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Preface

We are happy to present the first volumes of the Handbook of Logic in
Computer Science. Logic is now widely recognized to be one of the foun-
dational disciplines of computing and has found applications in virtually
all aspects of the subject, from software engineering and hardware to pro-
gramming language and artificial intelligence. There is a growing need for
an in-depth survey of the application of logic in computer science and Al
The Handbook of Logic in Computer Science and its companion, the Hand-
book of Logic in Artificial Intelligence and Logic Programmaing have been
created in response to this need.

We see the creation of the Handbook as a combination of authoritative
exposition, comprehensive survey, and fundamental research exploring the
underlying unifying themes in the various areas. The intended audience is
graduate students and researchers in the areas of computing and logic, as
well as other people interested in the subject. We assume as background
some mathematical sophistication. Much of the material will also be of
interest to logicians and mathematicians.

The tables of contents of the volumes were finalized after extensive
discussions between handbook authors and second readers. The first two
volumes present the background logic and mathematics extensively used in
computer science. The point of view is application oriented. The other four
volumes present major areas in which the methods are used. These include
Volume 3 — Semantic Structures; Volume 4 — Semantic Modelling; Vol-
ume 5 — Specification and Verification; and Volume 6 -— Logical Methods.

The chapters, which in many cases are of monographic length and scope,
are written with emphasis on possible unifying themes. The chapters have
an overview, introduction, and a main body. A final part is dedicated to
more specialized topics.

Chapters are written by internationally renowned researchers in the
respective areas. The chapters are co-ordinated and their contents were
discussed in joint meetings.

Each chapter has been written using the following procedures:

1. A very detailed table of contents was discussed and co-ordinated at
several meetings between authors and editors of related chapters. The
discussion was in the form of a series of lectures by the authors to
everyone present. Once an agreement was reached on the detailed
table of contents the authors wrote a draft and sent it to the editors
and to other related authors. For each chapter there is a second reader
(the first reader is the author) whose job it has been to scrutinize the



vi Preface

chapter together with the editors. The second reader’s role is very
important and has required effort and serious involvement with the
authors.

Second readers for this volume are:

Chapter 1: Term Rewriting Systems — J.-J. Levy

Chapter 2: Lambda Calculus — R. Hindley

Chapter 3: Algorithmic Proof Systems — R. Milner

Chapter 4: Designing a Theorem Prover — R. Milner

Chapter 5: Modal and Temporal Logics — A. Pneuli and R. Turner.

2. Once this process was completed (i.e. drafts seen and read by a large
enough group of authors), there were other meetings on several chap-
ters in which authors lectured on their chapters and faced the criti-
cism of the editors and audience. The final drafts were prepared after
these meetings.

3. We attached great importance to group effort and co-ordination in the
writing of chapters. The first two parts of each chapter, namely the
Introduction-Overview and Main Body, are not completely under the
discretion of the author, as he/she had to face the general criticism
of all the other authors. Only the third part of the chapter is entirely
for the authors’ own tastes and preferences.

The Handbook meetings were generously financed by OUP, by SERC
contract SO/809/86, by the Department of Computing at Imperial College,
and by several anonymous private donations.

We would like to thank our colleagues, authors, second readers, and
students for their effort and professionalism in producing the manuscripts
for the Handbook. We would particularly like to thank the staff of OUP for
their continued and enthusiastic support, and Mrs Jane Spurr, our OUP
Administrator for her dedication and efficiency.

London The Editors
May 1992
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Abstract

Term rewriting systems (TRSs) play an important role in various areas,
such as abstract data type specifications, implementations of functional
programming languages and automated deduction. In this chapter we in-
troduce several of the basic concepts and facts for TRSs. Specifically, we
discuss abstract reduction systems; general TRSs including an account of
Knuth-Bendix completion and (FE-)unification; orthogonal TRSs and re-
duction strategies; strongly sequential orthogonal TRSs. The paper con-
cludes with a discussion of conditional term rewriting systems. The em-

'Research partially supported by ESPRIT project 432: Meteor (until Sept. 1989)
and ESPRIT BRA projects 3020: Integration and 3074: Semagraph (since July 1989).



2 J. W. Klop

phasis throughout the chapter is on providing information of a syntactic
nature.

1 Introduction

The concept of a term rewriting system (TRS) is paradigmatic for the study
of computational procedures. Already half a century ago, the A-calculus,
probably the most well-known TRS, played a crucial role in mathemat-
ical logic with respect to formalizing the notion of computability; much
later the same TRS figured in the fundamental work of Scott, Plotkin and
others, leading to a break-through in the denotational semantics of pro-
gramming languages. More recently, the related system of combinatory
logic was shown to be a very fruitful tool for the implementation of func-
tional languages. Even more recently another related family of TRSs, that
of categorical combinatory logic, has emerged, ylelding a remarkable con-
nection between concepts from category theory and elementary steps in
machine computations.

Term rewriting systems are attractive because of their simple syntax
and semantics—at least those TRSs that do not involve bound variables
such as A-calculus, but involve the rewriting of terms from a first-order
language. This simplicity facilitates a satisfactory mathematical analysis.
On the other hand they provide a natural medium for implementing com-
putations, and in principle even for parallel computations. This feature
makes TRSs interesting for the design of parallel reduction machines.

Another field where TRSs play a fundamental role concerns the anal-
ysis and implementation of abstract data type specifications (consistency
properties, computability theory, decidability of word problems, theorem
proving).

The aim of the present paper is to give an introduction to several key
concepts in the theory of term rewriting, providing where possible some
of the details. At various places some ‘exercises’ are included. These con-
tain additional information for which proofs are relatively easy; they are
not primarily meant to have an educational purpose, if only because the
distribution of the exercises is not very uniform.

The present introduction starts at a level of ‘rewriting’ which i1s as
abstract as possible and proceeds by considering term rewriting systems
which have ever more ‘structure’. Thus we start with abstract reduction
systems, which are no more than sets equipped with some binary (‘rewrite’)
relations. A number of basic properties and facts can already be stated on
this level.

Subsequently, the abstract reductions are specialized to reductions (re-
writings) of terms. For such general TRSs a key issue is to prove the
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termination property; we present one of the major and most powerful ter-
mination proof methods, recursive path orderings, in a new formulation
designed to facilitate human understanding (rather than practical imple-
mentation). Proving termination is of great importance in the area of
Knuth-Bendix completions. Here one is concerned, given an equational
specification, to construct a TRS which is both confluent and terminat-
ing and which proves the same equations as the original specification. If
the construction is successful, it yields a positive solution to the validity
problem of the original equational specification. (Nowadays there are also
several other applications of Knuth-Bendix-like completion methods, such
as ‘inductionless induction’ and ‘computing with equations’. For a survey
of such applications we refer to [Dershowitz and Jouannaud, 1990).)

Also in Section 2, we explain the basic ideas of Knuth-Bendix comple-
tion together with an interesting recent ‘abstract’ approach of [Bachmair
et al., 1986] to prove the correctness of Knuth-Bendix completion algo-
rithms. We also present an elegant unification algorithm, and likewise for
‘ E-unification’.

In Section 3 we impose more ‘structure’ on TRSs, in the form of an
‘orthogonality’ requirement (non-ambiguity and left-linearity). For such
orthogonal TRSs a sizeable amount of theory has been developed, both syn-
tactically and semantically. Here we will almost exclusively be concerned
with the syntactical aspects; for semantical aspects we refer to [Boudol,
1985], [Berry and Lévy, 1979] , [Guessarian, 1981]. Basic theorems (conflu-
ence, the parallel moves lemma, Church’s theorem, O’Donnell’s theorem)
are presented, where possible with some proof sketch. Also in this sec-
tion we survey the most important facts concerning reduction strategies
for orthogonal TRSs, strategies aiming at finding normal forms whenever
possible. Section 3 concludes with an explanation of the beautiful theory
of [Huet and Lévy, 1979] of (strongly) sequential TRSs. Such TRSs possess
a ‘good’ reduction strategy.

In the final section (4) we consider TRSs with conditional rewrite rules.

Some 1mportant topics have not found their way into this introduction.
Most notable are: rewriting modulo a set of equations, proof-by-consistency
procedures, and graph rewriting. For information about the first two we
refer to [Bachmair, 1988] and [Dershowitz and Jouannaud, 1990] (1990),
for graph rewriting one may consult [Barendregt et al., 1987].

This chapter is an extension of the short survey/tutorial [Klop, 1987];
also most of the material 1n [Klr.}p, 1985] is included here.
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2 Abstract reduction systems

Many of the basic definitions for and properties of term rewriting systeins
(TRSs) can be stated more abstractly, viz. for sets equipped with one
or more binary relations. As it 1s instructive to see which definitions and
properties depend on the term structure and which are more basic, we start
with a section about abstract reduction systems. Moreover, the concepts
and properties of abstract reduction systems also apply to other rewrite
systems than TRSs, such as string rewrite systems (Thue systems), tree
rewrite systems, graph grammars. First we present a sequence of simple
definitions.

Definition 2.0.1.

1. An abstract reduction system (ARS) is a structure A = (4, (—,)acrs)
consisting of a set 4 and a sequence of binary relations —, on A,
also called reduction or rewrite relations. Sometimes we will refer to
— o as «. In the case of just one reduction relation, we also use —
without more. (An ARS with just one reduction relation is called a
‘replacement system’ in [Staples, 1975], and a ‘transformation system’
in [Jantzen, 1988].) If for a,b € A we have (a,b) € —,, we write
a —4 b and call b a one-step («-)reduct of a.

2. The transitive reflexive closure of —, is written as —,. (More cus-
tomary is the notation — . but we prefer the double arrow notation
as we find it more convenient in diagrams.) So a —», b if there is a
possibly empty, finite sequence of ‘reduction steps’ a = ay —, a; —,

—4 @, = b. Here = denotes identity of elements of A. The
element b is called an (a-)reduct of a. The equivalence relation gen-
erated by —, 1s =, also called the convertibility relation generated
by —,. The reflexive closure of —, is —-. The transitive closure of
—4 1s —2. The converse relation of —, is «, or —-'. The union
— o U —3 1s denoted by —,3 . The composition —, o — 3 is defined
by: a -4 0 —gbif a —, ¢ —4 b for some ¢ € A.

3. If a, 3 are reduction relations on A, we say that a commutes weakly
with 3 if the diagram of Figure 2.1a holds, i.e. if Va,b,c € A 3d €
A(c <3 a =4 b= c —»,d«pb), or in a shorter notation: « g
© =4 € —», o «g . Further, a commutes with g if -, and —3
commute weakly. (This terminology differs from that of [Bachmair
and Dershowitz, 1986), where o commutes with 3 ifa—lo3 C 3! oc.)

4. The reduction relation — is called weakly confluent or weakly Church-
Rosser (WCR) if it is weakly self-commuting (see Figure 2.1b), i.e. if
Va,bc€ Add€ A(c—a— b= ¢ —»d« b). (The property WCR
is also often called ‘local confluence’, e.g. in [Jantzen, 1988].)
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— is subcommutative (notation WCRS!) if the diagram in Figure 2.1¢
holds, i.e. if Va,b,c€ Add€ A(c—a—b=c—=d—=b).

— 1s confluent or 1s Church—Rosser, has the Church-Rosser property
(CR) if it is self-commuting (see Figure 2.1d), 1.e. VYa,b,c € A 3Jd €
A(c«a—» b= c—»d«b). Sometimes (6) is called ‘confluent’ and
the situation as in Proposition 2.0.2(6) ‘Church-Rosser’.

Proposition 2.0.2. The following are equivalent:

e

(g |

— 1s confluent

— 1s weakly confluent
—» 15 self-commuting
—» 1s subcommutative

the diagram in Figure 2.1e holds, 1.e.
Va,bce A3de A(c+—a—»b=c¢c—»d« D)

Va,be Adee A(a=b= a—» ¢« b) (Here ‘=" is the convertibility
relation generated by —. See diagram in Figure 2.1f.)

Definition 2.0.3. Let A= (4, —) be an ARS.

1.

g |

=]

We say that a € A is a normal form if there 1s no b € A such that
a — b. Further, b € A has a normal form if b - a for some normal
form a € A.

The reduction relation — 1s weakly normalizing (WN) if every a € A
has a normal form. In this case we also say that A i1s WN.

A (or —) is strongly normalizing (SN) if every reduction sequence
ap — a; — --- eventually must terminate. (Other terminology: — is
termanating, or noethertan.) If the converse reduction relation «— is

SN, we say that A (or —) 1s SN,
A (or —) has the unique normal form property (UN) if Va,b € A(a = b
& a,b are normal forms = a = b).

A (or —) has the normal form property (NF) if Va,b € A(a is normal
form & a=b6= b — a).

A (or —) is inductive (Ind) if for every reduction sequence (possibly
infinite) ap — a; — --- there is an @ € A such that a,, — a for all n.

A (or —) 1s increasing (Inc) if there is a map | |: A — N such that
Va,b € A(a — b= |a|<|b|). Here N is the set of natural numbers
with the usual ordering < .

A (or —) is finitely branching (FB) if for all a € A the set of one-step
reducts of a, {b € A | a — b}, is finite. If the converse reduction



