681: R. Khosla, R.J. Howlett, L.C. Jain (Eds.),
Knowledge-Based Intelligent Information and Engineer-
ing Systems, Part I. LXXX, 1319 pages. 2005. (Subseries
LNAI).

Vol. 3678: A. McLysaght, D.H. Huson (Eds.), Compara-
tive Genomics. VIII, 167 pages. 2005. (Subseries LNBI).
Vol. 3677: J. Dittmann, S. Katzenbeisser, A. Uhl (Eds.),

Communications and Multimedia Security. XIII, 360
pages. 2005.

Vol. 3675: Y. Luo (Ed.), Cooperative Design, Visualiza-
tion, and Engineering. XI, 264 pages. 2005.

Vol. 3674: W. Jonker, M. Petkovi¢ (Eds.), Secure Data
Management. X, 241 pages. 2005.

Vol. 3672: C. Hankin, I. Siveroni (Eds.), Static Analysis.
X, 369 pages. 2005.

Vol. 3671: S. Bressan, S. Ceri, E. Hunt, Z.G. Ives, Z. Bel-
lahséne, M. Rys, R. Unland (Eds.), Database and XML
Technologies. X, 239 pages. 2005.

Vol. 3670: M. Bravetti, L. Kloul, G. Zavattaro (Eds.), For-
mal Techniques for Computer Systems and Business Pro-
cesses. XIII, 349 pages. 2005.

Vol. 3665: K. S. Candan, A. Celentano (Eds.), Advances
in Multimedia Information Systems. X, 221 pages. 2005.

Vol. 3664: C. Tirker, M. Agosti, H.-J. Schek (kas.), Peer-
to-Peer, Grid, and Service-Orientation in Digital Library
Architectures. X, 261 pages. 2005.

Vol. 3663: W.G. Kropatsch, R. Sablatnig, A. Hanbury
(Eds.), Pattern Recognition. XIV, 512 pages. 2005.

Vol. 3662: C. Baral, G. Greco, N. Leone, G. Terracina
(Eds.), Logic Programming and Nonmonotonic Reason-
ing. XIII, 454 pages. 2005. (Subseries LNAI).

Vol. 3661: T. Panayiotopoulos, J. Gratch, R. Aylett, D.
Ballin, P. Olivier, T. Rist (Eds.), Intelligent Virtual Agents.
X111, 506 pages. 2005. (Subseries LNAI).

Vol. 3660: M. Beigl, S. Intille, J. Rekimoto, H. Tokuda
(Eds.), UbiComp 2005: Ubiquitous Computing. XVII,
394 pages. 2005.

Vol. 3659: J.R. Rao, B. Sunar (Eds.), Cryptographic Hard-
ware and Embedded Systems — CHES 2005. XIV, 458
pages. 2005.

Vol. 3658: V. Matousek, P. Mautner, T. Pavelka (Eds.),
Text, Speech and Dialogue. XV, 460 pages. 2005. (Sub-
series LNAI).

Vol. 3655: A. Aldini, R. Gorrieri, F. Martinelli (Eds.),

Foundations of Security Analysis and Design III. VII, 273
pages. 2005.

Vol. 3654: S. Jajodia, D. Wijesekera (Eds.), Data and Ap-
plications Security XIX. X, 353 pages. 2005.

Vol. 3653: M. Abadi, L.d. Alfaro (Eds.), CONCUR 2005
— Concurrency Theory. XIV, 578 pages. 2005.

Vol. 3652: A. Rauber, S. Christodoulakis, A M. Tjoa
(Eds.), Research and Advanced Technology for Digital
Libraries. XVIII, 545 pages. 2005.

Vol. 3649: W.M.P. van der Aalst, B. Benatallah, F. Casati,
F. Curbera (Eds.), Business Process Management. XII,
472 pages. 2005.

Vol. 3648: J.C. Cunha, P.D. Medeiros (Eds.), Euro-Par
2005 Parallel Processing. XXX VI, 1299 pages. 2005.

Vol. 3646: A. F. Famili, J.N. Kok, J.M. Peiia, A. Siebes,
A. Feelders (Eds.), Advances in Intelligent Data Analysis
VI. X1V, 522 pages. 2005.

Vol. 3645: D.-S. Huang, X.-P. Zhang, G.-B. Huang (Eds.),
Advances in Intelligent Computing, Part I1. XIII, 1010
pages. 2005.

Vol. 3644: D.-S. Huang, X.-P. Zhang, G.-B. Huang (Eds.),
Advances in Intelligent Computing, Part I. XXVII, 1101
pages. 2005.

Vol. 3642: D. Slezak, J. Yao, J.F. Peters, W. Ziarko, X. Hu
(Eds.), Rough Sets, Fuzzy Sets, Data Mining, and Granu-
lar Computing, Part II. XXIII, 738 pages. 2005. (Subseries
LNAI).

Vol. 3641: D. Slezak, G. Wang, M. Szczuka, 1. Diintsch,
Y. Yao (Eds.), Rough Sets, Fuzzy Sets, Data Mining, and
Granular Computing, Part 1. XXIV, 742 pages. 2005. (Sub-
series LNAI).

Vol. 3639: P. Godefroid (Ed.), Model Checking Software.
X1, 289 pages. 2005.

Vol. 3638: A. Butz, B. Fisher, A. Kriiger, P. Olivier (Eds.),
Smart Graphics. XI, 269 pages. 2005.

Vol. 3637: J. M. Moreno, J. Madrenas, J. Cosp (Eds.),
Evolvable Systems: From Biology to Hardware. XI, 227
pages. 2005.

Vol. 3636: M.J. Blesa, C. Blum, A. Roli, M. Sampels
(Eds.), Hybrid Metaheuristics. XII, 155 pages. 2005.

Vol. 3634: L.. Ong (Ed.), Computer Science Logic. XI, 567
pages. 2005.

Vol. 3633: C. Bauzer Medeiros, M. Egenhofer, E. Bertino
(Eds.), Advances in Spatial and Temporal Databases. XIII,
433 pages. 2005.

Vol. 3632: R. Nieuwenhuis (Ed.), Automated Deduction
— CADE-20. XIII, 459 pages. 2005. (Subseries LNAI).

Vol. 3631:J. Eder, H.-M. Haav, A. Kalja, J. Penjam (Eds.),
Advances in Databases and Information Systems. XIII,
393 pages. 2005.

Vol. 3630: M.S. Capcarrere, A.A. Freitas, P.J. Bentley,

C.G. Johnson, J. Timmis (Eds.), Advances in Artificial
Life. XIX, 949 pages. 2005. (Subseries LNAI).

Vol. 3629: J.L. Fiadeiro, N. Harman, M. Roggenbach, J.
Rutten (Eds.), Algebra and Coalgebra in Computer Sci-
ence. XI, 457 pages. 2005.

Vol. 3628: T. Gschwind, U. ABmann, O. Nierstrasz (Eds.),
Software Composition. X, 199 pages. 2005.

Vol. 3627: C. Jacob, M.L. Pilat, PJ. Bentley, J. Timmis
(Eds.), Artificial Immune Systems. XII, 500 pages. 2005.
Vol. 3626: B. Ganter, G. Stumme, R. Wille (Eds.), Formal
Concept Analysis. X, 349 pages. 2005. (Subseries LNAI).
Vol. 3625: S. Kramer, B. Pfahringer (Eds.), Inductive
Logic Programming. XIII, 427 pages. 2005. (Subseries
LNAI).

Vol. 3624: C. Chekuri, K. Jansen, J.D.P. Rolim, L. Tre-
visan (Eds.), Approximation, Randomization and Combi-
natorial Optimization. XI, 495 pages. 2005.

Vol. 3623: M. Liskiewicz, R. Reischuk (Eds.), Fundamen-
tals of Computation Theory. XV, 576 pages. 2005.

Vol. 3622: V. Vene, T. Uustalu (Eds.), Advanced Functional
Programming. IX, 359 pages. 2005.

Vol. 3621: V. Shoup (Ed.), Advances in Cryptology —
CRYPTO 2005. XI, 568 pages. 2005.

Vol. 3620: H. Muiioz-Avila, F. Ricci (Eds.), Case-Based
Reasoning Research and Development. XV, 654 pages.
2005. (Subseries LNAI).

Vol. 3619: X. Lu, W. Zhao (Eds.), Networking and Mobile
Computing. XXIV, 1299 pages. 2005.

F4p2. b1

Vol. 3618: J. Jedrzejowicz, A. Szepietowski (Eds.), Math-
ematical Foundations of Computer Science 2005. XVI,
814 pages. 2005.

Vol. 3617: F. Roli, S. Vitulano (Eds.), Image Analysis and
Processing — ICIAP 2005. XXIV, 1219 pages. 2005.

Vol. 3615: B. Ludéscher, L. Raschid (Eds.), Data Integra-
tion in the Life Sciences. XII, 344 pages. 2005. (Subseries
LNBI).

Vol. 3614: L. Wang, Y. Jin (Eds.), Fuzzy Systems and
Knowledge Discovery, Part II. XLI, 1314 pages. 2005.
(Subseries LNAI).

Vol. 3613: L. Wang, Y. Jin (Eds.), Fuzzy Systems and
Knowledge Discovery, Part I. XLI, 1334 pages. 2005.
(Subseries LNAI).

Vol. 3612: L. Wang, K. Chen, Y. S. Ong (Eds.), Advances
in Natural Computation, Part ITI. LXI, 1326 pages. 2005.

Vol. 3611: L. Wang, K. Chen, Y. S. Ong (Eds.), Advances
in Natural Computation, Part II. LXI, 1292 pages. 2005.

Vol. 3610: L. Wang, K. Chen, Y. S. Ong (Eds.), Advances
in Natural Computation, Part I. LXI, 1302 pages. 2005.

Vol. 3608: F. Dehne, A. Lopez-Ortiz, J.-R. Sack (Eds.),
Algorithms and Data Structures. XIV, 446 pages. 2005.

Vol. 3607: J.-D. Zucker, L. Saitta (Eds.), Abstraction, Re-
formulation and Approximation. XII, 376 pages. 2005.
(Subseries LNAI).

Vol. 3606: V. Malyshkin (Ed.), Parallel Computing Tech-
nologies. XII, 470 pages. 2005.

Vol. 3604: R. Martin, H. Bez, M. Sabin (Eds.), Mathemat-
ics of Surfaces XI. IX, 473 pages. 2005.

Vol. 3603: J. Hurd, T. Melham (Eds.), Theorem Proving
in Higher Order Logics. IX, 409 pages. 2005.

Vol. 3602: R. Eigenmann, Z. Li, S.P. Midkiff (Eds.), Lan-
guages and Compilers for High Performance Computing.
IX, 486 pages. 2005.

Vol. 3599: U. ABmann, M. Aksit, A. Rensink (Eds.), Model
Driven Architecture. X, 235 pages. 2005.

Vol. 3598: H. Murakami, H. Nakashima, H. Tokuda,
M. Yasumura, Ubiquitous Computing Systems. XIII, 275
pages. 2005. A

Vol. 3597: S. Shimojo, S. Ichii, TW. Ling, K.-H.
Song (Eds.), Web and Communication Technologies and
Internet-Related Social Issues - HSI 2005. XIX, 368
pages. 2005.

Vol. 3596: F. Dau, M.-L. Mugnier, G. Stumme (Eds.),

Conceptual Structures: Common Semantics for Sharing
Knowledge. XI, 467 pages. 2005. (Subseries LNAI).

Vol. 3595: L. Wang (Ed.), Computing and Combinatorics.
XVI, 995 pages. 2005.

Vol. 3594: J.C. Setubal, S. Verjovski-Almeida (Eds.), Ad-
vances in Bioinformatics and Computational Biology.
XIV, 258 pages. 2005. (Subseries LNBI).

Vol. 3593: V. Mafik, R. W. Brennan, M. Péchouéek (Eds.),
Holonic and Multi-Agent Systems for Manufacturing. XI,
269 pages. 2005. (Subseries LNAT).

Vol. 3592: S. Katsikas, J. Lopez, G. Pernul (Eds.), Trust,

Privacy and Security in Digital Business. XII, 332 pages.
2005.

Table of Contents

Typing Haskell with an Attribute Grammar
Atze Digkstra, S. Doaitse SWIETSITa vovnviinriieee s

Programming with Arrows
JOT HUGRES ..o v oot

Epigram: Practical Programming with Dependent Types
Conor MCBTIAE . .« v e it

Combining Datatypes and Effects
ATt PATdO o oo oo e ee et e

GEC: A Toolkit for Generic Rapid Prototyping of Type Safe Interactive
Applications

Peter Achten, Marko van Fekelen, Rinus Plasmezjer,

Arjen van Weeldenooooiriiiiiiiini

A Functional Shell That Operates on Typed and Compiled Applications
Rinus Plasmeijer, Arjen van Weeldent

Declarative Debugging with Buddha
Bernard POPE ...t

Server-Side Web Programming in WASH
Peter TRICTIAMTL « o oo oo e e e et ee e ie e e

Refactoring Functional Programs
Simon TROMPSOT « o« vttt

AUthOr INdeX . .o oottt i e

Typing Haskell with an Attribute Grammar

Atze Dijkstra and S. Doaitse Swierstra

Institute of Information and Computing Sciences,
Utrecht University, P.O.Box 80.089,
3508 TB Utrecht, Netherlands
{atze, doaitse}@cs.uu.nl

Abstract. A great deal has been written about type systems. Much less has been
written about implementing them. Even less has been written about implementa-
tions of complete compilers in which all aspects come together. This paper fills
this gap by describing the implementation of a series of compilers for a simplified
variant of Haskell. By using an attribute grammar system, aspects of a compiler
implementation can be described separately and added in a sequence of steps,
thereby giving a series of increasingly complex (working) compilers. Also, the
source text of both this paper and the executable compilers come from the same
source files by an underlying minimal weaving system. Therefore, source and
explanation is kept consistent.

1 Introduction and Overview

Haskell98 [31] is a complex language, not to mention its more experimental incarna-
tions. Though also intended as a research platform, realistic compilers for Haskell [1]
have grown over the years and understanding and experimenting with those compilers
is not an easy task. Experimentation on a smaller scale usually is based upon relatively
simple and restricted implementations [20], often focusing only on a particular aspect
of the language and/or its implementation. This paper aims at walking somewhere be-
tween this complexity and simplicity by

Describing the implementation of essential aspects of Haskell (or any other (func-
tional) programming language), hence the name Essential Haskell (EH) used for
simplified variants of Haskell! in these notes.

Describing these aspects separately in order to provide a better understanding.
Adding these aspects on top of each other in an incremental way, thus leading to
a sequence of compilers, each for a larger subset of complete Haskell (and exten-
sions).

Using tools like the Utrecht University Attribute Grammar (UUAG) system [3],
hereafter referred to as the AG system, to allow for separate descriptions for the
various aspects.

! The *E’ in EH might also be expanded to other aspects of the compiler, like being an Example.

V. Vene and T. Uustalu (Eds.): AFP 2004, LNCS 3622, pp. 1-72, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

2 A. Dijkstra and S.D. Swierstra

The remaining sections of this introduction will expand on this by looking at the inten-
tions, purpose and limitations of these notes in more detail. This is followed by a short
description of the individual languages for which we develop compilers throughout
these notes. The last part of the introduction contains a small tutorial on the AG system
used in these notes. After the introduction we continue with discussing the implementa-
tion of the first three compilers (sections 2, 3 and 4) out of a (currently) sequence of ten
compilers. On the web site [11] for this project the full distribution of the code for these
compilers can be found. We conclude these notes by reflecting upon our experiences
with the AG system and the creation of these notes (section 5).

1.1 Purpose
For whom is this material intended?

— For students who wish to learn more about the implementation of functional lan-
guages. This paper also informally explains the required theory, in particular about
type systems.

— For researchers who want to build (e.g.) a prototype and to experiment with ex-
tensions to the type system and need a non-trivial and realistic starting point. This
paper provides documentation, design rationales and an implementation for such a
starting point.

— For those who wish to study a larger example of the tools used to build the com-
pilers in these notes. We demonstrate the use of the AG system, which allows us to
separately describe the various aspects of a language implementation. Other tools
for maintaining consistency between different versions of the resulting compilers
and the source code text included in these notes are also used, but will not be dis-
cussed.

For this intended audience these notesprovide:

A description of the implementation of a type checker/inferencer for a subset of
Haskell. We describe the first three languages of a (currently) sequence of ten, that
end in a full implementation of an extended Haskell.

A description of the semantics of Haskell, lying between the more formal [16,14]
and more implementation oriented [21,33] and similar to other combinations of
theory and practice [34].

A gradual instead of a big bang explanation.

Empirical support for the belief that the complexity of a compiler can be managed
by splitting the implementation of the compiler into separate aspects.

A working combination of otherwise usually separately proven or implemented
features.

We will come back to this in our conclusion (see section 5).

Typing Haskell with an Attribute Grammar 3

We restrict ourselves in the following ways, partly because of space limitations, partly
by design:

— We do not discuss extensions to Haskell implemented in versions beyond the last
version presented in these notes. See section 1.3 for a preciser description of what
can and cannot be found in these notes with respect to Haskell features.

— We concern ourselves with typing only. Other aspects, like pretty printing and pars-
ing, are not discussed. However, the introduction to the AG system (see section 1.4)
gives some examples of the pretty printing and the interaction between parsing, AG
code and Haskell code.

— We do not deal with type theory or parsing theory as a subject on its own. This
paper is intended to describe “how to implement” and will use theory from that
point of view. Theoretical aspects are touched upon from a more intuitive point of
view.

Although informally and concisely introduced where necessary, familiarity with the
following will make reading and understanding these notes easier:

— Functional programming, in particular using Haskell
— Compiler construction in general

— Type systems, A-calculus

— Parser combinator library and AG system [3,38]

For those not familiar with the AG system a short tutorial has been included at the end of
this introduction (see section 1.4). It also demonstrates the use of the parser combinators
used throughout the implementation of all EH versions.

We expect that by finding a balance between theory and implementation, we serve both
those who want to learn and those who want to do research. It is also our belief that by
splitting the big problem into smaller aspects the combination can be explained in an
easier way.

Inthe following sections we give examples of the Haskell features present in the series
of compilers described in the following chapters. Only short examples are given, so the
reader gets an impression of what is explained in more detail and implemented in the
relevant versions of the compiler.

1.2 A Short Tour

Though all compilers described in these notes deal with a different issue, they all have
in common that they are based on the A-calculus, most of the time using the syntax
and semantics of Haskell. The first version of our series of compilers therefore accepts
a language that most closely resembles the A-calculus, in particular typed A-calculus
extended with let expressions and some basic types and type constructors such as Int,
Char and tuples.

4 A. Dijkstra and S.D. Swierstra

EH version 1: A-calculus. An EH program is a single expression, contrary to a Haskell
program which consists of a set of declarations forming a module.

leti: Int
i=35
in |

All variables need to be typed explicitly; absence of an explicit type is considered to
be an error. The corresponding compiler (EH version 1, section 2) checks the explicit
types against actual types. '

Besides the basictypes Int and Char,compositetypescanbe formed by building tuples
and defining functions:

let id :: Int — Int
id=2&x—>x
fst:: (Int, Char) — Int
fst = Ala,b) - a

in id (fst (id 3,’x"))

Functions accept one parameter only, which can be a pattern. All types are monomor-
phic.

EH version 2: Explicit/implicit typing. The next version (EH version 2, section 3) no
longer requires the explicit type specifications, which thus may have to be inferred by
the compiler.

Thereconstructed type information is monomorphic, for example the identity function
in:

let id = Ax —» x
in letv=1id3
in id

is inferred to have the type id :: Int — Int.

EH version 3: Polymorphism. The third version (EH version 3, section 4) performs
standard Hindley-Milner type inferencing [8,9] which also supports parametric poly-
morphism. For example,

let id = Ax - x
in id3

is inferred to have type id :: ¥ a.a — a.

Typing Haskell with an Attribute Grammar 5

1.3 Haskell Language Elements Not Described

As mentioned before, only a subset of the full sequence of compilers is described in
these notes. Currently, as part of an ongoing work [11], in the compilers following the
compilers described in these notes, the following Haskell features are dealt with:

EH 4. Quantifiers everywhere: higher ranked types [36,32,7,28] and existentials
[30,25,27). See also the longer version of these notes handed out during the AFP04
summerschool [13].

EH 5. Data types.

EH 6. Kinds, kind inference, kind checking, kind polymorphism.

EH 7. Non extensible records, subsuming tuples.

EH 8. Code generation for a GRIN (Graph Reduction Intermediate Notation) like
backend [6,5].

EH 9. Class system, explicit implicit parameters [12].

EH 10. Extensible records [15,22].

Also missing are features which fall in the category syntactic sugar, programming in the
large and the like. Haskell incorporates many features which make programming easier
and/or manageable. Just to mention a few:

Binding group analysis

Syntax directives like infix declarations

Modules [10,37].

Type synonyms

Syntactic sugar for if, do, list notation and comprehension.

We have deliberately not dealt with these issues. Though necessary and convenient we
feel that these features should be added after all else has been dealt with, so as not to
make understanding and implementating essential features more difficult.

1.4 An AG Mini Tutorial

The remaining part of the introduction contains a small tutorial on the AG system. The
tutorial explains the basic features of the AG system. The explanation of remaining
features is postponed to its first use throughout the main text. These places are marked
with AG. The tutorial can safely be skipped if the reader is already familiar with the
AG system.

Haskell and Attribute Grammars (AG). Attribute grammars can be mapped onto func-
tional programs [23,19,4]. Vice versa, the class of functional programs (catamorphisms

6 A. Dijkstra and S.D. Swierstra

[39]) mapped onto can be described by attribute grammars. The AG system exploits this
correspondence by providing a notation (attribute grammar) for computations over trees
which additionally allows program fragments to be described separately. The AG com-
piler gathers these fragments, combines these fragments, and generates a corresponding
Haskell program.

In this AG tutorial we start with a small example Haskell program (of the right form)
to show how the computation described by this program can be expressed in the AG
notation and how the resulting Haskell program generated by the AG compiler can be
used. The ‘repmin’ problem [4] is used for this purpose. A second example describing a
‘pocket calculator’ (that is, expressions) focusses on more advanced features and typical
AG usage patterns.

Repmin a la Haskell. Repmin stands for “replacing the integer valued leaves of a tree
by the minimal integer value found in the leaves”. The solution to this problem requires
two passes over a tree structure, computing the miminum and computing a new tree
with the minimum as its leaves respectively. It is often used as the typical example of
a circular program which lends itself well to be described by the AG notation. When
described in Haskell it is expressed as a computation over a tree structure:

data Tree = Tree_Leaf Int
| Tree_Bin Tree Tree
deriving Show

The computation itself simultaneously computes the minimum of all integers found in
the leaves of the tree and the new tree with this minimum value. The result is returned
as a tuple computed by function r:

repmin :: Tree — Tree

repmin t
=
where (¢, tmin) =rttmin
r (TreeLeaf i) m = (Tree_Leaf m i)

r (Tree_Bin It rt) m = (Tree Bin I’ rt’, Imin ‘min‘ rmin)
where (It',Imin) =rltm
(rt’,rmin) =rrtm

We can use this function in some setting, for example:

tr = Tree_Bin (Tree_Leaf 3) (Tree_Bin (Tree_Leaf 4) (Tree_Leaf S))
tr' = repmin tr
main :: 10 ()

main = print tr’
The resulting program produces the following output:

Tree_Bin (Tree_Leaf 3) (Tree_Bin (Tree_Leaf 3) (Tree_Leaf 3))

Typing Haskell with an Attribute Grammar 7

The computation of the new tree requires the minimum. This minimum is passed as a
parameter m to r at the root of the tree by extracting it from the result of r. The result
tuple of the invocation r ¢ tmin depends on itself via the minimum tmin so it would
seem we have a cyclic definition. However, the real dependency is not on the tupled
result of r but on its elements because it is the element tmin of the result tuple which
is passed back and not the tuple itself. The elements are not cyclically dependent so
Haskell’s laziness prevents a too eager computation of the elements of the tuple which
might otherwise have caused an infinite loop during execution. Note that we have two
more or less independent computations that both follow the tree structure, and a weak
interaction, when passing the tmin value back in the tree.

Repmin a la AG. The structure of repmin is similar to the structure required by a com-
piler. A compiler performs several computations over an abstract syntax tree (AST), for
example for computing its type and code. This corresponds to the Tree structure used by
repmin and the tupled results. In the context of attribute grammars the elements of this
tuple are called attribute’s. Occasionaly the word aspect is used as well, but an aspect
may also refer to a group of attributes associated with one particular feature of the AST,
language or problem at hand.

Result elements are called synthesized attributes. On the other hand, a compiler may
also require information that becomes available at higher nodes in an AST to be avail-
able at lower nodes in an AST. The m parameter passed to r in repmin is an example of
this situation. In the context of attribute grammars this is called an inherited attribute.

Using AG notation we first define the AST corresponding to our problem (for which
the complete compilable solution is given in Fig. 1):

DATA Tree
| Leaf int: {Int}
| Bin It :Tree
rt :Tree

The DATA keyword is used to introduce the equivalent of Haskell’s data type. A
DATA(node) defines a node {node) (or nonterminal) of an AST. Its alternatives, enu-
merated one by one after the vertical bar |, are called variants, productions. The term
constructor is occasionally used to stress the similarity with its Haskell counterpart.
Each variant has members, called children if they refer to other nodes of the AST and
fields otherwise. Each child and field has a name (before the colon) and a type (after
the colon). The type may be either another DATA node (if a child) or a monomorphic
Haskell type (if a field), delimited by curly braces. The curly braces may be omitted if
the Haskell type is a single identifier. For example, the DATA definition for the repmin
problem introduces a node (nonterminal) Tree, with variants (productions) Leaf and
Bin. A Bin has children It and rt of type Tree. A Leaf has no children but contains only
a field inz holding a Haskell Int value.

