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PREFACE

i

This book is concerned with one of the most interesting and challenging problems
in eontrolling a robot manipulator—the use of adaptive control algorithms. The
idea of adaptive or learning control for mechanical manipulators has certainly come
to the mind of anyone who has considered the problem of controlling such a complex
system. It is a compelling notion that one might build a system that can learn and
improve its performance as it operates. This desire has led many researchers to
investigate the application of adaptive strategies to general control problems, and
recently, to the problem of robot control. The problem is not an easy one, and is not
yet completely solved. ¢

This book examines the problem in the nonlinear domain in which the robot control
problem is set, rather than relying on the existing theory for adaptive control of
linear systems. Along the way, the theory for linear systems is reviewed, previous
research in adaptive control of robot manipulators is reviewed, and manipulator
dynamics and nonadaptive control are presented. :

New results presented in the text include a robustness result for the non-adaptive
model-based robot controller, and an algorithm for the learning control of manipu-
lators. The core of the book is the presentation of a new non-linear adaptive control-
ler for mechanical manipulators that is rigorously proven globally stable.

This book is appropriate for mathematicians and engineers with an interest in
manipulator dynamies and control. In particular, those interested in the topies of
robustness, adaptation, and learning in the context of nonlinear systems such as
robot manipulators may find the text interesting.
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Chapter 1

INTRODUCTION

1.1 Introduction

Present-day industrial robots operate with very simple controllers, which do
not yet take full advantage of the inexpensive computer power that has be-
comg available. The result is that these fairly expensive mechanisms are not
being utilized to their full potential in terms of the speed and precision of
their movements. With a more powerful control computer it is possible to use
a dynamic model of the manipulator as the heart of a sophisticated control
aigorithm. This dynamic model allows the control algorithm to “know” how
to control thé manipulator’s actuators in order to compensate for the com-
plicated effects of inertial, centrifugal, Coriolis, gravity, and friction forces
when the robot is in motion. The result is that the manipulator can be made
to follow a desired trajectory through space with smaller tracking errors, or
perhaps move faster while maintaining good tracking.

There are two reasons why such sophisticated control algorithms have not
found use outside of research laboratories. The first is the economics of
supplying sufficient computing power to the robot controller. Recently this
problem has diminished greatly, and will continue to do so. The second and
more serious problem is that of imprecise dynamic models. Dei}elopipg a
correct dynamic model (in the form of a set of coupled differential equations)
for a multidegree-of-freedom manipulator is a difficult task. Recent work has
made developing the structure of these equations more or less straightforward
for the cases where the links are modeled as rigid bodies. However, a problem
that remains is that of unknown parameters that appear in the model, and
also of effects such as friction and flexibilities, which are left out of the model
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2 Chapter 1: Introduction

formulation. Not only are parameters unknown or only poorly known, but
they also may be subject to change as the manipulator goes about its tasks.

This book addresses the control of mechanical manipulators in cases where
the physical models that describe the manipulators are not well known. In-
correctness or uncertainty in a dynamic model can be split into two portions.
Structured uncertainty is what we will call the case of a correct structural
model with all uncertainty due to incorrect parameter values. That is, there
-exists a correct (but unknown) set of values for the parameters such that the
model will match the actual system. Unstructured uncertainty is the name
given to unmodeled effects, some of which may be state-dependent and some
of which are external disturbances. Unstructured uncertainty arises from
sources not considered by the designer, or those that are too complex to
model.

Much of this book addresses the case where modeling error is largely due
to structured uncertainty. However, the reality of external disturbances is
considered throughout,.and in Chapter 6 a special learning algorithm is de-
veloped specifically for the case of unmodeled dynamxc effects that lack a
parametric model.

1.2 Historical Summary

In the past several years a great number of papers have been published about
various aspects of robotics. Even confining ourselves only to those papers
dealing with the control problem for mechanical manipulators, the volume of
published work ‘makes a concise review difficult. We will therefore mention
only early work and only in the areas of kinematics, path generation, dy-
namics, and control. We will neglect many important areas such as sensors,
robot programming languages, locomotion, etc. Although we believe that
we have cited the most important contnbutors it is possible that we are
unaware of some work.

Today’s mdustna.l robots have their roots in numerically controlled (NC) ma-
' Chfnes and the early master-slave teleoperators used in the nuclear industry.
In 1947 work started at Argonne National Laboratory on master-slave sys-
" tems. Ongmally these were simply mechanical linkages; later electrically and
hydraulically powered systems were developed, some with “force-reflecting”
capability [1].
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Based on George Devol’s ideas, Unimation Inc. developed the first industrial
robot in 1959, and installed the first robot in a U.S. factory in 1961 [2].
In<1961 Ernst [3] developed a computer-controlled mechanical hand with
tactile sensors, called “MH-1,” which was coupled with an Argonne National
Laboratory manipulator and a computer. It was capable of stacking blocks
under computer control.

At Stanford University an early laboratory was established in 1965 by John
McCarthy and others [4]. One of the first six degree-of-freedom, electric,
computer-controlled manipulators was designed and built by Scheinman in
1969 [5], and became known as the Stanford Scheinman arm. .

Early work in robotics was largely. concerned with the basic problagns of rep-
resenting spatial information [6], and the manipulator’s kinematic' equations
and their solution [7, 8]. Another early focus of research was in generating
trajectories and controlling the manipulator to move along them [9-13].

The first application of dynamic analysis to the particular problem of a
multidegree-of-freedom mechanical manipulator seems to have been by Kahn
and Roth [12], based on Uicker’s work [14] on linkages. This early work was
not particularly concerned with efficiency and resulted in a computational
algorithm that was O(n*) in complexity, where n is the number of manip-
ulator joints. Renaud [15] and Liegois et al. [16] made early contributions
concerning formulating the mass-distribution descriptions of the links. While
studying the modeling of human limbs, Stepanenko and Vukobratovic [17]
began investigating a “Newton—Euler” approach to dynamics instead of the
somewhat more traditional Lagrangian approach. This work was revised for
efficiency by Orin et al. [18] in an application to the legs of walking robots.
Orin’s group improved the efficiency somewhat by writing the forces and mo-
ments in the local link reference frames instead of the inertial frame. They
also noticed the sequential nature of calculations from one link to the next,
and speculated that an efficient recursive formulation might exist. Arm-
strong [19] and Luh, Walker, and Paul [20] paid close attention to details
of efficiency and published an algorithm that is O(n) in complexity. This
was accomplished by setting up the calculations in an iterative (or recursive)
nature and by expressing the velocities and accelerations of the links in the -
local link frames. Hollerbach [21] and Silver [22] further explored various
computational algorithms. Hollerbach and Sahar [23] showed that for cer-
- tain specialized geometries the complexity of the algorithm would further .
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reduce. Finally, several authors have published articles showing that for any
given manipulator customized closed-form dynamics are more efficient than
even the best of the general schemes [24-29].

The net effect of the developments in computing the dynamic model of a
manipulator, coupled with the increasing power of computers, was that the
model could be computed sufficiently quickly for use in real-time control. The
use of the nonlinear dynamic model of a manipulator in a control algorithm
apparently has its roots in the work of several researchers. Perhaps the
earliest is the work of Freund [30, 31], in which he uses tools from Lie Algebra
to discuss the decoupling and linearizing of nonlinear systems. The work of
Bejczy [32], Lewis [33], and Markiewicz [34], seems to be responsible for the
term “computed torque method” by which the general approach is sometimes
known. Other early work was done by Zabala-Iturralde [35], Khatib et al.[36],
and Liegois et al. [37]. A closely related approach was given by Luh, Walker,
‘and Paul in (38].

Later, there were man'y different papers published on various approaches
to manipulator control. Of these methods, we will confine our discussion
to adaptive techniques. A complete review of adaptive control applied to
manipulators is defered until Chapter 4, but the earliest work seems to have
been done by Timofeyev and Ekalo [133], Dubowsky and DesForges [83], and
Horowitz and Tomizuka [90].

1.3 Contributiors of This Book

This book addresses the control of mechanical manipulators in cases where
the physical models that describe the manipulators are not well known.
We adopt the view that the nonlinear, model-based method (or “computed
Jorque method”) of manipulator control is, in theory, a good approach to
manipulator control. We then investigate methods of compensating for the
fact that a perfect dynamic model is never available.

The contributions of this book are in three areas: o e

(1) The robustness of the model-based servo in the presence of poorly known
parameters is investigated. ‘A sufficient condition for stability of the
overall system in the presence of parameter errors is developed.

(2) A parameter-adaptive control scheme is developed in the form of a set of
adaptive laws that can be added to the nonlinear model-based controller.
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The scheme is unique in that it is designed specifically for this model-
based controller, and is rigorously proven stable in the full nonlinear
setting.

(3) A learning control scheme is developed that can be added to the model-
based controller in order to “learn” compensation for friction and other
effects that are difficult to model parametrically.

1.4 Preview of the Book

In Chapter 2 we examine some properties of the dynamics of manipulators
and then examine a couple of control stategies that are in use or have been
proposed for their control. One of these methods, the so-called computed
torque servo, or nonlinear model-based control scheme, will be the focus of
our attention. This scheme represents an excellent way to use a dynamic
model of a manipulator (if it were perfectly known) in a controller.

In Chapter 3 we analyze some robustness properties of the nonlinear model-
based control scheme. The basic question is When the parameters appearing
in the model are not well known, does the control scheme still perform well?

In Chapter 4 we review the notion of adaptive control as a methodology
for compensating for unknown or loosely known parameters. We review
the adaptive control stategies for mechanical manipulators that have been
proposed by other researchers.

In Chapter 5 we derive a new adaptive control scheme for manipulators and
discuss its properties. The scheme is novel in that no assumptions of plant
linearity are made in the development of the adaptation laws or in the stabil-
ity proof. The scheme can be viewed as an extension of the existing theory
of adaptive control for linear systems to a class of nonlinear systems that
includes rigid-body models of manipulators. We also consider the questions
of persistent, excitation and robustness to bounded disturbances.

In Chapter 6 we present a method for learning control of manipulators. This
scheme may be used on its own. or in conjunction with the adaptive scheme
of Chapter 5. Dynamic effects for which a parametric model are unavailable
may be handled by this scheme.

in Chapter 7 we present some conclusions.
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In Appendix A there is a brief introduction to norms and normed spaces.
Appendix B presents a brief introduction to Lyapunov stability theory. In
Appendix C the notion of a strictly positive real transfer function is intro- -
duced. .

Throughout the book, theories are illustrated by results,fr(;m simulations,
and, in Chapter 5, by results from actual experiments with an industrial
~manipulator.



Chapter 2

CONTROL OF |
MECHANICAL MANIPULATORS

2.1 Introduction

In this chapter we present the basics of the trajectory-control problem of
mechanical manipulators. First we state our underlying assumptions, which
will hold throughout the book. These help to outline the scope of the book by
stating what is and what is not assumed to be true of the manipulator system.
Next, the dynamic equations that describe the motion of a manipulator are
presented, along with some notes on the inherent structure of these equations.
We look briefly at one simple method before introducing the scheme on which
we will focus, the so-called computed torque method of manipulator control.

Here we state some assumptions that will hold throughout this book.

(1) Manipulators are modeled as jointed rigid bodies. Link flexibility will
not be addressed as such. Often the analysis will provide for a bounded
“disturbance torque,” T}, acting at the joints. This may in some cir-
cumstances represent some of the torques attributable to flexibility, but
not in any rigorous sense, because T, will be assumed to be uncorre-
lated with the manipulator state, an assumption not necessarily true for
torques caused by flexible bending modes in the linkages.

(2) Continuous-time analysis is employed. Discrete-time sampling and con-
trol effects will not be addressed in the analysis. On the other hand,
some numerical simulations do include discrete sampling and control
effects. Also, actual experiments with a physical manipulator will be

o 4



8 Chapter 2: Control of Mechanical Manipulators

presented, for which, obviously, the control was performed by a com-
puter in discrete time. Hence, analysis is performed in continous time,
and simulations and experiments are used to verify empirically that the
theory is implementable.

(3) Manipulators under discussion will be assumed to be open kinematic
chains with revolute joints. With a very small amount of effort, all
analyses performed can be extended to open chains with mixed revolute
and prismatic joints, and with somewhat more effort, results can be
extended to systems that contain closed kinematic chains.

(4) The desired manipulator joint trajectories will be assumed to be known,
including first and second derivatives. Such trajectories could be com-
puted by any of several well-known methods. We will assume that the
desired trajectories are smooth, meaning that desired angular velocities
and angular accelerations are bounded.

These assumptions will be in effect in the sequel unless otherwise stated.

2.2 Structure of the Manipulator Dynamic Equations

This section diséusses the structure of the dynamic equations of motion for a .
mechanical manipulator. Results from this section will be useful throughout
the remainder of the book.

The manipulator is modeled as a set of n moving rigid bodies connected
in a serial chain with one end fixed to the ground and the other end free
(Figure 2.1). The bodies are jointed together with revolute joints, there is
a torque actuator and friction acting at each joint. The vector equation of
motion of such a device can be written in the form [42]

T= M(e)é +V(8,8) + F(6) +G(8) + Ty, (2.1)

where T is the n x 1 vector of joint torques supplied by the actuators, and ©
is the n X 1 vector of joint positions, with © = [0,,0,,...,0,]". The matrix,
M(®), is an n X n matrix, sometimes called the manipulator mass matrix.
The vector V (O, 6) represents torques arising from centrifugal and Coriolis

’



. Chapter 2: Control of Mechanical Manipulators 9

Figure 2.1 An Articulated Chain of Rigid Bodies
forces. The vector F(8) represents torques due to friction acting at the
manipulator joints. The vector G(©) represents torhues due to gravity, and

T, is a vector of unknown signals due to unmodele(P dynamics and external
_ disturbances.

Also, we will sometimes write the dynamics in the Jimre compact form
T = M(€)0 + Q(6,8) + T, (2.2)

where the vector Q(6, é) represents torques arising from centrifugal, Corio-
lis, gravity, and friction forces.

It will be convenient from time to time to write the vector of velocity terms
in the matrix—vector product form: :

V(6,6) & Va(6,0)8, (2.3)
where the subscript m stands for “matrix.”
The jth element of (2.2) can be written in the sum-of-products form

u,— 'lj <
T = E m;if;i(6,0) + }: 2;i95:(6,9) + 745, (24),

Li=1 Ci=1



