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PREFACE

Non-linear physical systems and their mathematical structure form one
of the most active fields in present mathematics and mathematical
physics. This volume covers parts of that topic. It reports on diffe-
rential geometrical and topological properties of those non-linear
systems, which can be viewed physically as models for quantized non-
relativistic particles constrained, i.e. localized, on a (smooth) ma-
nifold or as classical or quantized fields with non-linear field equa-
tions. The contributions of this volume show how to deal with these
different types of non-linearities. There are various physically moti-
vated approaches to both of them. For systems constrained on a manifold
generically geometric methods are used with promising mathematical and
physical results. Now that the feeling has dissipated, that global
solutions of non-linear field equations are'"extra- terrestrial beasts"”
(see the contribution of I.E. SEGAL), also here a more global and geo-
metrical approach is applied with extreme success, we refer e.g. to the
application of twistor geometry or to the analysis of solution mani-
folds of non-linear equations. The structures of both types of non-1li-
nearities are deeply related.

A summer workshop in connection with the above programme was held in
July 1981 at the Technical University in Clausthal, Institute for Theo-
retical Physics and an international conference on mathematical physics
was organized parallel to the workshop. The lectures at the workshop

and some of the contributions to the conference are collected and edited
in an updated version in this volume.

Quantization Procedures

Quantizations of non-relativistic (mechanical) systems constrained on

a smooth manifold are discussed. The method of geometrical quantization
is justified on more physical grounds and presented in a new context

by R.J. BLATTNER. The kinematics of such systems is described with the
notion of a "quantized Borel kinematics" without using the phase space
and its symplectic structure by B. ANGERMANN, H.D. DOEBNER and J. TOLAR.
A method for the quantization of constrained systems is proposed by

J. SNIATICKY and is based on aspects of Dirac’s theory and on a reduced
phase space. The late S. PANEITZ defined "stable subvarieties" of so-



lution manifolds of a class of time dependent Hamiltonian systems and
"stable polarizations" and shows how these notions apply to certain
systems with non-linear scattering. The Frobenius reciprocity theorem
is discussed by V. GUILLEMIN and S. STERNBERG from the symplectic point
of view and is linked to some structures of the geometric quantization
method and to induced representations of symmetry groups.

Non-Linear Field Equations

The general properties of solution "manifolds" of non-linear field equa-.
tions are discussed. I.E. SEGAL reviews authoritatively historical as-
pects and part of the present status of this field. R.O. WELLS describes
with details and applications the twistor geometric approach to classi=
cal field equations. One of the physically interesting non-linear systems
with a genuine geometry is the non-linear sigma model. A comprehensive
report on this model is given by M. FORGER. F.B. PASEMANN describes a
quantization of gauge theories based on their geometrical structure as
Kaluza-Klein theories on a principle bundle and on de Rham - p - currents
as fields and potentials.

From the Clausthal workshop and Conference on "Non-Linear Partial Diffe-
rential Operators and Quantization Procedures" this volume contains only
part of the lectures presented there. The editors agree with the general
editorial requirements that a lecture notes volume should be homogenous
and that papers presenting mainly already known results or having the
character of a research announcement should not be included. Some manu-
scripts were not received in time. The articles in Part I and II are
arranged in alphabetical order.
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EINSTEIN’S EVOLUTION EQUATION FOR THE VACUUM FORMULATED

ON A SPACE OF DIFFERENTIALS OF IMMERSIONS

. -Bing

Universitdt Mannheim
D-6800 Mannheim
Germany F. R.

Dedicated to H.H. Keller

0. Introduction

Einstein’s equation for the vacuum on a four dimensional Lorentz
manifold reads as Rie 4G = 0, where Ric 4G means the Ricci tensor

of the Lorentz metric 4G.

One way to construct a special type of solutions to this equa-
tion is beautifully described in [16] and is as follows:

Let M be an oriented compact three dimensional C%®-manifold and

I cR an open interval centered around zero. On M x I, a manifold of
4

dimension four, consider a Lorentz metric G of the so called (3+1)-
type: Along I this metric is determined by 4G(p,t)(N,N) = - 1 where
N:Mx I ——> R maps (p,t) to 1 for all p&€M and all te€I and

is otherwise characterized by assumption that 4G restricted to the

tangent bundle T(Mx{t}) of M x{t} is a Riemannian metric, called
G(t), for each t €I. Thus aside of N, the Lorentz metric 4G on

M x I 1is characterized by a curve Yy from I into the collection



-

M(M) of all Riemannian metrics on M. On each t €I, Y assumes the
value G(t). Any such curve, vice versa, determines a Lorentz metric

on M x I of the above described type.

The variational principle of Hilbert for Einstein’s vacuum equa-
tion formulated for a Lorentz metric of type 3+1 yields a Lagrangian
L on the tangent space of M(M), a.e. on M(M) x SZ(M)' Here SZ(M)
denotes the Fréchet space of all symmetric two tensors of M (which

contains (M) as an open subset).

This Lagrangian splits into what is known as the De Witt metric
and a potential term. The De Witt metric is directly related with the
second fundamental form of Mx{t}cM x I for all te€I. The poten-
tial is defined by the scalar curvature of G(t) for all +t eI.

The metric 4G of type 3+1 on M x I obeys Einstein’s vacuum
equation iff vy is an extremal of 11, starting at an arbitrarily gi-
ven initial metric G(0)€ M(M) in an appropriate direction. These di-
rections are subjected to certain constraint equations. The Euler-La-
grange-equations for such a y together with the constraint equations
are called Einstein’s evolution equation for the vacuum (without shift
and with lapse one). Associated with this situation one has the follo-
wing Cauchy problem: Given G(0) and an initial direction K satis-
fying the constraint equations. Find an extremal Y el i L.cwith
y(0) = G(0) and Y(0) = K.

The constraint equations just mentioned are consequences of the
C®-invariance of L. By C®-invariance of L we mean the following:
The group Diff M of all C®-diffeomorphisms of M operates by pull-
back on M(M). The Lagrangian L turns out to be invariant under
Diff M. Hence first integrals are available. These determine the
constraint equation.

The qualitative properties of 4G satisfying Einstein’s vacuum
equation are thus determined by the qualitative property of y pro-
jected onto the quotient M (M)/Diff M. The quotient M (M)/Diff M is
not a manifold.

There is, however, a Frechet manifold which "resolves" the sin-
gularities of M(M)/Diff M. It is constructed as follows:



By the celebrated theorem of Nash, any metric in M (M) can be
obtained by pulling back a fixed scalar product on R” via an embedding

of M into R" ( n fixed but large enough).

Hence we have a surjective map m of E(M,Rn) (the Fréchet
manifold of all embeddings of M into Rn) onto M(M). Again Diff M
operators (from the right) by pull back on E(M,Rn). The quotient
E(M,Rn)/Diff M, called U(M,Rn), is a Frechet manifold [4]. In fact,
E(M,Rn) is a principal bundle over U(M,Rn) with Diff M as structure

group. m yields a projection onto M (M)/Diff M.

The purpose of this note is to formulate Einstein’s evolution
equation on E(M,Rn) in order to open up an other to study
the metric 4G by using the Fréchet manifold U(M,Rn). More precisely,
we formulate the equation on the space of the differentials of all
C®-immersions of M into R" (since these differentials determine the
metrics by pulling back the given scalar product in Rn). The differen-

tial determines the immersion up to a constant.

The key to our formulation on one hand is the idea of the Cauchy
problem for the evolution equation mentioned above. G(0) will be re-
placed by a fixed initial immersion called i and G(0) by an C®-map
h satisfying the appropriate constraint equations. On the other hand,
the following observation will be crucial: If n is large enough
(Nash bound will do), the differential dj of an C®-immersion
j: M —> R" can be expressed by the differential di of a fixed
initial C®-immersion i : M —» Rn, an appropriate C®-bundle map
f : ™M ——> TM which is symmetric with respect to the metric m(i)
and an "integrating factor" g, which turns the R™-valued one form
di-f into a differential by multiplication from the left. This inte-
grating factor is a C®-map g : M ——> 0(n), where 0(n) denotes the
orthogonal group of R” with respect to the fixed scalar product
<,>. 1In both cases di:f and g-di-f, the dots mean the fibrewise
formed composition on TM. Hence for any tangent vector vp at* p
of M the equation

dj = di (£
J(Vp) g (p) (di (£ (p) (vp)))
holds (for any p €eM). Clearly, £ f  isithe identity on each fibre

of T™ and g(p) € 0(n) is the identity for all P then idji=-dEs
(Integrating factors may differ on the normal bundle of “Fi(M)ie Rn.)



In analogy to the Lagrangian and the constraint equation both
mentioned above, we formulate a Lagrangian L (depending on the fixed
immersion i) and constraint equation both defined on the tangent
bundle of the Frechet manifold which is determined by all pairs (g,f)
such that g.di-f is a differential of an immersion. The projections
onto M(M) of those extremals « of L which obey the constraint
equation satisfy Einstein’s evolution equation for the vacuum mentioned
earlier. The differential calculus for Frechet manifolds is the one
given by Gutknecht in [9]. Consult also [13],[8]. By C% or by the ver-
vally equivalent term "smooth" we always mean the notion defined in
[9]. Let us remark that this note still has preliminary character.

I am thankful to H.R. Fischer for introducing me to [1] and [16].

1) A review of the formulation of Einstein’s evolution equation
for the vacuum (without shift and with lapse one) on the space
of all Riemannian C%®-metrics following
A.E. Fischer and J. Marsden

In this section we complete the formalism of Einstein’s evolu-
tion equation presented in the introduction to the extend that we state
the precise form of the notions. The review follows the presentation
in [16]. The reader is asked to consult [1]1,[15] and [6] as well.

Let M be an oriented compact C®-manifold of dimension three.
‘Consider M(M), the collection of all C®-Riemannian metrics defined
on M. This collection forms an open set of the Frechet space Sz(M)
of all symmetric two-tensors of class C® which carries Whitney'’s
C®-topology. Thus M(M) is a Fréchet manifold. Its tangent bundle is
identified with M(M) x SZ(M)'

We now proceed to define De Witt’s metric GDw on M(M). Gi-
ven Geée M(M), any tangent vector He 52 (M) can be represented by a

unique C®-bundle map # : ™M ——> TM which satisfies
(1) G(HX,Y) = H(X,Y)

for any couple X,Y of C®-vector fields. Denote the collection of all
C®maps from M into the C®-manifold 0 by c®(M,0):




We have a C%®(M,R)-valued scalar product’ on Sz(M) which is

given by
(2) H-K := tr H-K

for any two H,K eSZ(M). The dot on the right hand side means the
fibrewise composition. Clearly H-G = tr H. Instead of tr H write
trGH, which is called the trace of H with respect to G.

GbQIG € (1) evaluated on any pair H,K.eSZ(M) is then defined
by

(3) 6, (G) (H,K) = [(H-K - trgK-trK) du(@)
where up(G) denotes the Riemannian volume associated with Ge 4(M).

To define the Lagrangian L mentioned in the introduction,
consider GeM4(M) and its Ricci-tensor Ric G esz(M). The trace of
Ric G with respect to G is called the scalar curvature and is deno-
ted by A (G). The Lagrangian L : MA(M) X Sz(M) ———> R is then de-
fined by

(4) L(G,H) = 6 (6) (HH + [A(G) au@

which is derived out of Hilberts variational principle for the vacuum

equation as mentioned in [7].

An extremal Yy (defined on an open interval IcR centered
around zero) of L satisfies the Euler-Lagrange equation which reads
in this case:

(5) F(E) = Y(E) x Y(B) = Z(try o ¥(E))-¥(¢)

Y. Gt

- da @ v - (e g e By

Y (it

+ 2 Ric Y(t) - 5 A(Y(E)) <Y(t)

for each t eI. Here x denotes the cross product in SZ(M). Ttds
defined as follows: for any H,K.eSZ(M)



(6) H x K = G(H-R, )
More precisely:
(7) (0 xR (X, )= G (H-R X %)

for all Cc®-vector fields X,Y on M. The first three terms of the
right hand side of (5) form the spray of 6&,,, the second two the

gradient of the potential f A (G) du(G) formed with respect to
QDw'
Abbreviate
+ 1 . . . 2
{7°) 3 (Y(£)-Y(t) (trY(t)Y(t)) )it

20 (¥(E)) e vty by M) .

iEhedgroup) Diff M ‘of all C“Ldiffeomorphisms operates on H(M) by
pull back:

Given g€Diff M and GeA(M), define g-G by (g”')*G.
The latter symbol denotes the pull back of G by g_1. For any pair
X,Y of C®™vector fields on M we have

1x,Tg'1Y)

(8) (g:G) (X,Y) = G(Tg"~
This operation from the left of Diff M on M(M) yields for each
@S ~vector field X, regarded as a tangent vector at id € Diff M,
a first integral for the extremals of I.. According to [16], this
first integral

FX s M) x S2(M) e R

is given by FX(G,H) = QDw(G)(-LXG,H), where LX denotes the Lie de-
rivative in the direction of X. This collection of first integrals
has the following effect on extremals of L : An extremal

Y : L —> M (M) pfE T S a e A curve satisfying (5), yields a Ricci-
flat Lorentz metric 4G of type 3+1 (described in the introduction)

iff the following two additional constraint equations are satisfied:




(9) B(V(E) = (tr ) V(£)) Y(t)) =0
(6 denotes the covariant divergence)
and
(10) Hiy(t)) 30 for all S EeT | i
For the proof see [16] again.
We start our reformulation of the above formalism to the space

of differentials of immersion by first investigating the latter space
more closely in order to derive the necessary techniques.

2) Differentials of immersions

{ Let M be a three-dimensional compact oriented C®”-manifold.

on R" we fix a scalar product <,>. A C®map i : M —> &? iis
called an immersion if the tangent map has maximal rank. The collection
I(M,Rn) of all C®immersions of M into R" is an open subset of the
Fréchet space c®(M,R™) consisting of all C® maps from M into ®",
endowed with Whitney’s C®-topology [10].

Thus I(M,R") is a Fréchet manifold. Using Gutknecht’s calcu-
lus [9] on Fréchet spaces, the tangent space at each immersion is (ana-
logous to the case of a finite dimensional manifold) canonically iden-
tified with C®(M,R").

The path components of 1(M,R") consist evidently of all
immersions which are isotopic, a.e. are deformable (in the sense of a
homotopy) within the space of immersions. We refer to [12] for a de-
tailed study of the deformations of immersions.

In case n » 7, any two immersions in I(M,Rn) are connected
by a c®-path [12]. Given i€ I(M,Rn), denote by 0i its path-compo-
nent or (which amounts to the same) the connected component. Our first
goal in this section is to describe the nature of the differentials of
immersions in Oi' Let dj be the principal part of the tangent map
OF )€ Oi, called the differential of j. Locally, e.g. in a chart



UcM, the R™-valued one-form dj at pe€M is the Fréchet derivati-
ve Dj(p) of j : U —> an, mapping any ve[R3 into " Dj(p) (v).
Hence the tangent map Ti is of the form (j,dj). The nature of di
is resolved by looking at the tangential representation of S

The tangential representation of M into the Grassmanian G(3,n): -of

all 3-planes in R™ is given by
(11) di + M ——— G(3,n)

mapping any p€M into di(TpM) €G(3,n). It is a C®-map. Denote the

canonical 3-plane bundle of G(3,n) by % and its normal bundIe by n .

Hence G(3,n)an = £ @ n . Given any immersion jeoi, its tangen-

tial representations dj is homotopic to di. Form now the pullbacks

C i A el N i*n and j*n with respect to dj and di of £ and 9
respectively. The bundle j*t‘; serves as the "tangent bundle" of

J (M) cR™. The latter only exists.:if j is an embedding, i.e. if 3j

is one-to-one on M. Clearly, by construction, i*E_, = j*g = ™

If again i and Jj are embeddings we verify that (due to the construc-

tion of m ) both i“'rl and j*rz are isomorphic to the normal bundles

E (M) iand (M) in R respectively. Summarizing we have a C%®-

bundle isomorphism

(12) F:i"t @ i") —> "¢ o %,

Denote by 3™ (&) and j*(-,z)p the fibkes of 3" 1E) ang j"(,z)

respectively. Observe that F restricted to a fibre (i"g )p is given

by dpj o(dpi)-1. Here dpj and dpi denote the restrictions of the

differentials of 4i' 'and 3j +to the tangent space TpM of pe&eM .

Since domain and range of F are canonically isomorphic with
M x R?, we identify F with a C®-map

B M o——————3 GL(n) .
Thus the differentials di and dj are related by the equation
dj =F ek
J (vp) (p) ( p1(vp))

for each v eTpM and each peM. Let C®(M,GL(n)) be the collection
of all C®™maps from M into GL(n). Given Fe Cc®(M,GL(n)), consider




10
Bodd s emy ———— phee

mapping any vpe.TpM into F(p)(dpi(vp)) for each p €M. Denote
by & the exterior differential defined by
&(F-di) (X,Y) (p) = d(F-diY) (X(p)) - dA(F-diX)Y(p) - F-dil[X,Y] (p)

for any p&€M and any two members X,Y of the collection RS

of all C®-vector fields on M. Observe
(13) 6(F-di) (X,Y) = AF(X)-diYy - dF(Y)-diX i}

where' dF(Y) (p) = dF(p) (Y(p)) is an element of EndR® for each
pPEM. F-di is locally a differential of a C®-map iff

oi(Bsdi) = 0. .

This is an immediate consequence of deRham’s theorem and the fact that
' M,8") 2 8 (M,R) @ R®. Since FeC™(M,GL(n)), the E-valued form
F+di has maximal rank everywhere. Hence if &(F-di) = 0 ,

then it is locally a differential of an immersion. The observations

made in this section can be summarized as follows [21

THEOREM 1: Any two immersions 1i,j in the same connected
component can be joined by a C®-curve within that component. Their
differentials are related via a map F e C®(M,GL(n)) by
(14) A= Feadd - .

If M  satisfies H1(M,Z) =10,  then for any Pe C®(M,GL(n)), F-di
is the differential of an immersion iff &6(F+di) =0 "

To investigate more closely the type of FEC*(M,GL(n)) intro-

duced above, we introduce the Riemannian metrics G(j) = j*<,> and
GO = i*<,>, which applied to any X,YE['TM yield the functions
G(3) (X,Y) = <djX,dj¥y> and c°(X,¥) = <dixX,div> .

By the theorem of Fischer-Riesz [14] applied pointwise, we find a
C®-bundle map

A: TM —m———> TM



