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PREFACE

Differential geometry has a long history as a field of mathematics
and yet its rigorous foundation in the realm of contemporary
mathematics is relatively new. We have written this book, the
first of the two volumes of the Foundations of Differential Geometry,
with the intention of providing a systematic introduction to
differential geometry which will also serve as a reference book.

Our primary concern was to make it self-contained as much as
possible and to give complete proofs of all standard results in the
foundation. We hope that this purpose has been achieved with
the following arrangements. In Chapter I we have given a brief
survey of differentiable manifolds, Lie groups and fibre bundles.
The readers who are unfamiliar with them may learn the subjects
from the books of Chevalley, Montgomery-Zippin, Pontrjagin,
and Steenrod, listed in the Bibliography, which are our standard
references in Chapter I. We have also included a concise account
of tensor algebras and tensor fields, the central theme of which
is the notion of derivation of the algebra of tensor fields. In the
Appendices, we have given some results from topology, Lie group
theory and others which we need in the main text. With these
preparations, the main text of the book is self-contained.

Chapter II contains the connection theory of Ehresmann and
its later development. Results in this chapter are applied to
linear and affine connections in Chapter IIT and to Riemannian
connections in Chapter IV. Many basic results on normal
coordinates, convex neighborhoods, distance, completeness and
holonomy groups are proved here completely, including the de
Rham decomposition theorem for Riemannian manifolds.

In Chapter V, we introduce the sectional curvature of a
Riemannian manifold and the spaces of constant curvature. A
more complete treatment of properties of Riemannian manifolds
involving sectional curvature depends on calculus of variations
and will be given in Volume II. We discuss flat affine and
Riemannian connections in detail.

In Chapter VI, we first discuss transformations and infinitesimal
transformations which preserve a given linear connection or a
Riemannian metric. We include here various results concerning
Ricci tensor, holonomy and infinitesimal isometries. We then
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vi PREFACE

treat the extension of local transformations and the so-called
equivalence problem for affine and Riemannian connections.
The results in this chapter are closely related to differential
geometry of homogeneous spaces (in particular, symmetric
spaces) which are planned for Volume II.

In all the chapters, we have tried to familiarize the readers
with various techniques of computations which are currently in
use in differential geometry. These are: (1) classical tensor
calculus with indices; (2) exterior differential calculus of E. Cartan;
and (3) formalism of covariant differentiation VxY, which is the
newest among the three. We have also illustrated, as we see fit,
the methods of using a suitable bundle or working directly in
the base space.

The Notes include some historical facts and supplementary
results pertinent to the main content of the present volume. The
Bibliography at the end contains only those books and papers
which we quote throughout the book.

Theorems, propositions and corollaries are numbered for each
section. For example, in each chapter, say, Chapter 1I, Theorem
3.1 is in Section 3. In the rest of the same chapter, it will be referred
to simply as Theorem 3.1. For quotation in subsequent chapters,
it is referred to as Theorem 3.1 of Chapter II.

We originally planned to write one volume which would include
the content of the present volume as well as the following topics:
submanifolds; variations of the length integral; differential
geometry of complex and Kahler manifolds; differential geometry
of homogeneous spaces; symmetric spaces; characteristic classes.
The considerations of time and space have made it desirable to
divide the book in two volumes. The topics mentioned above will
therefore be included in Volume II.

In concluding the preface, we should like to thank Professor
L. Bers, who invited us to undertake this project, and Inter-
science Publishers, a division of John Wiley and Sons, for their
patience and kind cooperation. We are greatly indebted to Dr.
A.J. Lohwater, Dr. H. Ozeki, Messrs. A, Howard and E. Ruh for
their kind help which resulted in many improvements of both the
content and the presentation. We also acknowledge the grants of
the National Science Foundation which supported part of the work
included in this book.

SuosHiCHI KOBAYASHI
Katsumr Nomizu
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CHAPTER 1

Differentiable Manifolds

1. Differentiable manifolds

A pseudogroup of transformations on a topological space S is a set
I' of transformations satisfying the following axioms:

(1) Each feI' is a homeomorphism of an open set (called the
domain of f) of S onto another open set (called the range of f) of
S5

(2) If fe T, then the restriction of f to an arbitrary open subset
of the domain of fis in I';

(3) Let U = YU, where each U, is an open set of §. A homeo-

morphism f of U onto an open set of S belongs to I' if the restric-
tion of f to U, is in I" for every ¢;

(4) For every open set U of §, the identity transformation of U
189n.1';

(5) IffeF,then f2eT;

(6) If feI' is a homeomorphism of U onto V and f'eI' is a
homeomorphism of U’ onto V' and if V N U’ is non-empty,
then the homeomorphism f”° f of f1(V N U’) onto f'(V N U’)
is in T'.

We give a few examples of pseudogroups which are used in this
book. Let R" be the space of n-tuples of real numbers (x%, #% . . ., x")
with the usual topology. A mapping f of an open set of R" into
R%:issisaid Ston-betiof dlass TQine= 152,750, iipiooy dfiif i cohs
tinuously r times differentiable. By class C° we mean that f is
continuous. By class C“ we mean that f is real analytic. The
pseudogroup T'"(R™) of transformations of class C™ of R" is the set of
homeomorphisms f of an open set of R"” onto an open set of R*
such that both f and f~! are of class C". Obviously I'"(R") is a
pseudogroup of transformations of R". If r < s, then I'*(R") is a

1



2 FOUNDATIONS OF DIFFERENTIAL GEOMETRY

subpseudogroup of I'"(R"). If we consider only those fe I''(R")
whose Jacobians are positive everywhere, we obtain a sub-
pseudogroup of I'"(R"). This subpseudogroup, denoted by
I'7(R"), is called the pseudogroup of orientation-preserving transforma-
tions of class C™ of R™. Let C" be the space of n-tuples of complex
numbers with the usual topology. The pseudogroup of holomorphic
(i.e.,. complex analytic) transformations of C" can be similarly
defined and will be denoted by I'(C"). We shall identify C" with
R*", when necessary, by mapping (2}, ..., z") e C*into (4%, ...,
x 9% ..., ") e R?™ where z/ = x’ + ¢». Under this identifi-
cation, I'(C") is a subpseudogroup of I';(R?") for any r.

An atlas of a topological space M compatible with a pseudo-
group I' is a family of pairs (U, ¢,), called charts, such that

(a) Each U, is an open set of M and YU, = M;

(b) Each ¢, is a homeomorphism of U, onto an open set of .S;

(c) Whenever U; N U, is non-empty, the mapping ¢, o ¢; ' of
@;(U; N U,) onto ¢,(U; N U,) is an element of I'.

A complete atlas of M compatible with I is an atlas of M com-
patible with I' which is not contained in any other atlas of M
compatible with I'. Every atlas of M compatible with I is con-
tained in a unique complete atlas of M compatible with T'. In
fact, given an atlas 4 = {(U,, ,)} of M compatible with T, let
A be the family of all pairs (U, ¢) such that ¢ is a homeomorphism
of an open set U of M onto an open set of S and that

gio97t (U N U,) — (U N U
is an element of I' whenever U N U, is non-empty. Then 4 is the
complete atlas containing A.

If I'" is a subpseudogroup of I', then an atlas of M compatible
with I' is compatible with I'.

A differentiable manifold of class C" is a Hausdorff space with a
fixed complete atlas compatible with I'"(R"). The integer 7 is
called the dimension of the manifold. Any atlas of a Hausdorff
space compatible with I'7(R"), enlarged to a complete atlas,
defines a differentiable structure of class C. Since I'"(R") = I'*(R")
for r < s, a differentiable structure of class C* defines uniquely a
differentiable structure of class C”. A differentiable manifold of
class C* is also called a real analytic manifold. (Throughout the book
we shall mostly consider differentiable manifolds of class C*. By




1. DIFFERENTIABLE MANIFOLDS 3

a differentiable manifold or, simply, manifold, we shall mean a
differentiable manifold of class C*.) A complex (analytic) manifold of
complex dimension 7 is a Hausdorff space with a fixed complete
atlas compatible with I'(C"). An oriented differentiable manifold
of class C” is a Hausdorff space with a fixed complete atlas com-
patible with I'j(R"). An oriented differentiable structure of class
Cr gives rise to a differentiable structure of class C" uniquely.
Not every differentiable structure of class C” is thus obtained; if
it is obtained from an oriented one, it is called orientable. An
orientable manifold of class CT admits exactly two orientations
if it is connected. Leaving the proof of this fact to the reader,
we shall only indicate how to reverse the orientation of an oriented
manifold. If a family of charts (U,, ¢,) defines an oriented manifold,
then the family of charts (U,, y,) defines the manifold with the
reversed orientation where y, is the composition of ¢, with the
transformation (¥, 2, ..., x") — (—x% 2, ..., 2") of R". Since
I'(C") = I';(R2"), every complex manifold is oriented as a mani-
fold of class C”.

For any structure under consideration (e.g., differentiable
structure of class C7), an allowable chart is a chart which belongs
to the fixed complete atlas defining the structure. From now on,
by a chart we shall mean an allowable chart. Given an allowable
chart (U, ¢,) of an n-dimensional manifold M of class Gz the
system of functions x' o @;, ..., x" o @, defined on U, is called a
local coordinate system in U,;. We say then that U, is a coordinate neigh-
horhood. For every point p of M, it is possible to find a chart (U, @)
such that g,(p) is the origin of R* and ¢, is a homeomorphism of
U, onto an open set of R" defined by [x'| <a,..., |x"| <a for
some positive number a. U, is then called a cubic neighborhood of p.

In a natural manner R" is an oriented manifold of class C” for
any r; a chart consists of an element f of I';(R") and the domain
of f. Similarly, C" is a complex manifold. Any open subset N of a
manifold M of class C” is a manifold of class C” in a natural manner;
a chart of N is given by (U; N N, y,) where (U,, ¢;) is a chart of
M and y, is the restriction of ¢, to U; N N. Similarly, for complex
manifolds.

Given two manifolds M and M’ of class C", a mapping
f: M — M’ is said to be differentiable of class C¥, k=y 1f for
every chart (U,, ¢;) of M and every chart (¥}, y;) of M’ such that
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S(U;) = V,, the mapping y;ofog@; ! of ¢ (U,) into y,(V,) is
differentiable of class C*. If u}, . . ., «" is a local coordinate system-
in U; and ', ..., 2™ is a local coordinate system in V;, then f
may be expressed by a set of differentiable functions of class C*:

b e AN e g L e

By a differentiable mapping or simply, a mapping, we shall mean a
mapping of class C*. A differentiable function of class C* on M is
a mapping of class C* of M into R. The definition of a kolomorphic
(or complex analytic) mapping or function is similar.

By a differentiable curve of class C* in M, we shall mean a differenti-
able mapping of class C* of a closed interval [a, 6] of R into M,
namely, the restriction of a differentiable mapping of class C* of
an open interval containing [a, b] into M. We shall now define a
tangent vector (or simply a vector) at a point p of M. Let F(p) be the
algebra of differentiable functions of class C* defined in a neighbor-
hood of p. Let x(¢) be a curve of class C!, a = ¢t < b, such that
x(t,) = p. The vector tangent to the curve x(t) at p is a mapping
X: §(p) — R defined by

Xf = (df(x(1))/dt) -

In other words, Xf is the derivative of f in the direction of the
curve x(¢) at ¢ = ¢,. The vector X satisfies the following conditions:

(1) X is a linear mapping of () into R;

(2) X(fg) = (Xf)g(p) +f(0)(Xg)  for fig « (p)-

The set of mappings X of §(p) into R satisfying the preceding
two conditions forms a real vector space. We shall show that the
set of vectors at p is a vector subspace of dimension z, where 7 is
the dimension of M. Let #%, . . ., u" be a local coordinate system
in a coordinate neighborhood U of p. For each j, (9/du’), is a
mapping of F(p) into R which satisfies conditions (1) and (2)
above. We shall show that the set of vectors at p is the vector

space with basis (0/0u?),, ..., (a/au" Given any curve x(t)
with p = x(4,), let w/ = x¥(¢), j = 1, , n, be its equations in
terms of the local coordinate system u1 , ut~Then

(df(x(0) dl),, = =, (3fw), - (d(8) ),

* For the summation notation, see Summary of Basic Notations.
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which proves that every vector at p is a linear combination of
(0/ou?),, ..., (0/0u"),. Conversely, given a linear combination
X &9(0/0w’),, consider the curve defined by

ulr—=udh) sk &t 0 = b e

Then the vector tangent to this curve at ¢ = 0 is = &/(09/0u?),.
To prove the linear independence of (9/du'),, ..., (9/ou"),,
assume X &/(d/0u’), = 0. Then

0 = X &i(outfoul),, = &* for k =1,...,m.

This completes the proof of our assertion. The set of tangent
vectors at p, denoted by 7',(M) or T, is called the tangent space of
M at p. The n-tuple of numbers &, . . ., £&" will be called the com-
ponents of the vector X &'(9/0u’), with respect to the local coordi-
nate system uty e Syt

Remark. 1t is known that if a manifold M is of class C*, then
T,(M) coincides with the space of X: ¥(p) — R satisfying condi-
tions (1) and (2) above, where §(p) now denotes the algebra of all
C* functions around p. From now on we shall consider mainly
manifolds of class C* and mappings of class C®.

A vector field X on a manifold M is an assignment of a vector X,
to each point p of M. If fis a differentiable function on M, then
Xfis a function on M defined by (Xf)(p) = X, f. A vector field X
is called differentiable if Xf is differentiable for every differentiable
function f. In terms of a local coordinate system ..., u" a
vector field X may be expressed by X = 3 £7(9/0u’), where &’ are
functions defined in the coordinate neighborhood, called the
components of X with respect to «!, ..., u". X is differentiable if
and only if its components &/ are differentiable.

Let X(M) be the set of all differentiable vector fields on M. It
is a real vector space under the natural addition and scalar
multiplication. If X and Y are in ¥(M), define the bracket
[X, Y] as a mapping from the ring of functions on M into itself

by
[X, Y]f = X(Xf) — Y(Xf).

We shall show that [X, Y] is a vector field. In terms of a local
coordinate system ul, . . ., u®, we write

X = 5 §(0)00) s ¥ Bl 067%
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Then

[X, Y1f = 2,;,(8*(n’|w¥) — n*(08%|0u")) (3f oue).
This means that [X, Y] is a vector field whose components with
respect to !, . .., u" are given by X, (& (9n’/ou*) — n*(0&i/0u*)),
J =1,...,n With respect to this bracket operation, ¥(M) is a
Lie algebra over the real number field (of infinite dimensions).
In particular, we have Jacobi’s identity:

for X, Y, Z  X(M).

We may also regard X(M) as a module over the algebra (M) of
differentiable functions on M as follows. If fis a function and X
is a vector field on M, then f X is a vector field on M defined by
(fX), =f(p)X, for p e M. Then

[fX, gY] = falX, Y] + f(Xg) Y — g(¥f)X
feeFM), X YeX(M).

For a point p of M, the dual vector space 7'¥ (M) of the tangent
space 7',(M) is called the space of covectors at p. An assignment of
a covector at each point p is called a 1-form (differential form of
degree 1). For each function f on M, the total differential (df), of f
at p is defined by

(df),, X) =Xf for Xe T, (M),

where (,) denotes the value of the first entry on the second
entry as a linear functional on 7,(M). If u!, ..., u" is a local
coordinate system in a neighborhood of p, then the total differen-
tials (du'),, ..., (du"), form a basis for TF(M). In fact, they

form the dual basis of the basis (9/0u'),, . . ., (8/0u™), for T,(M).
In a neighborhood of p, every 1-form w can be uniquely written as
o =2, f,d¥,

where f; are functions defined in the neighborhood of p and are
called the components of w with respect to u, ..., u". The l-form
w is called differentiable if f; are differentiable (this condition is
independent of the choice of a local coordinate system). We shall
only consider differentiable 1-forms. ;
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A ‘l-form o can be defined also as an §(M)-linear mapping of
“the F(M)-module X(M) into F(M). The two definitions are
related by (cf. Proposition 3.1)

(w(X))v = (w,, Xp)’ Xe x(M), pe M.

Let AT%(M) be the exterior algebra over T (M). An r-form o
is an assignment of an element of degree r in AT (M) to each
point p of M. In terms of a local coordinate system u?, . . ., 4", @
can be expressed uniquely as

= Sk o i
i zix<ia<"'-<t',ﬂl...i,du‘/\ A du'r.

The r-form  is called differentiable if the components f;...;
are all differentiable. By an r-form we shall mean a differentiable
r-form. An r-form o can be defined also as a skew-symmetric
r-linear mapping over (M) of X(M) x ¥(M) x - -+ X ¥(M)
(r times) into §(M). The two definitions are related as follows.
If oy, ..., o, are lI-forms and X, ..., X, are vector fields, then
(0 A Aw)(Xy, ..., X,)is 1/r! times the determinant of the
matrix (0,;(Xy))jz=1,...,r of degree 7.

We denote by D" = D"(M) the totality of (differentiable) r-
forms on M for each r =0, 1,...,n Then D°(M) = F(M).
Each D'(M) is a real vector space and can be also considered as
an F(M)-module: for fe F(M) and o ¢ D'(M), fo is an r-form
defined by (fw), =f(p)w,, peM. We set D = DM) =
=r_,D7(M). With respect to the exterior product, D(M) forms an
algebra over the real number field. Exterior differentiation d can
be characterized as follows:

(1) d is an R-linear mapping of D(M) into itself such that
d(Dr) = Dr+1;

(2) For a function f € D°, df is the total differential;

(3) If we D and = e D* then

dwAn) =doAn + (—1)®Adn;
(4) 2 =0.

In terms of a local coordinate system, if w = Z; ... fi,. 4, dut A
-+« Adu'r, then dw = Z; ..., dfi..q A du* - - A dur.

It will be later necessary to consider differential forms with
values in an arbitrary vector space. Let ¥V be an m-dimensional
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real vector space. A V-valued r-form w on M is an assignment to
each point pe M a skew-symmetric r-linear mapping of
T,(M) x -+ x T,(M) (r times) into V. Ifwe take a basise,, . . .,
¢, for V, we can write w uniquely as o = X' 0’ - ¢;,, where
w’ are usual r-forms on M. w is differentiable, by definition, if
w’ are all differentiable. The exterior derivative dw is defined to
be I, dw’ - ¢;, which is a V-valued (r + 1)-form.

Given a mapping f of a manifold M into another manifold M,
the differential at p of f is the linear mapping f, of 7T,(M) into
Ty, (M') defined as follows. For each X ¢ 7,(M), choose a curve
x(t) in M such that X is the vector tangent to x(f) at p = x(f).
Then f,(X) is the vector tangent to the curve f(x(¢)) at f(p) =
S(x(t,)). It follows immediately that if g is a function differentiable
in a neighborhood of f(p), then (f,(X))g = X(g-f). When it is
necessary to specify the point p, we write (f,),. When there is no
danger of confusion, we may simply write f instead of f,. The
transpose of ( f,), is a linear mapping of 77, (M’) into 75 (M).
For any r-form o’ on M’, we define an r-form f*w’ on M by

(f*w')(Xls s X)) = w'(f*Xla s ,f*X,),
AT S YN

The exterior differentiation d commutes with f*: d(f*o’) =
S*(do’).

A mapping f of M into M’ is said to be of rank r at p € M if the
dimension of f,(7,(M)) is r. If the rank of f at p is equal to
n = dim M, (f,), is injective and dim M < dim M’. If the rank
of fat p is equal to n’ = dim M’, (f,), is surjective and dim M =
dim M'’. By the implicit function theorem, we have

ProposiTioN 1.1, Let f be a mapping of M into M’ and p a point

of M.
(1) If (f,)  is injective, there exist a local coordinate system u?, . . . u"
in a neighborhood U of p and a local coordinate system v*, . .., o™ in a

neighborhood of f(p) such that
v{(f(g) = u'(q) forge U -and. =00 0.

In particular, f is a homeomorphism of U onto f(U).



