Vﬂlume 2

Background:
 Computational Structures

| i Edltedby
.ABRAMSKY, DOV M. GABBAY;
and T. S. E. MAIBAUM

OXFORD SCIENCE PUBLICATIONS

ﬁ._ _.I.._._-.r.—.-.l.m.-.”.-_”._. ..1.-.-1_--.".-.“- ql.l._.- M—H.H ” I E—F: J_"_‘_.-.. : Lﬁah_..-
pam RN AL MR e e lZ e
0 el Al M R e e LA 4
v _.-.m.-...li__.....]

e _...ﬁ“”.......u.. e P P S L I g T S G T % e N T A Nl T 2 : AP o R S
| L) - - n [* & ") >

o i |._.Im_-._.._ Ty |._..-..l.-.__..- W
l-h-..._._.-._ ___.__.._m_..rl ¥

L 2 e A (T

rlll.i_.....-."“..-..M".nl..lnm_m.-._...l..-..__.-___lh. -#-ﬂﬁli“-.

- | B

s i e T e T L e S H el B e, ey Sty

- LN L - E
== - i - e ._.__i.-.nl i - .1...._“..._. ey] S o 2 L
A B ey B N S e R i o0 L Tf

‘5 8
m......l.-...-.. l-l_i "

R L e .|.ri|1..|...._.m.._.._... i
X “.u,.rﬂ,m..m...wf.wmiw i
R S
I

B e i o
SN NS

&

ik
& I

k=

&
i
1

-
o
']

)
el
I
Z
B
o
L]

il
'I
i

=
.y E .-l- -
X .”1_.h._.-... g
A b
e WUTLE T - & — A -
v ..-ll.-—....l_. - - B Ty ﬂ-".su.q.u. i i '..-umH.
Lo T S o = i : I B LT P L B S g L t- " 3 iy g .] =
m H-..-.“.H.-.q. L.“ ety T .“_.ul... ”l“ Jul.._.l.-ﬂ.ll...l.l.nl ._Tm.f“ - .-H.| |”-._.._..-.I..l._.... = .n-.l...lw.._.H_...._.__....r o, |.|-.-.-u...-.-||“.__ ...-..-l.ll..-..l...-..-1!.1 S i A W 5 [; . hy) ' o HoLE R, y P o o - ._-_.-..“..-.m.,...-.__..... _I..__ .u..- 1% u -..l_”l.ll
e 2R R R S e A Lo SRR L i e O [O T 2 SR S I A S SN AN A 2% =
e b P T e e e il Rt e s s S e L o [4 L ol N K [-
.... |r__-. r hl-. . —.lll. R, u-.l__l.-.l.”. ..I.r - e v 1Hl.r.l.l.lm1||” - . .-.‘ _“n. B _...-_ __.'.l E -ﬂlf-. 5 .._-.-._.-I.-_1..-I-..-.L W pm i -l L ¥ g i IIH... wl - .__.ul-.A_.l .-a.l.lu.-..-.-ll.-m-..‘- - y
A S~ O T s SR Sl < 5 e o e LA E oot ey 2 e, /3 : : v
b A L e N L g e L Y T Rty TR N R e e L e S PO o T L g B T i X
T P e e o A E S AT AN MG NS SR e 0 S Rty B 2 .
E e e, l.”. - .-.r.l.-.l.ll”..ll-hi....l.u.l.l.u...-. 1l+r - ii ﬂl.”.....“ il_..*.....l..F I.”.l l.lr..... -:-”ll1 rn..n._l1 q-.lln.w.rl.- Ll”l .w“1||.1"|I.“.-1|--_ .-...rl.lrls.”-.all.-.u_ -...-H..":IJH1I1I. = 4 I._r.” . .-l—i.ﬂ..l...- I .1“:.1_ ..F..r = .-..J-I'.. i i ok o v
i ._.u.m. -~ .-.|.-.||_.|-..-..u. .q.l..-_h e .m.11..||._1_r.-...” . ¥y“...u..-...q_l. ..|-|...__|..-|.1._..-._ A gt .._..__.|-|.-.-...-...-......T-.l.-..|...... ..“..1...._. ...-... .__.-H ol lﬁ].ﬂ e T_._. l.-.E..l-rl.-. ul..“ .
b o S o A I.l.!.-l — ..._.1.II.-|. - Bl E = . m M L N et F 5 - [Spw ..-.1.... T A
e e e e ey e e e ' A5 e P 1.wuu.l.rmx. D T
ol et B e, M i g -ii._. ..._Il.i.r T 3 i, "l - - ..n.lwla._-_..m.“..-_.u -a-._”.”..._..-ui._.u.-.uuru I
e = e .k ' I-l-.l..-.l.l.rﬁI..lnr.-_...u.-u..l.-. g N ate A .-H...i.ﬂ.l -._I.-lu_- PR N T .r.n... " i .
S l.l ”IIH. i N ||I|-”_..-.- I.-.“.f1 ..rﬂu.!.l.'u._n Sy-ulmu....h-. ® “.--u_."l-r_ll I“-l._.. W .-.Iﬁ".”..- A el L
T s e e el ALY Py
e L I e -I-.ln.-l *1..-. = —— _lll..-....lulll. — L T v o 5 " TS “_-..-ﬁl._.I.I i -..-rﬂ-ulIun —.L.”-.ﬁﬂlmnnL AN l-}..H-
N e e Ny g - e e : : S YT R L ST
Sy M= T e e, Sl - i . 'l g Ay .-.-..-_..l.n.l....l. iy
M B Ay 1 L S ay e e xS et N ...“.-.r_c.-huuﬁﬂ-*..u._...ﬂ.. RN
i - P =y SRS S i e g e o
N G T e o e T g ey A _ K - i e A k nfh-.-..-.:w Lo
.‘H- .l-i.r.l‘.l.ll.llr....-l.l-q.l"ll o -.-.r_IH.Illl.ll.-”m.u.}.J.r.—.‘..l.ll) o i e 8 L 1 5 % - i L SN =l A - E o % = T rﬁ.-.r“llil-
l.l..l-llu .-._._ +.-|l jll.ﬂl..l-ql by ..--.|H.1.l..l.“-l.-|lhl.”H P ‘-Il.ﬂ-. l_...il.n__-_. ..ll.h“.—.. " - i A i F'L ..I..Illh-.l.-n.. s E L - i i = Wl i ..l
= = | - & Lo D e i s . o X . -E=, ! - s L] o = " - F - o " .
J.r.ll .-.ll.l..-..L- .-_..-Jﬁlnn-ullul..-.l"_.-.l-rﬂtnr_llli s 'S - ' N m“.“l .l..- .Iql.-‘!-. l.a.-
L]

on e ; ; o . 3 e i . = -, |- . = i x + k . / = L Y . . ; I 5 L 'y .l & & - 4 \
ot T = - | T T -.-..-_.-h-.. - .._Im. - ..-....I.-.-l_l_ g y - 1 = am w @ B - ! s i ! e 4 ! . ' . - L L b
e e e e Y. ; . . . LY * A o kN
L gl S e A o . . 3 s H - . 1 i e 4 e g ' Tia [| ! = by : 1

k=i g T = = 8.4 R 1 . . Fark
& i - T Mg g e i 5 a I : j . y A i .
LA et L S S iy ...__..._.ll-_.__. = L.-....v..m.__ ey T ; ' o s ...H-.-.V. D

i a | " .
il I S . it L] L

e AN ' 3
e _-_..T.........._.__._-.l._ i " gl -.. E.

R T e L e
SRR b Pt o B e p N
-.l.‘.l-_“”. r....“..l- .M..lli.H-l..-l. -“Im- M““-ﬁ-.ﬂ- i.."u-m. |h ".l W . X - Fra i o W IJ....I.L...I..I L] H-%II Faly i P —._-.“...-.. AL E .- - [N " ! N-..hl.—.-.lill -.... _'-.-rf._.lll._.”Il._ i s
e e T L R e y b = e - k : i .___ Lt L A T Y - E Rl o T e Lt T T, iR . { ML e R e .lrr...__..._.-l oL i
e et £, Vol et U H T .—..-..l.lh..r.-...-—_.___.-.- - g F— Rl L IS .I.%l " | gl Tty it LA g e T N T S R . i -....“u-nﬂ_....r.._l.-_ — —
o T e L -_-..I_-.r.q.—.ln.._i il|1rl.-..-_ = I_.h__..._.. = RN qu...- = ﬂllhun‘h-‘ll-'l_-.— -ln.....-..__.....-_ n ”ﬂ1 of = S 1= - |..-_.-_ ‘._I..I...-. .-d..-__. Bl == -Il.u..E. LR T Tt n . i = .r.-.—l Ih._ y

...1.-|.-_+..-I.”...m| e ...h.......-. # - ._..._.ﬁ.__l —— I...-h-.-m......._.p.m...lnun__._r.__i-l-hdl [g - +411 1 Eei*._h_..‘q —a -.!-.._.L...._H.._u-,_l_."__...-l ._-___..-. ..-.l._“..uw-_l _-.._-r..mr..w e #_..—..-m-“ [._.—.- - vl
gl e L TR R LT l.H| = g L A o i Y T R R e S P A e . A e s i Ol iy T et ey T L i s | 5T e B

Tl i e =) AR LR e e e et T e e T e 8 b e s A) ¥ ¥ e et B .u_ S TASCOD N I R AR P R E LT et s Lk £ W.H"“.ﬁ.-. :
= [et ol - v im i g W A . L 'y ! : W ik < ! ey L .

.|.1.|l IHI..I..__...FI.-.J“.-.H--“.-—I J.I.H.a.““..””_..l.l. .u.l-ur.-.“w._ rl.“. 1.-.|“"-”I..l.h“-rm....m.“._l......l-.i-r_rl-.__.l.l“..ll.”_lh -__-.l!.. —_I! ._l-ln“.i.-.ﬂ.i_- : . " | g PN] J : .&““._II_.-I_I”-.J _1.,_.. ﬂl. h”-m.”..ﬂhT..i-._.”-m-.Jl 1.“..-..-.“..‘-_ ..hnh ...ﬂ “._..._-_.H ”l“.- “-“.”“.- .L‘ll.-_l”.-“..lllll-l .- }ﬂ.— .h__l 4..] . H oIS ...M.. -...- ..m..ﬁ. “- " “ry, “ A
iy B S T e, e e e e " ot i . . ‘M ey om0 T Y Al ST VE Ty e | .nnm r Tl . [l sl
- . M -r_ll......_ml - h.. = r!.r o h . iy p——— __..-__...-.. " - * - _J- h.-t.-l..-

o e, ' e A 4 s B | i (o] I i ¥ fup]w @ |
R B At LT N LN e ..v..mﬁ“..%mmﬁﬂt..._. A . g
R S e O RS e e f-a ._.“..m N e - I AL vide

— — - l..l'iI- - - T 1 e, s =t

- " ‘ . [1

T I Ty L e . ; : x - . o et R
e . ff......u..dhli......ﬁ..ﬂu.........ﬂ..n_,luq.um.._........ur e 1,30 2 A i ST S __.._n..u....._...._uu'T.r.-._“
0 1.“

i

i o
E LT e el 'y T - i ¥
R Rt sl S g 2
e T e e s, e LA
- P I e s g 1 " 5 U] L 3
-“.—_.r.“__rhlﬂ..l.' _l_..._“.__ ear i N &r-_. tu._... b .r._._H ..-_“_.F..”‘l i .
- .)

o
ey

.

L]
-

-

R

i o
AT e mﬂﬁ.}l 0
L 5 i I-.”.nhl n .-_.-ﬂ.
: s,

il
Rrd e
.u;-ﬂ)

Handbook of Logic
in Computer Science

Volume 2
Background: Computational Structures

Edited by
S. ABRAMSKY

Professor of Computing Science

DOV M. GABBAY

Professor of Computing Science

and

T.S. E. MAIBAUM
Professor of Foundations of
Software Engineering

Imperial College of Science, Technology and Medicine

London

Volume Co-ordinator

DOV M. GABBAY

CLARENDON PRESS - OXFORD
1992

Oxford University Press, Walton Street, Oxford OX2 6DP

Oxford New York Toronto
Delhi Bombay Calcutta Madras Karachi
Petaling Jaya Singapore Hong Kong Tokyo
Nairobi Dar es Salaam Cape Town
Melbourne Auckland

and associated companies in

Berlin Ibadan
Oxford is a trade mark of Oxford University Press

Published in the United States
by Oxford University Press, New York

© Chapter authors, 1992

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any
Jorm or by any means, without the prior permission in writing of Oxford
University Press. Within the UK, exceptions are allowed in respect of any
fair dealing for the purpose of research or private study, or criticism or
review, as permitted under the Copyright, Designs and Patents Act, 1988, or

in the case of reprographic reproduction in accordance with the terms of
licences issued by the Copyright Licensing Agency. Enquiries concerning
reproduction outside those terms and in other countries should be sent to

the Rights Department, Oxford University Press, at the address above.

A catalogue record for this book is available from the British Library

Library of Congress Cataloging in Publication Data

Handbook of logic in computer science / edited by S. Abramsky, Dov M.
Gabbay, and T. S. E. Maibaum.
v. 2
Contents: — v. 2. Background, computational structures.
1. Computer science. 2. Logic, Symbolic and mathematical.
I. Abramsky, §. II. Gabbay, Dov M., 1945- . IIl. Maibaum, Thomas
S. E., 1947- . QA76.H2785 1992 92-510

ISBN 0-19-853761-1

Typeset by the authors
using TEX
Printed and bound in
Great Britain by Biddles Lid.,
Guildford and Kings Lynn

HANDBOOK OF LOGIC
IN COMPUTER SCIENCE

Editors
S. Abramsky, Dov M. Gabbay, and T. S. E. Maibaum

HANDBOOKS OF LOGIC IN COMPUTER SCIENCE
and
ARTIFICIAL INTELLIGENCE AND LOGIC PROGRAMMING

Executive Editor
Dov M. Gabbay

Administrator
Jane Spurr

Handbook of Logic in Computer Science

Volume 1 Background: Mathematical structures

Volume 2 Background: Computational structures

Volume 3 Semantic structures

Volume 4 Semantic modelling

Volume § Theoretical methods in specification and verification
Volume 6 Logical methods in computer science

Handbook of Logic in Artificial Intelligence and
Logic Programming

Volume 1 Logical foundations

Volume 2 Deduction methodologies

Volume 3 Nonmonotonic reasoning and uncertain reasoning
Volume 4 Epistemic and temporal reasoning

Volume 5 Logic programming

Preface

We are happy to present the first volumes of the Handbook of Logic in
Computer Science. Logic is now widely recognized to be one of the foun-
dational disciplines of computing and has found applications in virtually
all aspects of the subject, from software engineering and hardware to pro-
gramming language and artificial intelligence. There is a growing need for
an in-depth survey of the application of logic in computer science and Al
The Handbook of Logic in Computer Science and its companion, the Hand-
book of Logic in Artificial Intelligence and Logic Programmaing have been
created in response to this need.

We see the creation of the Handbook as a combination of authoritative
exposition, comprehensive survey, and fundamental research exploring the
underlying unifying themes in the various areas. The intended audience is
graduate students and researchers in the areas of computing and logic, as
well as other people interested in the subject. We assume as background
some mathematical sophistication. Much of the material will also be of
interest to logicians and mathematicians.

The tables of contents of the volumes were finalized after extensive
discussions between handbook authors and second readers. The first two
volumes present the background logic and mathematics extensively used in
computer science. The point of view is application oriented. The other four
volumes present major areas in which the methods are used. These include
Volume 3 — Semantic Structures; Volume 4 — Semantic Modelling; Vol-
ume 5 — Specification and Verification; and Volume 6 -— Logical Methods.

The chapters, which in many cases are of monographic length and scope,
are written with emphasis on possible unifying themes. The chapters have
an overview, introduction, and a main body. A final part is dedicated to
more specialized topics.

Chapters are written by internationally renowned researchers in the
respective areas. The chapters are co-ordinated and their contents were
discussed in joint meetings.

Each chapter has been written using the following procedures:

1. A very detailed table of contents was discussed and co-ordinated at
several meetings between authors and editors of related chapters. The
discussion was in the form of a series of lectures by the authors to
everyone present. Once an agreement was reached on the detailed
table of contents the authors wrote a draft and sent it to the editors
and to other related authors. For each chapter there is a second reader
(the first reader is the author) whose job it has been to scrutinize the

vi Preface

chapter together with the editors. The second reader’s role is very
important and has required effort and serious involvement with the
authors.

Second readers for this volume are:

Chapter 1: Term Rewriting Systems — J.-J. Levy

Chapter 2: Lambda Calculus — R. Hindley

Chapter 3: Algorithmic Proof Systems — R. Milner

Chapter 4: Designing a Theorem Prover — R. Milner

Chapter 5: Modal and Temporal Logics — A. Pneuli and R. Turner.

2. Once this process was completed (i.e. drafts seen and read by a large
enough group of authors), there were other meetings on several chap-
ters in which authors lectured on their chapters and faced the criti-
cism of the editors and audience. The final drafts were prepared after
these meetings.

3. We attached great importance to group effort and co-ordination in the
writing of chapters. The first two parts of each chapter, namely the
Introduction-Overview and Main Body, are not completely under the
discretion of the author, as he/she had to face the general criticism
of all the other authors. Only the third part of the chapter is entirely
for the authors’ own tastes and preferences.

The Handbook meetings were generously financed by OUP, by SERC
contract SO/809/86, by the Department of Computing at Imperial College,
and by several anonymous private donations.

We would like to thank our colleagues, authors, second readers, and
students for their effort and professionalism in producing the manuscripts
for the Handbook. We would particularly like to thank the staff of OUP for
their continued and enthusiastic support, and Mrs Jane Spurr, our OUP
Administrator for her dedication and efficiency.

London The Editors
May 1992

Contents

Term rewriting systems

1
2

4
E"}

Introduction

Abstract reduction systems

2.1 Basic notions

2.2 Disjoint sums of term rewriting systeins
2.3 A termination proof technique

2.4 Completion of equational specifications
2.5 An abstract formulation of completion
2.6 Unification

Orthogonal term rewriting systems

3.1 Basic theory of orthogonal term rewriting systems
3.2 Reduction strategies for orthogonal term rewriting

systems
3.3 Sequential orthogonal term rewriting systems

Conditional term rewriting systems
References

Lambda calculi with types

1
2

Introduction

Type-free lambda calculus

2.1 The system

2.2 Lambda definability

2.3 Reduction

Curry versus Church typing

3.1 The system A—-Curry

3.2 The system A—-Church
Typing a la Curry

4.1 The systems

4.2 Subject reduction and conversion
4.3 Strong normalization

4.4 Decidability of type assignment
Typing d la Church

5.1 The cube of typed lambda calculi

5.2 Pure type systems

5.3 Strong normalization for the A-cube

5.4 Representing logics and data-types

5.5 Pure type systems not satisfying normalization

[
85
99
108

118

120
121
128
134
148
148
156
160
161
172
176
182
192
193
212
230
248
279

viil Contents

Elements of algorithmic prootf

1 The theme of the chapter

2 Intuitionistic implication

3 An algorithmic proof system for intuitionistic
implication

4 Automated deduction for intuitionistic implication;

resource boundness

Completeness theorems for the restart rules

Conjunctions and negations

Disjunction

00 -] & O

Intermediate logics

8.1 Appendix to Section 8

9 The universal quantifier and the fragment without
disjunctions

10 Full predicate system

11 Conclusion

Designing a theorem prover

1 Folderol: a simple theorem prover
1.1 Representation of rules
1.2 Propositional logic
1.3 Quantifiers and unification
1.4 Parameters in quantifier rules

2 Basic data structures and operations
2.1 Terms
2.2 Formulae
2.3 Abstraction and substitution
2.4 Parsing and printing
3 Unification
3.1 Examples
3.2 Parameter dependencies in unification
3.3 The environment
3.4 The ML code for unification
3.5 Extensions and omissions
3.6 Instantiation by the environment
4 Inference in Folderol
4.1 Solving a goal
4.2 Selecting a rule
4.3 Constructing the subgoals
4.4 Goal selection
5 Folderol in action
5.1 Propositional examples

311
319

327

336
351
362
369

375
383

385
388
409

416
417
418
420
421
424
424
425
426
427

428
429
430
431
432
433
434

435
436
437
438
439
440
441

Contents

5.2 Quantifier examples

5.3 Beyond Folderol: advanced automatic methods
Interactive theorem proving

6.1 The Boyer/Moore theorem prover

6.2 The Automath languages

6.3 LCF, a programmable theorem prover
6.4 Validation-based tactics

6.5 State-based tactics

6.6 Technical aspects of Isabelle
Conclusion

Program listing

Modal and temporal logics

1

Introduction
1.1 Transition systems
1.2 Runs

1.3 Computational concerns

Propositional modal logics

2.1 Basics

2.2 Minimal modal logic

2.3 Correspondence and incompleteness

2.4 Dynamic logic

2.5 Modal algebras

2.6 Decision procedures

Propositional temporal logics

3.1 Between modal and temporal logics

3.2 Basics

3.3 Linear and branching time

3.4 Minimal temporal logics

3.5 Classes of models, automata, and correspondence
3.6 Families of runs and temporal properties
3.7 Decision procedures

Modal and temporal mu-calculi

4.1 Modal and temporal equations
4.2 The mu-calculi

4.3 Momnotonicity and continuity
4.4 Minimal mu-calculi

4.5 Decision procedures
Expressiveness

5.1 Expressive completeness

5.2 w-regular expressions

5.3 Zig-zags, bisimulations, and histories
Sound and complete axiom systems

1X

111

452
453
454
455
456
458
460
461

461

478
478
481
485

487
487
490
492
496
498
501
004
504
507
010
o015
018
522
522
026
026
528
532
533
534
536
236
240
o042
545

6.1 Soundness

6.2 Canonical models
6.3 Points and schedulers

Contents

Term Rewriting Systems

J. W. Klop'

Contents

I Inbroduction « : ¢ s s s ¢ 5 5@ % s 5 ¢ 6 § 6 5 65 9 8 W@ ©q 8 6 8 2

2 Abstract reduction systems 3
2.1 Basicnotions 11
2.2 Disjoint sums of term rewriting systems 19
2.3 A termination proof technique 29
2.4 Completion of equational specifications 40
2.5 An abstract formulation of completion 55
2.6 Unificationo 62

3 Orthogonal Term Rewriting Systems 69
3.1 Basic theory of orthogonal Term Rewriting Systems 70
3.2 Reduction strategies for orthogonal Term Rewriting Systems 77
3.3 Sequential orthogonal Term Rewriting Systems 85

4 Conditional Term Rewriting Systems 99

Abstract

Term rewriting systems (TRSs) play an important role in various areas,
such as abstract data type specifications, implementations of functional
programming languages and automated deduction. In this chapter we in-
troduce several of the basic concepts and facts for TRSs. Specifically, we
discuss abstract reduction systems; general TRSs including an account of
Knuth-Bendix completion and (FE-)unification; orthogonal TRSs and re-
duction strategies; strongly sequential orthogonal TRSs. The paper con-
cludes with a discussion of conditional term rewriting systems. The em-

'Research partially supported by ESPRIT project 432: Meteor (until Sept. 1989)
and ESPRIT BRA projects 3020: Integration and 3074: Semagraph (since July 1989).

2 J. W. Klop

phasis throughout the chapter is on providing information of a syntactic
nature.

1 Introduction

The concept of a term rewriting system (TRS) is paradigmatic for the study
of computational procedures. Already half a century ago, the A-calculus,
probably the most well-known TRS, played a crucial role in mathemat-
ical logic with respect to formalizing the notion of computability; much
later the same TRS figured in the fundamental work of Scott, Plotkin and
others, leading to a break-through in the denotational semantics of pro-
gramming languages. More recently, the related system of combinatory
logic was shown to be a very fruitful tool for the implementation of func-
tional languages. Even more recently another related family of TRSs, that
of categorical combinatory logic, has emerged, ylelding a remarkable con-
nection between concepts from category theory and elementary steps in
machine computations.

Term rewriting systems are attractive because of their simple syntax
and semantics—at least those TRSs that do not involve bound variables
such as A-calculus, but involve the rewriting of terms from a first-order
language. This simplicity facilitates a satisfactory mathematical analysis.
On the other hand they provide a natural medium for implementing com-
putations, and in principle even for parallel computations. This feature
makes TRSs interesting for the design of parallel reduction machines.

Another field where TRSs play a fundamental role concerns the anal-
ysis and implementation of abstract data type specifications (consistency
properties, computability theory, decidability of word problems, theorem
proving).

The aim of the present paper is to give an introduction to several key
concepts in the theory of term rewriting, providing where possible some
of the details. At various places some ‘exercises’ are included. These con-
tain additional information for which proofs are relatively easy; they are
not primarily meant to have an educational purpose, if only because the
distribution of the exercises is not very uniform.

The present introduction starts at a level of ‘rewriting’ which i1s as
abstract as possible and proceeds by considering term rewriting systems
which have ever more ‘structure’. Thus we start with abstract reduction
systems, which are no more than sets equipped with some binary (‘rewrite’)
relations. A number of basic properties and facts can already be stated on
this level.

Subsequently, the abstract reductions are specialized to reductions (re-
writings) of terms. For such general TRSs a key issue is to prove the

Term Rewriting Systems 3

termination property; we present one of the major and most powerful ter-
mination proof methods, recursive path orderings, in a new formulation
designed to facilitate human understanding (rather than practical imple-
mentation). Proving termination is of great importance in the area of
Knuth-Bendix completions. Here one is concerned, given an equational
specification, to construct a TRS which is both confluent and terminat-
ing and which proves the same equations as the original specification. If
the construction is successful, it yields a positive solution to the validity
problem of the original equational specification. (Nowadays there are also
several other applications of Knuth-Bendix-like completion methods, such
as ‘inductionless induction’ and ‘computing with equations’. For a survey
of such applications we refer to [Dershowitz and Jouannaud, 1990).)

Also in Section 2, we explain the basic ideas of Knuth-Bendix comple-
tion together with an interesting recent ‘abstract’ approach of [Bachmair
et al., 1986] to prove the correctness of Knuth-Bendix completion algo-
rithms. We also present an elegant unification algorithm, and likewise for
‘ E-unification’.

In Section 3 we impose more ‘structure’ on TRSs, in the form of an
‘orthogonality’ requirement (non-ambiguity and left-linearity). For such
orthogonal TRSs a sizeable amount of theory has been developed, both syn-
tactically and semantically. Here we will almost exclusively be concerned
with the syntactical aspects; for semantical aspects we refer to [Boudol,
1985], [Berry and Lévy, 1979] , [Guessarian, 1981]. Basic theorems (conflu-
ence, the parallel moves lemma, Church’s theorem, O’Donnell’s theorem)
are presented, where possible with some proof sketch. Also in this sec-
tion we survey the most important facts concerning reduction strategies
for orthogonal TRSs, strategies aiming at finding normal forms whenever
possible. Section 3 concludes with an explanation of the beautiful theory
of [Huet and Lévy, 1979] of (strongly) sequential TRSs. Such TRSs possess
a ‘good’ reduction strategy.

In the final section (4) we consider TRSs with conditional rewrite rules.

Some 1mportant topics have not found their way into this introduction.
Most notable are: rewriting modulo a set of equations, proof-by-consistency
procedures, and graph rewriting. For information about the first two we
refer to [Bachmair, 1988] and [Dershowitz and Jouannaud, 1990] (1990),
for graph rewriting one may consult [Barendregt et al., 1987].

This chapter is an extension of the short survey/tutorial [Klop, 1987];
also most of the material 1n [Klr.}p, 1985] is included here.

4 J. W. Klop
2 Abstract reduction systems

Many of the basic definitions for and properties of term rewriting systeins
(TRSs) can be stated more abstractly, viz. for sets equipped with one
or more binary relations. As it 1s instructive to see which definitions and
properties depend on the term structure and which are more basic, we start
with a section about abstract reduction systems. Moreover, the concepts
and properties of abstract reduction systems also apply to other rewrite
systems than TRSs, such as string rewrite systems (Thue systems), tree
rewrite systems, graph grammars. First we present a sequence of simple
definitions.

Definition 2.0.1.

1. An abstract reduction system (ARS) is a structure A = (4, (—,)acrs)
consisting of a set 4 and a sequence of binary relations —, on A,
also called reduction or rewrite relations. Sometimes we will refer to
— o as «. In the case of just one reduction relation, we also use —
without more. (An ARS with just one reduction relation is called a
‘replacement system’ in [Staples, 1975], and a ‘transformation system’
in [Jantzen, 1988].) If for a,b € A we have (a,b) € —,, we write
a —4 b and call b a one-step («-)reduct of a.

2. The transitive reflexive closure of —, is written as —,. (More cus-
tomary is the notation — . but we prefer the double arrow notation
as we find it more convenient in diagrams.) So a —», b if there is a
possibly empty, finite sequence of ‘reduction steps’ a = ay —, a; —,

—4 @, = b. Here = denotes identity of elements of A. The
element b is called an (a-)reduct of a. The equivalence relation gen-
erated by —, 1s =, also called the convertibility relation generated
by —,. The reflexive closure of —, is —-. The transitive closure of
—4 1s —2. The converse relation of —, is «, or —-'. The union
— o U —3 1s denoted by —,3 . The composition —, o — 3 is defined
by: a -4 0 —gbif a —, ¢ —4 b for some ¢ € A.

3. If a, 3 are reduction relations on A, we say that a commutes weakly
with 3 if the diagram of Figure 2.1a holds, i.e. if Va,b,c € A 3d €
A(c <3 a =4 b= c —»,d«pb), or in a shorter notation: « g
© =4 € —», o «g . Further, a commutes with g if -, and —3
commute weakly. (This terminology differs from that of [Bachmair
and Dershowitz, 1986), where o commutes with 3 ifa—lo3 C 3! oc.)

4. The reduction relation — is called weakly confluent or weakly Church-
Rosser (WCR) if it is weakly self-commuting (see Figure 2.1b), i.e. if
Va,bc€ Add€ A(c—a— b= ¢ —»d« b). (The property WCR
is also often called ‘local confluence’, e.g. in [Jantzen, 1988].)

oy

Term Rewriting Systems 5

— is subcommutative (notation WCRS!) if the diagram in Figure 2.1¢
holds, i.e. if Va,b,c€ Add€ A(c—a—b=c—=d—=b).

— 1s confluent or 1s Church—Rosser, has the Church-Rosser property
(CR) if it is self-commuting (see Figure 2.1d), 1.e. VYa,b,c € A 3Jd €
A(c«a—» b= c—»d«b). Sometimes (6) is called ‘confluent’ and
the situation as in Proposition 2.0.2(6) ‘Church-Rosser’.

Proposition 2.0.2. The following are equivalent:

e

(g |

— 1s confluent

— 1s weakly confluent
—» 15 self-commuting
—» 1s subcommutative

the diagram in Figure 2.1e holds, 1.e.
Va,bce A3de A(c+—a—»b=c¢c—»d« D)

Va,be Adee A(a=b= a—» ¢« b) (Here ‘=" is the convertibility
relation generated by —. See diagram in Figure 2.1f.)

Definition 2.0.3. Let A= (4, —) be an ARS.

1.

g |

=]

We say that a € A is a normal form if there 1s no b € A such that
a — b. Further, b € A has a normal form if b - a for some normal
form a € A.

The reduction relation — 1s weakly normalizing (WN) if every a € A
has a normal form. In this case we also say that A i1s WN.

A (or —) is strongly normalizing (SN) if every reduction sequence
ap — a; — --- eventually must terminate. (Other terminology: — is
termanating, or noethertan.) If the converse reduction relation «— is

SN, we say that A (or —) 1s SN,
A (or —) has the unique normal form property (UN) if Va,b € A(a = b
& a,b are normal forms = a = b).

A (or —) has the normal form property (NF) if Va,b € A(a is normal
form & a=b6= b — a).

A (or —) is inductive (Ind) if for every reduction sequence (possibly
infinite) ap — a; — --- there is an @ € A such that a,, — a for all n.

A (or —) 1s increasing (Inc) if there is a map | |: A — N such that
Va,b € A(a — b= |a|<|b|). Here N is the set of natural numbers
with the usual ordering < .

A (or —) is finitely branching (FB) if for all a € A the set of one-step
reducts of a, {b € A | a — b}, is finite. If the converse reduction

