PROBLEM
OLVING
METHODS

AWl_ilI EXAMPLES IN
Nico Lomuto

.‘

PRENTICE-HALL SOFTWARE SERIES

PROBLEM SOLVING
METHODS
WITH EXAMPLES
IN Ada®

Nico Lomuto

I

AL

1

E8862694

Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging-in-Publication Data

Lomuto, Nico (date)
Problem solving methods with examples in Ada.

Includes bibliographies.

1. Ada (Computer program language) 2. Problem
solving—Data processing. itle.
QA76.73.A35L66 1986 005.13'3 86-12402
ISBN 0-13-721325-5

Editorial/production supervision: Lisa Schulz
Interior design: Christine Wolf

Cover design: Lundgren Graphics, Ltd.
Manufacturing buyer: Gordon Osbourne

Prentice-Hall Software Series
Brian W. Kernighan, Advisor

® Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

© 1987 by Nico Lomuto

The author and publisher of this book have used their best efforts in preparing this

book. These efforts include the development, research, and testing of

the theories and programs to determine their effectiveness. The author and publisher
make no warranty of any kind, expressed or implied, with regard to these programs
or the documentation contained in this book. The author and publisher shall not

be liable in any event for incidental or consequential damages in connection with,

or arising out of, the furnishing, performance, or use of these programs.

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

1009 8 7 6 5 43 21

ISBN 0-13-721325-5 025

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte. Ltd., Singapore

0J4

To Annie

PREFACE

Where do programming ideas come from? Why is it that, confronted with the
same problem, one programmer will have to struggle to get started while an-
other will effortlessly produce a solution so simple and elegant that its cor-
rectness is obvious and its efficiency leaves little to be desired? Is it knowledge
of methodologies? Yes—to some extent. Mastery of special techniques? Pos-
session of a special gift? Perhaps. But—whatever it is—can it be learned?

A few years ago, full of hope and optimism, I taught my first course in
programming methodology to an audience of experienced programmers and
engineers. At the end of the course a group of students, whose programs had
shown a marked improvement, surprised me with the statement that what they
had learned was intellectually interesting but of little practical consequence.
What they had hoped to learn, it turned out, was not how to develop correctly
an initial idea, but how to generate such an idea to begin with! For them, the
overall programming activity was totally dominated by the invention phase,
the creative part of the process. Not knowing how to get started was their
bottleneck.

At first the request struck me as rather unreasonable. For complex prob-
lems there are specific techniques that one can teach, but for simple day-to-
day exercises the idea materializes spontaneously, without the use of any ex-
plicit method! 'Or does it? As the discussion turned to a recent exercise, I
managed to reconstruct in slow motion, so to speak, the seemingly instanta-
neous appearance of the initial idea. On that note, time ran out, and the course
ended. But I was intrigued.

For months after that I kept observing how skilled problem solvers at-

X Preface

tack programming problems. To my surprise, I found that those solutions of
baffling simplicity tend to be the outcome of a small set of very specific pat-
terns. But I also became convinced that those patterns are of little use if not
put in the context of good problem-solving habits. In other words, the think-
ing patterns used by skilled problem solvers are at least as important as the
solution patterns that yield their programs.

About This Book

What you will find in this book is a collection of hints—mental tricks that can
be used to produce a solution to a programming problem or to make progress
toward it. The structure of the list is inspired by Polya’s classic, How To Solve
It (Princeton, NJ: Princeton University Press, 1957). The list in its present
form is the result of several years of experience and refinement. All but the
most obvious hints are phrased and illustrated specifically in programming
terms; I feel that learning is much easier when each concept can be immedi-
ately applied!

Virtually all examples are based on real-life experiences, but many of
them are presented simply as puzzles. Why? In real life, stripping a difficult
problem of the smoke screen of detail and going straight to the heart of the
difficulty is a crucial problem-solving step (Chapter 5). Abstracting from the
real-life situation is critical not only to solving a particular problem, but also
to learning from the experience (Chapter 4). Becoming comfortable with ‘‘toy’’
problems taken out of context is therefore a major goal in itself (Chapter 1).

Required Background

The reader is expected to have some programming knowledge, but not much
in the way of experience or formal computer science education.

My ideal reader is either an experienced programmer with no formal
computer science background or a novice who has just completed a first course
in programming and is wondering what the ‘‘real world’’ looks like and how
it relates to the well-behaved world of academic exercises.

Use of this Book

This book can be used as a supplement to the standard texts on systematic
programming or by itself in a workshop. But most of all I hope it can be
simply read for fun. I have deliberately kept the presentation informal in an
attempt to convey the vividness and the sheer enjoyment of the intuitive proc-
ess that precedes rigorous development. In a one-semester course, I like to
demonstrate the various principles (rather than fe/k about them) throughout
the course; toward the end I dedicate three or four two-hour lectures specif-
ically to this topic.

Preface Xi
Acknowledgments

It is impossible to remember all the talented people who, through their pro-
gramming habits or remarks made in conversation, have unknowingly sup-
plied material for the book.

Among those who have been close to the actual writing, I am indebted
to Clem McGowan, who for years has been encouraging me to put my inco-
herent thoughts in the form of a book. I also owe an immense debt to Brian
Kernighan, Charles Wetherell, and Jon Bentley for their insightful comments
on an early draft of the manuscript.

After the completion of the first draft, just as I was ready to go to work
on a revision, I had the unique distinction of being essentially dead. For having
turned that nightmare into a bad memory I must thank the talent and dedi-
cation of numerous doctors, therapists, and nurses; the rapid reflexes of my
friend Bobbie Hayes; but most of all the perseverance, dedication, and enor-
mous intelligence of my wife, Annie. To her this book is dedicated.

Nico Lomuto

NOTES FOR THE READER

The discovery of a solution to a programming problem is a complex, iterative
process in which devising the ‘‘logic’’ of the solution is usually a far more
demanding task than expressing that logic in a particular programming lan-
guage. In this book the programming language aspect is of very little interest,
but a vehicle is needed to convey the essence of the solutions! In a few cases
the solution is presented in several programming languages, but as a general
approach this would be unsatisfactory. As a notation to express algorithms it
is common to use a pseudolanguage, looking somewhat like most modern al-
gorithmic languages, but with greater expressive power. This is essentially the
book’s approach, except that instead of going ahead and inventing yet another
pseudolanguage I have chosen a real programming language—after all, this is
the age of reusability! For the class of problems addressed in the book, Ada
has the desired characteristics: it is sufficiently close to all other algorithmic
languages to be understandable with a minimum of assistance, but it is suf-
ficiently more powerful to prevent trivial details from obscuring the main
points. It goes without saying that no knowledge of Ada is assumed, and
enough explanations are given along the way.

Following a well-established tradition, I have marked with an asterisk
those exercises and sections that can be safely skipped at first reading. The
asterisk is not a warning of a highly esoteric topic included only to impress
the author’s colleagues, but rather an invitation to postpone a subject if its
length or difficulty causes a considerable loss of pace (or interest). And that
brings me to the last point:

Read this book quickly rather than intensely. It’s been designed expressly
to be read quickly. BUT—don’t skip the little puzzles proposed in the nar-
rative!

xiii

CONTENTS

PREFACE ix
NOTES FOR THE READER xiii

CHAPTER O A SAMPLER 7
0.1 A Toy Problem? 6
0.2 About this Book 17

CHAPTER 1 THE ART OFTHINKING 73
1.1 Beware of False Constraints 13
1.2 Try a Different Thinking Mode 18
1.3 Beware of Bad Mental Habits 22
1.4 Use Good Problem-Solving Methods 24
1.4.1 A Closer Look at the Programming Process 24
1.4.2 Language and Thought* 28
1.4.3 Problem-Solving Methods 32

CHAPTER 2 ANALYZING THE PROBLEM 34
2.1 Can You See It at a Glance? 34
" 2.2 Take the Verbiage Out 35
2.3 Draw a Picture 37
2.4 “‘Forget” the Details 4/

vi

2.5
2.6
2.1
2.8

CHAPTER
3.1
3.1.1

Abstract and Generalize 42
Make a Checklist 45

Work Out an Example 48
Pretend to Memorize 49

3 SYSTEMATIC DEVELOPMENT 50
Proceed Top-Down 51
Top-Down Problem Solving 55

3.1.2 Top-Down Programming 57

3.2
3.3
3.3.1

Be Ready to Back Up 57
Write Goal-Oriented Loops 61
Exercises Using Arrays 63

3.3.2 Exercises Using Linked Data Structures 65

3.4
3.4.1

Program into Your Language, Not in It 68
Use Structured Control Forms 68

3.4.2 Use a Rich Type System 69

3.5
3.5.1

Define the Invariants First* 70
Introduction: Anatomy of a Bug 70

3.5.2 States and Assertions 72

3.5.3 An Example: Binary Search 74
3.5.4 Loop Invariants 78

3.5.5 Data Invariants 79

3.6

CHAPTER
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.7.1

CHAPTER
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

Use the Simultaneous Assignment* 80

4 LOOKING BACK &&
Can You See It at a Glance? &89
Can You Solve It Differently? 89
Can You Clean It Up? 90
Have You Seen It Before? 92
Check Extreme Cases First 95
Check for Special Properties 98
Check for Run-Time Errors 100
Insure That Every Subexpression Is Well Defined 105

5 IDEAS FORIDEAS 709

Try the Wishful Thinking Strategy 109
Look for Structure 1713

Explore Systematically 1718

Start with a Ridiculous Solution 121
Work on a Simpler Problem /23
Consider Recursion 130

Read the Manual 137

Don’t Rely on Proverbs Alone 138

Contents

Contents vii

CHAPTER 6 CASE STUDIES 740
6.1 Reversing a Linked List 140
6.2 A Multicolumn Printout 147
6.3 Sequential Merge 150
6.3.1 Solution 1: A Drives 151
6.3.2 Solution 2: B Drives 153
6.3.3 Solution 3: C Drives 153
6.3.4 Solution 4: A Neutral Observer Drives 154

Ada® NOTES 157
ANSWERS TO SELECTED EXERCISES 760

INDEX 775

A SAMPLER

N

chapter O

Programming is problem solving. In the course of a program development,
one invariably stumbles onto little problems such as the following.

(1) A list of numbers is stored in nondecreasing order in A(l), A(2), ...,
A(N), where A is an integer array and N is an integer variable whose
value is positive or zero. The problem is to eliminate duplicate entries
(if any) from the list.

The problem has a straightforward solution (if you don’t find the so-
lution self-explanatory, see Fig. 0.1, or the Ada Notes at the back of the book):

(2) if N > 1then
LAST_UNIQUE := 1;
for lin 2..N
loop
if A(l) /= A(LAST_UNIQUE) then
LAST_UNIQUE := LAST_UNIQUE + 1;
A(LAST_UNIQUE) : = A(l);
end if;
end loop;
N := LAST_UNIQUE;
end if;

The list is compacted incrementally, in a loop. For each array component
A(I) we check whether its value already appears in the already compacted re-
gion of the array; if not, we simply append it there. The literature is full of

1

A Sampler

Chap. 0

ALGORITHM (2) IN SEVERAL LANGUAGES

(Only the algorithm is shown; unrelated parts of the program have been omitted.)

BASIC
50 IF N <= 1 THEN 130
60 LET U =1
70 FOR I = 2 TO N
80 IF ACU) = A(CI) THEN 110
90 LET U = U + 1
100 LET A(U) = A(I)
110 NEXT I
120 LET N = U
130 REM
(o
if (n > 1) (
last_unique = 1;
for (i = 2; i <= n; i++)
if (alil != allast_uniquel)
al++last_uniquel = alil;
n = last_unique;
}
FORTRAN IV
1000 IF (N.LE.1) GO TO 2000
LAST = 1
1100 DO 1199 I = 2,N
IF (ACLAST).EQ.ACI)) GO TO 1199
LAST = LAST + 1
ACLAST) = A(CID)
1199 CONTINUE
N = LAST
2000 CONTINUE
FORTRAN 77
1000 IF (N.GT.1) THEN
LAST = 1
1100 DO 1199 I = 2,N

If ¢ ACLAST).NE.ACI)) THEN
LAST = LAST + 1
ACLAST) = A(CI)

END IF
1199 CONTINUE
N = LAST

END IF

Figure 0.1

Chap. 0 A Sampler 3

Pascal

if N> 1 then
begin
LastUnique := 1;
forl := 2 to N do
if A[LastUnique] < > A[I] then
begin
LastUnique : = LastUnique + 1;
A[LastUnique] : = A[I]
end;
N := LastUnique
end

Figure 0.1 (continued)

hints on how such a simple idea could be correctly refined into a bug-free
program, into a highly readable program, or into a superefficient program.
But where does such an idea come from?

The rest of this section is a slow-motion walk through the invention of
algorithm (2). Phrases in italics are specific problem-solving patterns (‘‘heu-
ristics”’) that will be discussed in detail in the body of the book.

The first question, of course, is: Where do you start? Systematic problem
solving always starts in the same way: understand the problem. Before we
attack, we want to “‘size up’’ the opponent. And for that we use certain spe-
cific tricks. First, we enumerate the inputs, disregarding what has to be done
with them:

e The variable N.
e The array A.

And we do the same for the outputs:

e The variable N, but with a new value in it. Let’s call the new value N'.
e The array A, also with a new value, say A'.

Now we relate the inputs to the outputs:

e A' has the same set of values as A, but each value is represented only
once. N’ is equal to N minus the number of redundant values.

This last point is not completely straightforward, so we work out an example.
Let’s pick a possible set of initial values. Let’s say that N has value 8, and the
first eight components of A are:

4 A Sampler Chap. 0

On exit we want the list to contain:

Therefore we want N to have value 5. Next we will draw a picture of all this.
We draw the inputs and the outputs as separate (although they are physically
the same), and we show the relationship between the two, using arrows to
indicate data movement:

II‘IlI)I/'I/I
I I

At this point a germ of an idea may begin to appear (although we haven’t
even started to consider possible solutions!). One thing that we notice im-
mediately is that the arrows in the picture don’t cross, and with a little thought
we can convince ourselves that that is not a coincidence. Every array com-
ponent will either remain in place (if it is not preceded by any duplicates) or
move ‘‘to the left,”’ that is, to a position having a smaller index; no array
component will ever ‘““move up.”” This matches perfectly a specific pattern
(presented in Chapter 5 as the wishful thinking strategy) and tells us a very
interesting thing:

The compaction can be performed incrementally, ‘‘from left to right.”

Picture yourself walking on the array from left to right. At each step, you
look at the component that you are standing on. If it is a duplicate, you just
move on; otherwise you append it to the region that you have already com-
pacted.

Now we have an idea that we think will work, so we develop the idea,
using certain systematic methods. First we once again draw a picture, this time
of the solution (or at least of however much of it we understand at this point).
To mark where we are on the array, we use an arrow (which, of course, will
be implemented as a variable, say I). We also need to mark where the com-
pacted region ‘‘behind us’’ ends; here we introduce another arrow,
LAST _UNIQUE:

Chap. 0 A Sampler 5

LAST _UNIQUE |
! i

iz 1 1 1 1 |

To reinforce our understanding, let us repeat (in slightly greater detail than
before) what we intend to do as soon as we land on a new “I’’: if A(I) is a
duplicate, we move to the next I (that is, I+1); otherwise, we increment
LAST_UNIQUE, and move A(I) back there. (Note how at this stage we are
barely beginning to introduce programming details into our thinking, which
remains largely visual and informal).

For brevity I will not describe how the loop structure and the initial-
ization are derived (that is the most systematic part of the development and
will be discussed in Chapter 3). Having written down algorithm (2), we will
look back, partly to verify the correctness of our solution, but mostly to learn
from our experience. This last step would also be guided by specific heuristics.

Exercise 1

Looking back is the most important practice in becoming a better and better problem
solver. Try to ‘‘digest’’ aligorithm (2). First, put the book aside and try fo reinvent the
algorithm. You will not necessarily succeed the first time, but that’s normal. To become
better acquainted with the algorithm, desk-check some special cases. Try the empty list
(N =0, that is) and a list with only one element (N = 1); does the algorithm do anything
strange? Now try a list with no duplicates; what happens? Next, try a list that consists
of nothing but duplicates—for example:

(with N =7); does the algorithm reduce N to 1 and leave A(1) set to 5? Now try again:
Set the book aside and reinvent the algorithm.

Exercise 2*

The well-known quicksort algorithm [1] generates the following subproblem. Given
two integer variables M and N, with M<N, and a sequence of numbers stored in
random order in A(M), A(M+1), ..., A(N), rearrange the sequence so that all values
less than or equal to a certain X precede those greater than X. This problem has a
solution very similar in spirit to algorithm (2). A recipe for that class of solutions will
be given in Chapter 5, but you might enjoy trying your hand at it now.

I hope that this brief example has given you an idea of what problem-
solving methods can do for you. By definition, problem-solving methods are
concerned with situations where no infallible ‘‘cookbook’’ techniques can be
applied to the achievement of a certain goal, and all that one has to go by is

6 A Sampler Chap. 0

trial-and-error, experience, optimism and—why not—luck. What a method
can give you is a systematic way to conduct your search, and a number of
“‘heuristics’’ that tend to point you in the right direction. As you may have
noticed in the example, problem solving is largely a matter of ‘‘stirring up the
waters’’ to generate ideas, and knowing how to grab a good idea when it pre-
sents itself. When an idea fails to surface, the reason is almost invariably that
either the stirring has not been sufficiently vigorous or the grabbing has not
been sufficiently quick. In this book you will find a catalog of ideas (solution
patterns), but also a great deal of material about the stirring and the grabbing.
For example. . . .

0.1 A Toy Problem?

Problem (1) is clearly a ‘‘toy’’ example. In real life, problems are not always
so simple, and almost never so tidy. Here is an example. The context is an
interactive simulation program, originally written in FORTRAN in the early
1960s and continually modified ever since. The user describes a transmission
system and requests that certain calculations be performed. The system to be
simulated is described as a block diagram. The program recognizes a large
number of block types; the system layout is defined with reference to a 10 X
50 grid (Fig. 0.2). A typical user input might look as follows:

BLOCK 14: AMPLIFIER, 2.3DB

1 1 2] . | 9 | 10 |
I | | I I |
I | | | | I
| 11 | 12 | . .l 19 | 20 |
I | | | | I
I | | | | [
| 491 | 492 | .| 499 | 500 |

Figure 0.2

