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I. Introduction

The knowledge of the structure of the group ring RG of a finite group
G over the ring R of integers in a finite extension field K of

the p-adic number field Qp yields insight into the possible actions
of G on abelian groups. Compared with the matrix ring Q™" over

the maximal R-order R in a K-division algebra D the group ring RG
is little understood in case p divides the order |G| of the group

G . The present paper makes one step towards a description of RG 1in
terms of such matrix rings, their twosided ideals, and isomorphisms
between certain (finite) factor rings. Such a description more or less
allows to read off the isomorphism types of the irreducible RG-lattices
and their possible embeddings into one another, as well as a way the
projective indecomposable RG-lattices are built up form certain irre-
ducible ones. (An RG-lattice L 1is called irreducible if KL 5=K0RL

is an irreducible KG-module.) Among other examples, the principal
2-block of the group ring of SLz(q) , 9 an odd prime power, over the
2-adic integers, and blocks with cyclic defect groups over the ring of

p-adic integers are treated as applications of the general theory.

As BRAUER [Bra 56] points out, the most interesting arithmetic pro-
perties of A =RG are lost when one passes from RG to a maximal
R-order in A =KG which contains RG . Since hereditary orders are
equally well understood as maximal orders, JACOBINSKI, cf. [Jac 66],
[Jac 81], suggests to embed A into a certain hereditary R-order in
A , which he calls a hereditary hull of A . In Chapter II of this
paper the hereditary orders are replaced by the considerably more
general graduated orders or even graduable orders, cf. ZASSENHAUS

[zas 75], as the "well-known" R-orders in which A might be embedded



and a graduated hull of A is defined. Of course A need not be a
group ring for this but only an arbitrary R-order in a semisimple
K-algebra A . Graduated orders in A are essentially defined by the
property that they contain a full set of primitive orthogonal idem-
potents of A (cf. (II.1) for the exact definition) and are distin-
guished by the property that they are determined by their irreducible

lattices, cf. (II.8).

There are several advantages of the replacement of hereditary hulls

by graduated hulls. Graduated orders can still be described by compara-
tively few invariants, cf. (II.2) and (II.3). A graduated hull is
generally a better approximation (from above) to the order A than a
hereditary hull., Indeed, it follows from (II.8) that there exists only
one unique graduated hull under certain conditions in which case it is
the intersection of all hereditary hulls or equivalently of all maxi-
mal R-orders containing A . Thirdly JACOBINSKI's conductor formula
for a hereditary R-order containing a group ring A=RG , cf. [Jac 66],
[Jac 81], can be generalized in two respects: The hereditary order can
be replaced by a graduated order containing A and A need not be a
group ring but only a "selfdual order" with respect to a generalized
trace bilinear form on the separable K-algebra A , (cf. (III.1) for

a proper definition). The conductor of some overorder I' of a self-
dual order A , i.e. the biggest I'-ideal contained in A , turns out
to be the dual TI'* of T with respect to the generalized trace bi-
linear form of A belonging to A , cf., (III.7). The conductor
formula (III.8) gives an explicit description of the conductor of T
in A in terms of the structural invariants of TI' in case T 1is a
graduated order. The idea is that a graduated hull TI' of A restricts
the possibilities for A considerably more than a hereditary hull,

since T*cAcTl' , and that the conductor formula makes it possible to



h
discuss these inclusions. Note, if I'= @ eSA , where Epres-s€y are
s=1

the central primitive idempotents of A , then the conductor is also equal

to ® (ssAﬂA). Other examples of selfdual orders apart from group rings
s=1

are twisted group rings, cf. (III.2), (III.4), and orders of the form

€Ae where € 1is an idempotent in a selfdual R-order A .

These ideas can most successfully be applied to group rings RG where
R is a sufficiently large unramified (finite) extension of the p-adic
integers Zp . But of course the primary group theoretical interest is
concentrated in the group rings ZPG over the p-adic integers, for
instance because they determine the possible actions of G on finite
abelian p-groups. To'develop the tools for the Galois descent from RG
to sz Chapter II.b discusses graduable orders, i.e. orders which
become graduated orders after a sufficiently big unramified ground ring
extension, cf. Definition (II.13). Among other characterizations
Theorem (II.16), cf. also (III.12), gives an easily applicable crite-
rion for esA to be a graduable order: Certain modified (cf.(III.10))
decomposition numbers have to be equal to zero or one. As for the
Galois descent Theorem (II.20) gives a satisfactory answer: A graduable
order T' in a central simple algebra is determined up to isomorphism
by ' =R'G%F and the natural embedding TI'/Jac(l)esT'/Jac(I'') for
some arbitrary unramified extension R' of R . Many things done with
graduated orders in later chapters, could also be done with graduable
orders, e.g. the conductor formula could he proved for graduable over-
orders. Since this can easily be obtained from the stated results and
(II.20) it is usually not mentioned explicitely. This is about as far
as the general theory is developed in Chapter II and III, the main
results being the characterizations of graduated and graduable orders
in (I1.8) and (II.16), the essential uniqueness for the Galois descent

for graduated to graduable orders in (II.20) and of course the conduc-



tor formula (III.8). It should be noted, however, that Chapter II.b
can be skipped upon first reading, since the other chapters are kept

essentially independent of this part.

h
Chapter IV discusses selfdual orders A for which ®e A
=1

(es as above) 1is a graduated R-order in A . This is essentially
tantamount to demanding that the decomposition numbers of A are all
equal to 0 and 1, (and R "big enough") cf. (III.12) or Chapter
IIb for the exact conditions. In this situation, the projective in-
decomposahle A-lattices Pi have the property that EsP; is irre-
ducible or O by Brauer's reciprocity. The major part of Chapter IV

is a careful analysis of the embedding of Pi in the completely de-

h
composable A-lattice (<] SsPi by investigating the "amalgamating
h s=1 h
factors (;z1esPiL/pi and Pi/sf1(esPi npi) of P, . For most applic-

ations in later chapters (IV.1), (IV.7), and (IV.10) to (IV.12) are

sufficient.

The last four chapters contain applications of the theory developed
in the first chapters to the explicite computation of group rings in

the sense described at the beginning of this introduction. The general
h

procedure consists of two steps: At first one determines @ e A
s=1

which essentially amounts to finding the sublattices of all irre-
ducible A-lattices. Then one has to find the embedding of A into
h

) esA , i.e. to see how the ESA (resp. esPi) are amalgamted to
s=1

A  (resp. Pi)' In practice these two steps are not performed one after
the other. Indeed, it is part of the idea to use step 2 to compare the
various epimorphic images ESA of A and thereby getting information
to perform step 1. Of course, step 2 can only be completed after step

1 is fully carried out.



Chapter V discusses block ideals of group rings with all diagonal
Cartan numbers equal to 2. In case all Frobenius characters are real
a complete description of the ringtheoretical structure of these
blocks is given. In Chapter VI step 1 of the procedure outlined above
is carried out for the principal blocks of various group rings with
decomposition numbers O and 1 (i.e. the sublattices of the irre-
ducible lattices in the block are determined). The examples are the

symmetric grou at the prime 5, SL,(3) at the prime 2, SL,(4)
P 3 3

Big
at the prime 3, and the Mathieu group My, at the primes 2 and 3.
The usual information one starts out with in Chapter VI and VII is the
character table of the group and the decomposition numbers. Of course,
some insight in the subgroup structure is always a help. In Chapter
VII the principal blocks of RG, G==SL2(q) with g an odd prime
power and R the ring of 2-adic integers are completely determined

in the above sense. For instance for g=+ 1 (mod 8), it turns out
that all irreducible lattices of this block are uniserial except

possibly for the ones of R-rank g belonging to the Steinberg

character.

Finally blocks with cyclic defect groups are described in Chapter VIII,
where the Dedekind ring R is first assumed to be a sufficiently

large unramified extension of the p-adic integers. In particular a
generalization of Brauer's Theorem 11 in [Bra 41] on the sublattices

of the irreducible lattices in a block of defect 1 is proved, cf.
(VIII.3). This was mentioned as an open problem at the end of Dade's
basic paper [Dad 66] on blocks with cyclic defect groups, cf. also

[Fei 82]. As a corollary one obtains linear congruences for the central
characters modulo |IDIR where D is a cyclic defect group of the
block. In a final step the description is extended to blocks with

cyclic defect groups over the ring of p-adic integers.



Some comments on the earlier literature might be useful., Graduated
orders turn up at various places under various names; e.g. in [Jat 74]
their global dimensions are investigated, cf. also [WiR 82]; in

[zaK 77] the graduated orders of finite representation type were
characterized, cf. also [Rum 81a], [Rum 81b]l; the connection of gradu-
ated orders with orders A whose irreducible lattices have a
distributive lattice of A-sublattices was observed in [Ple 77], cf.
also [Zas 69], [Ple 80al, [Rum 81b]. The major part of the theory
developed here is already contained in the author's Habilitationsschrift
[Ple 80a] for group rings RG under the two additional assumptions
that the quotient field K of R 1is a splitting field for the group
G and that the decomposition numbers are all equal to O and 1 ;

cf. also [Ple 80b] for a short summary of those results. The expression

h
for ® (eSRGlﬁRG) there was obtained as a consequence of Schur's
s=1

relations, cf. [Hup 67] page 477, which allow to express matrix units
in the group algebra KG as linear combinations of the group elements
with coefficients coming from irreducible matrix representations of G,
cf. also [Ser 77]. The presentation given here was influenced (at a
late stage) by Jacobinski's lectures on hereditary orders, cf, [Jac 81]
and his discussion of blocks of defect 1 . For other approaches to

special blocks of group rings cf. also [Rog 80a], [Rog 80b], [Rog 81].

The used notation is standard. Groups usually act from the left side,
module homomorphisms are written on the left, right resp. left side for
right, left, resp. bi-modules. All rings have a unit and all modules
are unital. If not stated otherwise, all modules are left finitely
generated modules (and hence also viewed as right modules over their
endomorphism rings). A general reference for orders over Dedekind

domains is [Rei 75].



II. Graduated and graduable orders

In this chapter R 1is a complete local Dedekind domain with quotient
field K and maximal ideal p -« Furthermore D is a (finite dimen-
sional) separable division algebra over K , 2 the maximal R-order of
D , P =Jac(R) the maximal ideal of Q (cf. e.g. [Jac 81], [Rei 751]).
A will denote a separable K-algebra containing an R-order A such

that KA =A .

II.a. Definition and characterization of graduated orders

(II.1) Definition. A s called a graduated order if there exist
orthogonal (primitive) idempotents €1se0rs€y in A with
I=g ... te, (Z:JA) such that e Ae. 15 a maximal order in EiAei

In particular, the maximal orders and the hereditary orders are among
the graduated orders. Note, if K 1is a splitting field of A , then
A is a graduated order iff A contains a complete set of orthogonal
idempotents of A . If A decomposes into a direct sum of minimal
twosided ideals A1""’Ah , then A is a graduated order if and only
if A is the direct sum of the AS =AN As and each of the As is a
graduated order in As (s=1,«4.,h). Therefore it suffices to investi-
gate graduated orders in simple algebras. Let A be the matrix ring
D™ of degree n over D in the sequel. To describe the obvious
examples of graduated orders, the following notation is useful: For

t
¥=(n;,e.0n) EN® with n= In, and M=(m;) €2°"" let
i=1 1 13



- my 4 myxny . nxn
A(Qn,M ={(a,.) | a,.€(p ") , 1<i,j<t}lepD =A.
I.e., the elements of A(Q,;,M) are nxn-matrices over D partitioned

m, .
into nixnj—submatrices a the entries of which lie in P ij. If

ij
Q=R , one writes simply A(D,M) instead of A(R,n,M). Obviously

A=A(R,n,M) is an order in A , iff M= (mij) satisfies m;, =0 and

m.. +m,.

i3 jk_>_m. for 1<i,j,k<t . In this case A is already a

ik
graduated order, the matrix graduation being induced by the standard
diagonal idempotents.

(II.2) Definition. A graduated order A in A=0"" is said to be

in standard form, i1f there exist W= (nl,...,nt) €N1xt with

n

_ _ txt _ ~
gt =0, M= (mij)€l>0 such that A=A(Q,n,M) and

mig t ik 2 Mik
(%) m;: =
m +mj-£>0 (7 #7)
for <<i,j,k<t. In this case M <is called the exponent matriz of

A and n the dimension type of A.

Since any two complete sets of primitive idempotents of A can be
conjugated by nonsingular matrices of A 1into each other and since
the ideals of Q are the powers of P , one easily verifies (II.3),
cf. e.g. [Zas 75].

(II.3) Remark. Each graduated order A in Aa=p"" is tsomorphic to

a graduated order in standard form.

For a graduated order in standard form it is easy to compute the
irreducible lattices. Therefore the proof of (II.4) is left to the

reader, cf. e.g. [Zas 75], [Ple 77], [Ple 80al, [Rum 81b].



(IT.4) Remark. Let A:A(Q,'ﬁ',M} be a graduated order of standard

type tn A .
() The Jacobson radical of A is given by Jac(h) :A(Q,Z,M+It),

where It 18 the txt-unit matricx.
-t n.%xn.
(i) AfJac(A)= & (Q/3) * .
z=1
Dn*] n

(222) Let V= be the standard irreducible module of a=p""

The set J(V) of all A-lattices #*0 in V is given by all

~ al mi nixl
L(m):{l |a£€('$) }EV
a,

tre anl

with ;:(ml,...,mt) satisfying

ok i
(**) Myq *Ms>m, (1<i,j<t)

(Zv) Two A-lattices L('r;fl), L(;IZ) €3(V) are isomorphic if and only

if 7n1—;1'2 s a multiple of (1,...,1)tr€ gERE

L('r;l) =L(%2)“{$a for some a€ L ,

s T.e.

(v) Each projective indecomposable A-lattice <s irreducible and iso-
morphic to L(Mi) for some 1 =1,...,t , where M. 18 the i-th
column of M .

(vi) Define Si:L(Mi)/Jac(A)L(Mi) for 1=1,...,t . Then SyseeesSy
form a set of representatives of the simple A-(torsion)modules. For
solutions 7"1’%2 of (**) with L(Tnz) EL(%Z) the i-th coefficient
of zl_%Z 18 the multiplieity of S; in a composition series of the
A-module L(%Z)/L(%l) for 1=1,...,t .

(vii) Each injective indecomposable A-lattice 1s irreducible and iso-
morphic to L(iM) for some 1 =1,...,t , where M 18 the i-th
column of -Mtr. (A A-lattice L 1is injective, if HomR(L,R) is a

projective right A-lattice,)

(viii) The two-sided (fractional) ideals of A in A are given by
~ _ txt . .
A(Q,n,N) , where VN = (nij) € Z satisfies mij+ njk-?-nik and

nij+mjk->—nik for 1<i,j,k<t .
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Note, by part (ii) of this remark the dimension type n depends only
on the isomorphism type of A (up to the order of the ng ). By (II.4)
(iii) and (iv) the irreducible A-lattices of the graduated order
A=A(Q,?1,M) fall into finitely many isomorphism classes the number

of which only depends on M . A convenient set of representatives can

be produced as follows: For m o= (m1,...,mt)tr€ Zt“1 satisfying (**)
let @ =L@ [T=(1,,...,1) e 2" satisfying (*%),
lizmi for i==1,...,t;1j=mj for one j=1,...,t}=

={Ley(v) |[LcL(m) , LEL(MP) .

This set X(m) can conveniently be computed "layer by layer" as
follows:

Compute the (at most t ) maximal A-sublattices of L(m) and drop
those which are not in ® (m) . Continue with the maximal A-sublattices
of L(m) in R(M) which are contained in & (M) to get the second
maximal A-sublattices of L(m) in % (M) etc.. (Note, L(m) con-

tains a maximal sublattice L with L(Tn)/LEAi iff myy *my > my

for j=1,...,t , J#i.)

Unlike the dimension type 1 the exponent matrix M of a graduated
order A is not uniquely defined by the isomorphism type of A
because A can well be isomorphic to more than one graduated order

in standard form. Therefore ZASSENHAUS [Zas 75] introduced structural

invariants m, of a graduated order A 1in A=D""" as follows:

ijk
Lift the central primitive idempotents E1”"'Et of A/Jac(A) to

orthogonal idempotents Eqreeer€y of A with 1=€1+”‘+Et' Let

A,.=€,Ae. for i,j=1,...,t . Then there are nonnegative numbers

i3 1773

M5k € & satisfying



m. .
- wmidk Coa =
AijAjk—’p Aik for i,j,k=1,...,t .

(Note A is a maximal order for i=1,...,t .) The m,

ii ijk satisfy

M9k TMikl = ™51 M3k
(F*%) Mggg =0 (=mygq=myqq)

miji>o (j #1)

for 1<i,j,k, 1<t . The first equations of (***) follow from
associativity: (AijAjk)Akl =Aij (AjkAkl) , the second from the property

of Aii to be an order, and the third from the choice of the idempo-

tents € - If e;,...,et'__ is a second set of idempotents of A such

that the ei + Jac(A) are the central primitive idempotents of

A/Jac(A) the structural invariants m:;.jk of A with respect to the

eJ!_ are obtained by permuting the indices of the m . Namely there

ijk
exists an inner automorphism a of A and a permutation n €sn with

a(ei) =€’ for i=1,...,t . Therefore y 1<i,j,k<t.

= '
mi mijk mni,nj,nk

Hence the structural invariants (up to order) depend only on the iso-
morphism type of the graduated order A . Call n= (n1,...,nt) the

dimension type of A , where n, is the unique natural number with

n.xn,
L T, i=1,000,t .

If A=A(Q,?1,M) is a graduated order in standard form, then clearly
T is also the dimension type of A in the sense just defined and the
structural invariants of A are given by

(Fxxx) m =m,.+m,, -m, for 1<i,j, k<t .

ijk ij jk ik

(I1.5) Lemma. Let M'-= (méj) €2 :St be a second solution of (****),
; ’ L=m..+m.-m.

Then there are integers MysesssMy € Z with sz sz m. mJ for

1 <2, < t.

Proof: Let x..=m!.-m,. for 1<i,j <t . Then (****) implies

ij ij ij



