LISP,

Objects, and "
Robert R. Kessler Symbolic

Programming

LISP

Objects, and Symbolic Programming

Robert R. Kessler

University of Utah

With the Assistance of Amy R. Petajan

SCOTT, FORESMAN/LITTLE, BROWN COLLEGE DIVISION
Scott, Foresman and Company

Glenview, Illinois Boston London

To Julie,

for your patience and understanding

Library of Congress Cataloging-in-Publication Data
Kessler, Robert R.
LISP, objects, and symbolic programming / Robert R. Kessler with
the assistance of Amy R. Petajan.
p. cm.
Bibliography: p.
Includes Index.
ISBN (invalid) 0-673-39773-1
1. LISP (Computer program language) 1. Petajan, Amy R.
II. Title.
QA76.73.L23K47 1988
005.13’3-dc19 87-32312
CIP

Copyright ©1988 by Robert R. Kessler

All rights reserved. No part of this publication may be reproduced

in any form or by any electronic or mechanical means including
information storage and retrieval systems without permission in
writing from the publisher, except by a reviewer who may quote brief
passages in a review.

12345678910 RRC -93 92 91 90 89 88 87

Printed in the United States of America

PREFACE

THIS TEXTBOOK IS for students who have had some exposure to program-
ming. However, it doesn’t presume prior LISP experience. This book was derived
from the course notes developed for a number of different audiences. Several
one-quarter courses at the University of Utah used the notes. The students were
mainly upper-division computer science undergraduate and graduate students.
There also was an intensive, one-week version of the course taught for industrial
companies. Those students were experienced computing professionals with no
background in LISP. Although one week is too short to cover this material com-
pletely, it provides an adequate foundation of terms and concepts for independent
study.

The textbook is structured around case studies of general symbolic com-
puting and artificial intelligence (AI). This textbook is not an in-depth study of
AT but provides examples of some algorithms and techniques from that field of
computer science. Although you may not be directly involved in Al, the ideas
will help you in writing applications in LISP. The chapters before a case study
discuss the techniques and features of LISP necessary to solve the case study.
Chapter examples are often taken from the case study itself. The chapter dis-
cussing the case study doesn’t introduce any new LISP programming constructs
but demonstrates techniques for developing and interfacing LISP software. It
also shows the steps to solve the problem defined by the case study. The dis-
cussion of good LISP programming practice is important in each case study
chapter.

LISP is a highly interactive language, so you need a running system to
learn it. You should spend time directly interacting with a LISP system. Try
the various examples to make sure you fully understand the concepts. Determine
answers for the exercises and try them out on a running LISP. If you don’t
understand something, sit down and write some experimental code fragments.
Close interaction with a LISP system is the best way to become a good LISP
programmer. Allof the example programs have been run on an existing Common
LISP system, specifically Hewlett-Packard Common LISP running on a HP 9000
Model 350 AI workstation. They should all run on any Common LISP.

il

iv PREFACE

In the years that I have taught this class to both students in academia and
industry, I have observed an interesting phenomenon. Students in academia with
a traditional computer science background are comfortable with “black boxes.”
For example, they think of compilers as software that makes their programs run
faster, or “and” gates as performing a particular hardware operation. They are
not concerned with the internals of the compiler or with the transistors that
make up an “and” gate. Those students should cover the chapters in sequential
order. Students with industrial experience, especially those with backgrounds in
assembly language, like to see the internals of everything. For those students,
the first few sections of Chapter 13 should be covered early. These sections
discuss the internal representation of list structures and help you visualize the
method in the various LISP functions. Appendix B provides answers to selected
exercises. An asterisk before the exercise number in the text indicates that the
answer is included in the appendix. The complete set of answers can be found
in the solutions manual.

Students with some prior knowledge of LISP might want to skip to Chapter
4, the algebra system case study. An instructor might want to leave the case
studies for independent study. However, the salient programming style features
should be discussed in class. An instructor m‘ijg-l‘ﬁfwélso want to cover the debug-
ging sections of Chapter 10 early on, to help the students as they develop their
LISP programs. Chapter 14 covers various LISP programming style rules and
should be consulted often during the reading of the text.

A number of people have helped to make this book possible. First and fore-
most is Tom Casson, executive editor at Scott Foresman/Little, Brown College
Division. He convinced me that the book needed to be written and has con-
tinually helped push it to its conclusion. Although Amy Petajan only recently
became involved in the project, she has helped to improve the presentation im-
mensely. Many members of the Utah Portable Al Support Systems project have
reviewed parts of the manuscript. Specifically, Harold Carr, Jed Krohnfeldt,
Stan Shebs and Lane Stevens have helped review the technical aspects of the
text. Stan has been especially helpful in all phases of the text, including writ-
ing the code for the compiler in Chapter 18. Eric Muehle helped to develop
many exercises and provided their solutions. Tony Hearn of the Rand Corpora-
tion helped with aspects of the Algebra package. Wayne Anderson of the Los
Alamos National Laboratory, Martin Griss and Mike Lemon of Hewlett-Packard
Research Labs, and Mark Ring of the University of Texas at Austin provided
valuable comments to early drafts. Loretta Looser helped in proofreading many
of the chapters. The students in CS 546, Autumn 1986, at the University of
Utah provided many editing suggestions and answers to some exercises. Thanks
to Gerald Maguire, Jr., of Columbia University and John C. Peterson of the Uni-
versity of Arizona for their feedback on early drafts used in their classes. The
reviewers of the book, Jeffrey Bonar, Peter Buneman, Douglas Dankel III, Stan
Kwasny, Michael Lebowitz, James Meehan, and Margaret P. Mize are gratefully
acknowledged. I appreciate the book title suggestions, both serious and humor-

PREFACE v

ous, from Wayne Anderson, Mark Bradakis, Al Davis, Martin Griss, Tony Hearn,
Micke Hucka, Mike Lemon, Gary Lindstrom, Kwan-Liu Ma, Chip Maguire, Ju-
lian Padget, John W. Peterson, Mohammad Pourheidari, Shane Robison, and
Leigh Stoller. I also would like to thank Professor Donald Knuth for TEX and
Leslie Lamport for IATRX; they have constructed a great document formatting
system. I also would like to thank Nelson Beebe of the University of Utah for his
help with some of the trickier IATEX commands. I appreciate Hewlett-Packard
for donating the many AI workstations, one of which was used to process this
book and also as a LISP engine to execute all of the code. Finally, I would like
to thank my wife, Julie, for putting up with the long evenings and weekends of
writing “the book” during the past two years.

Chapter 1. Introduction To LISP

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10

Chapter 2. Basic LISP

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

CONTENTS

Data Structures 2

LISP Programs as LISP Data 2
Symbolic Expressions 3
Variable Declarations 3
Program Development 4

LISP Interpreter 5

Extending LISP 6

LISP Dialects 7

Summary 7

Notations 8

Numbers 9

Mathematical Operations 10
Symbols 14

Lists 17

List Construction 19

List Manipulation 23

List Access 24

Simple User-Defined Functions 30

vi

CONTENTS

2.9 Comments 33

2.10

Summary 34
Chapter Exercises 34

Function Summary 35

Chapter 3. Conditionals, Locals, and Recursion

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Basic Predicates 36
Conditional Expression 42
Logical Operators 47
Recursion 52

Local Variables 58

Global Variables 64
Calling Functions 66
Summary 68

Chapter Exercises 69

Function Summary 69

Chapter 4. Case Study: Simple Algebra System

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Chapter 5. Objects

5.1

Goals of the Algebra System 70
Design of the Internal Form 71
External to Internal Conversion 73
Internal to External Conversion 78
Polynomial Arithmetic 81
Data-Driven Programming 87
Summary 90

Chapter Exercises 90

Objects 92

vil

36

70

92

viii
5.2

5.3
5.4

5.6
5.7
5.8
5.9

CONTENTS

A Simple Object System 95
Method Definition 98
Advanced Methods 104
Accessing Self 110

Generic Functions 114
Specialization 119
Multiple Inheritance 123
Summary 127

Chapter Exercises 128

Function Summary 128

Chapter 6. Binding and Scoping 129

6.1
6.2
6.3
6.4
6.5
6.6

Lambda Binding 129

Lexical Scoping 133

Lexical Scoping Implementation 137
Dynamic Scoping 143

An Implementation of Dynamic Scoping 146
Summary 149

Chapter Exercises 149

Function Summary 150

Chapter 7. Iteration 152

7.1
7.2
7.3
7.4
7.5

Simple Iteration 152
Mapping Iteration 156
Lambda Expressions 161
Other Forms of Iteration 163
Summary 167

Chapter Exercises 168

Function Summary 170

CONTENTS

Chapter 8. Macros

8.1
8.2
8.3
8.4

Simple Macros 171

Backquote 178

Destructuring with Macros 181
Summary 186

Chapter IExercises 186

Function Summary 187

Chapter 9. Case Study: Expert Systems

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10

Chapter 10. I/O and Debugging

10.1
10.2
10.3
10.4
10.5
10.6
10.7

The Genealogical Expert System 188
Knowledge Base 190

Rules 196

Rule Definition Implementation 200
Backward-Chaining Inference Engine 203
Lookup 206

Inference Engine Design 213
Inference Engine Implementation 217
Test of the Expert System 228
Summary 230

Chapter Exercises 230

Game Introduction 232
Formatted Printing 234
Read 239

File I/O and Streams 247
Pathnames 258
Debugging 261

Summary 265

ix

171

188

232

Chapter 11. Other Types of Data Representation

11.1
11.2
11.3
11.4

Chapter Exercises 265

Function Summary 266

Structures 268
Property List 275
Hash Tables 279
Summary 284
Chapter Exercises 284

Function Summary 286

Chapter 12. Case Study: Fantasy Game

12.1
12.2
12.3
12.4
12.5

Chapter 13. Sequences and Surgery

13.1
13.2
13.3
13.4
13.5
13.6
13.7

Object Definitions 288
Dungeon Initialization 294
Non-Combat Commands 299
Combat Commands 310
Summary 322

Chapter Exercises 323

CONTENTS

268

288

324

LISP Internal Representation 325
Equivalent Comparison Operators 330
Strings 333

Arrays 341

Sequences 347

List Surgery 354

Summary 362

Chapter Exercises 363

Function Summary 365

CONTENTS

Chapter 14. Programming Style

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10

Chapter 15. Case Study: A* Search

15.1
15.2
15.3
15.4
15.5

Source File Organization 367
Function Philosophy 369
Commenting 374
Indentation and Format 378
Names and Variables 382
Control Constructs 386
LISP Expressions 390

Data Structures 392
Macros 396

Summary 399

Chapter Exercises 399

Function Summary 402

Searching and the 8-Puzzle 403
The A* Algorithm 406

The 8-Puzzle 417

A* Enhanced 423

Summary 427

Chapter Exercises 427

Chapter 16. Errors, Catch, and Throw

16.1
16.2
16.3
16.4

Errors 430

Catch and Throw 435
Using Catch and Throw 440
Summary 446

Chapter Exercises 446

Function Summary 448

x1

367

403

430

xil

Chapter 17. LISPucopia

17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8

CONTENTS

449

Packages 449

Additional Control Constructs 462
Miscellaneous Operations 473
Multiple Values 478

Read Macros 486

Making Your Code Run Faster 490
Closures 499

Summary 503

Chapter Exercises 503

Function Summary 506

Chapter 18. Case Study: A Micro LISP System

18.1
18.2
18.3
18.4
18.5
18.6
18.7

Appendix A. Object System

Appendix B. Answers to Selected Exercises

Bibliography

Index

Source Language 508

Target Machine 509

LISP Compilers 510
Compiler Implementation 512
Special Forms 523
Completing the Compiler 532
Summary 536

Chapter Exercises 536

508

539

558

638

641

INTRODUCTION TO LISP

JOHN MCCARTHY [27] developed the LISP programming language in the late
1950s. It is the second oldest high-level programming language still in use (FOR-
TRAN is the oldest). LISP is gaining popularity because people are interested in
application areas, such as artificial intelligence (AI), requiring the power of LISP.
Hardware and software capable of running LISP efficiently is more available as
well. As described by Alan Kay [21], programming languages have evolved in
distinct generations. LISP has evolved with them. It has been a high-level
(FORTRAN, ALGOL), very high-level (SIMULA, PROLOG), and ultra high-
level language (VISICALC, EURISKO). This feature has allowed a thirty-year-
old language to remain viable.

Due to LISP’s long history, many prominent AI programs have been devel-
oped in LISP. You can see the history and pragmatics of these implementations
by studying the language. You should also study PROLOG [11], another Al
language, since it has important features. PROLOG is useful when the control
representation is not explicit in the problem, like in data base applications and
natural language parsing. LISP makes the control information explicit. This is
more natural to programmers familiar with imperative programming languages.
There are intensive research efforts to merge the two languages because of sig-
nificant overlap between them.

Rapid prototyping and program development is a benefit of LISP. Some of
the features that allow this are:

e The programmer doesn’t need to deal explicitly with pointers, because
LISP lets you define and manage flexible, hierarchical data structures;

e The development of systems programs (compilers, editors, etc.) is easy,
because LISP programs are represented as LISP data;

e The programmer can manipulate symbolic expressions as well as numeric
expressions.

e LISP uses run-time type checking, so the programmer doesn’t need to worry
about type declarations at compile-time.

e LISP lets you express programs as collections of many small functions,
leading to more maintainable software;

2 1 INTRODUCTION TO LISP

e You can develop software in a highly interactive environment; and
e The programmer can strongly customize his or her programming environ-
ment to improve software development time.

The following sections describe each of these features in detail. Case studies
illustrate them in the rest of the text.

1.1 Data Structures

LISP is an acronym for LISt Processing. The list is a flexible, hierarchical data
structure that represents arbitrarily long collections of items (for example, num-
bers and other lists). A list is like those that we use in our everyday lives (lists
of things to do, grocery lists, etc.). They grow and shrink as we add and remove
items from them. As long as there is enough paper and ink, the lists can be
arbitrarily long. Lists can be hierarchical since they can contain other lists (for
example, a grocery list referencing all the ingredients in banana bread).

The LISP system has a dynamic storage manager that frees the program-
mer from worrying about sizes of data structures. In other programming lan-
guages, a programmer might allocate a fixed-length vector for a set of values
and characteristics of an object. Adding a new value and characteristic is then a
problem. The programmer would have to increase the size of the vector for the
new characteristic. If a list representation is used, a LISP programmer simply
adds the new information to the original list with no other changes necessary.
Lists can grow and shrink as necessary, and it’s up to the dynamic storage man-
ager to make storage available. Programming languages like Pascal permit this
type of structure, but the management of the memory is left to the programmer.

1.2 LISP Programs as LISP Data

LISP programs are collections of user-defined functions. LISP represents them
in the same way that it represents data; lists are used to contain both programs
and data. This adds a consistency not present in any other language.

Functions that manipulate lists don’t distinguish between lists that are
functions and those that are data. With this consistency between programs
and data, the programmer can edit a function definition from within LISP. For
example, suppose that a function has been defined with a variable named FOOBAR.
Suppose one of the variable references within the function uses the name FOBAR (a
typographical error). A LISP substitution function could redefine this function,
replacing the instance of FOBAR with FOOBAR.

It is also easy to write system programs (like compilers, editors, and the
LISP system itself) in LISP. So there is little distinction between a LISP ap-
plication programmer and systems programmer. This has helped LISP sys-

1.4 VARIABLE DECLARATIONS 3

tems to evolve, since there is no need for extended communication between the
two.

1.3 Symbolic Expressions
A programmer can develop software in LISP that manipulates symbolic expres-
sions, which are collections of words and numbers. Suppose that we wished to
describe a clown. For this example, we choose the following subset of character-
istics:

| Characteristic | Value |

shoe size 27
nose red
expression frown
name Freddy

The format of the preceding table shows the relationships between each char-
acteristic and value. The grouping of parentheses in LISP indicates the same
relationships:

((shoe-size 27) (nose red) (expression frown) (name Freddy))

To describe Freddy in a traditional programming language, you might map
each characteristic to a numeric value. Thus, the nose color might be a 1 to
represent blue, a 2 to represent yellow, a 3 to represent red, and a 4 to represent
green. In LISP, you use the natural representation of the word (the symbol red)
for the color of the clown’s nose. This technique can also define rules for mixing
primary colors. Using a numeric representation, you would have to say something
like “if the first color is a 1 and the second is a 2, then the result is a 4.” In LISP,
you could say “if the first color is blue and the second color is yellow, then the
result is green.” Since programmers can manipulate these symbols, they don’t
have to map an abstract notion of color into a numeric representation.

1.4 Variable Declarations

LISP does not require a type declaration for each variable. LISP variables are
actually typeless — the values have types instead. A variable’s value may at
different times be a number, string, list, or any other LISP data type. A LISP
function determines its types of arguments during execution and may dynami-
cally coerce one type into another according to the operation. For example, to
add an integer and a real number, LISP converts the integer into a real, per-
forms the addition, and returns the sum as a real. Writing generic functions is
easy with this dynamic determination and propagation of arbitrary types. You

4 1 INTRODUCTION TO LISP

don’t need type-specific functions for each combination of argument types. In
a strongly typed language like Pascal, if the same function can accept either an
integer or a real argument, two separate functions must be written. In LISP,
you write generic functions to dynamically determine and coerce data types as
necessary.

A lack of variable declarations does have its disadvantages. Type mis-
match errors occur at run-time instead of compile-time, forcing the programmer
to do extra debugging. Also, run-time type checking adds computational over-
head resulting in slower running programs. Optional type declarations and the
development of smarter compilers have alleviated this problem. When the pro-
grammer requires more efficiency, he or she may add type declarations to LISP
variables. These declarations specify that a variable’s value will always be a par-
ticular type. The compiler then performs some of the checking at compile-time
and generates more efficient code. Recent compilers perform some compile-time
type analysis by inferring the types by their usage. This technique generates
more efficient code without any additional programmer-supplied declarations.
Rapid program development is easier when you can transition no declarations
and fully declared LISP code. In the early prototyping stages, the programmer
can effectively ignore the data types and concentrate on coding a particular algo-
rithm. Explicit declarations (or inferred ones) can be added for faster program
execution as the program moves from experimental to production quality.

1.5 Program Development

LISP is amenable to top-down, bottom-up, or other program development styles.
Developing code in any of these styles is easier in LISP than in other languages.
This development is an evolutionary process. The programming environment is
conducive to experimentation and permits “on the fly” program development.
Bottom-up development proceeds naturally from a general idea of the program
and data structures. Each part is incrementally developed and tested, eventually
resulting in a completed program. Top-down development works like in other
languages. The LISP programmer uses the same Edit, Compile, Link and Load,
Erxecute, and Debug cycle. The main difference is in LISP’s dynamic error sys-
tem, which intercepts calls to undefined functions. When the error occurs, the
programmer supplies a return value and then continues execution. This elimi-
nates the need for explicit stub functions and can shorten development time.
Bottom-up development begins with writing many very small functions
(functions are rarely longer than one screen). Small functions isolate the pro-
cessing into small manageable modules. The overhead of function calls is typi-
cally very small with LISP, and so this style costs little extra. Highly modular
code is easier to maintain. Each module contains small conceptual parts of the
program. Isolated changes to a module are less likely to affect the rest of the
program. This leads to fewer mistakes and higher quality code. The programmer

