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Preface

The monograph Thermal Methods in Petroleum Analysis is based mainly on results of
more than twelve years research work on the application of thermoanalytical methods to
petroleum and its products during the activities of the author at the German Institute for
Petroleum Research. It was very interesting to research the application of well defined
physical methods, such as thermogravimetry and differential scanning calorimetry, to the
multicomponent systems of petroleum and its products, and to understand the limits of
those methods on the one hand and the excellent transferability of the results to technical
processes on the other. The diversity of possible applications of thermoanalytical methods
to various problems in the petroleum laboratory can only be indicated in this mono-
graph.

Many people supported my work, either by active or by indirect help. Thanks are
expressed to Mrs. Elvira Falkenhagen, who has been a skilful and reliable assistant for
many years, as well as to Dr.-Ing. Maria Nagel, Dr.-Ing. Ulrike Tietz, Mrs. Liliane
Varoscic, Mrs. Regina Bosse, Mrs. Gerda Sopalla, and the late Mrs. Heidi Gottschalck. An
acknowledgement should be made to the directors of the German Institute for Petroleum
Research: Professor Dr. H. H. Oelert, Professor Dr. H.-J. Neumann, and Professor Dr. D.
Kessel who granted me maximum independent research capacity. Some parts of the
research work were carried out with financial support from the German Association for
Research CD (Deutsche Forschungsgemeinschaft). For several years successful and plea-
sant cooperation was established with colleagues of the University of Belgrade, especially
with Professor Dr. D. Skala, Professor Dr. M. Sokic, and Professor Dr. J. A. Jovanovic.
Thanks are also expressed to those whose names do not appear in this list. All the
companies which supplied me with information as well as with illustrations are likewise
acknowledged; their names may be found in the appendix.

I hope that this monograph will be of some help to colleagues in both academic and
industrial research establishments and will encourage them towards further attempts in the
application of thermal methods of analysis, even to chemically non-defined multicompo-
nent systems. The examples presented might represent a stimulation for further experimen-
tal work.

Heinz Kopsch
Oktober 1995
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1 Introduction

Analytical methods describing the thermal behavior of substances during programmed
temperature changes, like thermogravimetry, differential thermoanalysis, or differential
scanning calorimetry are old methods, which were applied at first to problems of inorganic
chemistry, mainly to minerals. The analysis of petroleum and petroleum products has been
mentioned relatively late. In the literature survey by Weselowski [1-1] the first citation
dates from 1958. Also, the oldest citation in the research report by Kettrup and Ohrbach
[1-2] dates from 1965.

Petroleum, especially heavy crudes, is recovered sometimes by the use of thermal
processes like steam flooding or by in situ combustion. The processing of the recovered
crudes in the refineries is usually done by thermal methods at very different temperatures.
A review of the temperatures applied in refinery operations is given in Table 1-1. These
thermal processes are performed partly by sequential heating until the desired products are
obtained. The operating parameters for the different processes have been obtained to a
large extent by empirical experience or partly by simulation of the processes in laboratory
installations or in pilot plants. For that reason thermoanalytical methods are considered to
be very useful in obtaining data concerning the thermal behavior 1. e. data describing the

Table 1-1: Temperature Ranges in Petroleum Processing

Process Temperature Range (°C)
Atmospheric Distillation 350 ... 380
Vacuum Distillation 350 ... 380
Thermal Cracking 400 ... 650
Catalytic Cracking 450 ... 540
Steam Cracking 650 ... 1000
High Temperature Pyrolysis 1000
Hydrocracking (Gas Phase) 340 ... 430
Hydrocracking (Liquid Phase) 340 ... 470
Visbreaking 460 ... 480
Reforming (Thermal Treating) 510 ... 580
Reforming (Catalytic Treating) 500 ... 550
Isomerization 60 ... 200
Alkylation (Catalytic) 0... 200
Polymerization 170 ... 215
Hydrotreating 250 ... 430
Steam Reforming 700 ... 800

Bitomen Blowing 230 ... 300




2 1 Introduction

thermal and oxidation stability of petroleum and its products; data predicting the manner
and quantity of products gained in the processes; and data concerning reaction kinetics
which can be used to optimize the refinery processes.

Thermogravimetry (TGA), differential thermoanalysis (DTA), and differential scanning
calorimetry (DSC) are the main methods which can be used in the analysis of petroleum
and its products. DSC is preferred to DTA, because DSC supplies values of energies
directly, whereas the DTA supplies only temperature differences.

These thermal methods of analysis have been described in several basic books
[1-3 to I-17]. The application to polymers is described likewise [1-18, 1-19]. So far no
compilation on the application to petroleum and its products exists. The situation in the
field of standards is similar. The NormenausschuBl Materialpriifung im Deutschen Institut
fiir Normung (Committee for Testing and Materials of the German Institute for Standardi-
zation e. V., DIN) has approved only two standards (one of them contains terms of thermal
analysis [1-20], the other is the standard for thermogravimetry [1-21]). Furthermore there
are three proposals (principles of differential thermal analysis [1-22], determination of
melting temperatures of crystalline material by DTA [1-23], and testing of plastics and
elastomers by DSC [1-24]). The American Society for Testing and Materials (ASTM) has
to date approved forty standards for the application of thermal methods of analysis. Among
them, seven standards are concerned with the testing of petroleum and its products [1-25]
to [1-32], six standards are general methods [1-32] to [1-38], and four standards concerning
the testings of polymers are applicable to petroleum and its products too [1-39] to
[1-42].



2 Methods and instrumentation

Using thermogravimetry (TGA), the dependence of the change in sample weight (mass)
on the temperature during programmed temperature changes in a chosen gas atmosphere
can be measured. The first derivative of the weight (mass) signal with respect to time is
called derivative thermogravimetry (DTG) and is a criterion for the reaction rate. It is usual
to record both the slope of the weight (mass) versus the time or temperature (TGA), and the
differentiatoed curve versus the time or temperature (DTG). The heating rate dictates the
actual position of the TGA and DTG graphs; it is therefore advisable always to use the
same heating rate () so that different tests may be compared. For small sample weights
(masses), up to approximately 10 mg, a standard heating rate of 10 K/min is practicable.
This heating rate is slow enough to avoid any temperature gradient inside the sample while
permitting a reasonable utilization of the available working time. The shift to higher
temperatures of the TGA and DTG curves as a consequence of faster heating rates permits
calculation of the Arrhenius kinetic parameters and hence investigation of the reaction
kinetics (see chapter 3.3). Furthermore, the position of the TGA and DTG curves will be
influenced by the shape of the sample pan, especially by the ratio of surface to volume of
the sample, and lastly by the quantity of gas flowing through the oven (gas flow rate).
Therefore it is important that variations in sample quantity are minimized and that the gas
flow rate is maintained as constant as possible. However, the gas flow rate must not fall
below a certain minimum value in order to avoid condensation of evaporated sample
fractions on the hangdown of the sample holder or in the gas outlet tubes. The minimum
gas flow rate depends on the geometric shape of the oven and the position of the gas inlet
and outlet tubes and therefore differs for different instruments. If the gas flow rate is
sufficient, the evaporated portions of the sample will be discharged immediately and
therefore no equilibrium between liquid and vapor will be attained. As a consequence the
boiling (evaporation) temperature of the sample will decrease adequately. That can be used
to perform a simulated distillation (see chapter 3.1.2). However, the application of ther-
moanalytic methods 1s limited to substances having a start temperature of evaporation at
atmospheric pressure not far below 200 °C. Otherwise there is the risk that evaporation in
the gas flow will begin at room temperature and thus the correct start temperature of
evaporation (zero point of the TGA curve) cannot be ascertained.

In principle all except very corrosive gases can be passed through a thermobalance; in
practice the inert gases nitrogen, helium, and argon and the reactive gases air, oxygen, and
hydrogen will be used.

The weight calibration of thermobalances is done using standard weights. The tempera-
ture calibration is more difficult. The method using the Curie point temperature, as



4 2 Methods and Instrumentation

described in ASTM E 914-83, does not work if a magnetic field from outside the oven 1S
prevented from reciprocal action with the standard inside the oven, by the construction or
the material of the oven. Calibration using calcium oxalate monohydrate for standard 1s
very common, since it has exhibited three clearly-defined steps of weight loss during
heating (Fig. 2-1 to 2-3).:

Reaction Temperature Residue DTG Maximum
Range at Temperature
f= 10 K/min N
O (%) O
CaC,0,H,0 — CaC,0,+H,0]1 135...175 87.7 163
CaC,0, — CaCO,+CO1 463 .. .502 68.5 491
CaCO, — Ca0 +CO,T 660 ... 740 38.4 722

As can be seen from the figures, the DTG maximum is found at conversions which are
smaller than the maximum conversion of the reaction step concerned. The onset temperatu-
res as well as the DTG maximum temperatures can be reproduced with coefficients of
variation < 2 % of the corresponding mean value.

The thermogravimetric experiments are run using open platinum sample pans. Pans
made from aluminium, platinum, quartz, glass, stainless steel etc. were also av ailable. The
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Fig. 2-1; Thermogravimetry of CaC,0,- H,0
Plot of STA 780;: TGA and DTA
Atmosphere: Argon 30 + 20 ¢cm?/min
Heating Rate 8: 10 K/min
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Fig. 2-3: Thermogravimetry of CaC,0,-H,0
Plot of STA 780: onset point and offset point temperatures of TGA

Atmosphere: Argon 30 + 20 cm*/min
Heating Rate 8: 10 K/min



