

'T"’/T,"Z 0 l"" !/‘ ’v: 9 i ,‘ /’? ;E: 7

Edited by

Gérard Huet
Directeur de Recherche, INRIA-Rocquencourt

Gordon Plotkin
Professor of Theoretical Computer Science
Unwersity of Edinburgh

AARAAMRA

E9461667

CAMBRIDGE
UNIVERSITY PRESS

Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP

40 West 20th Street, New York, NY 10011, USA

10 Stamford Road, Oakleigh, Melbourne 3166, Australia

(© Cambridge University Press 1993
First Published 1993

Printed in Great Britain at the University Press, Cambridge

Library of Congress cataloguing in publication data available
British Library cataloguing in publication data available

ISBN 0 521 43312 6

LOGICAL ENVIRONMENTS

Preface

This book is a selection of papers presented at the second annual Workshop
held under the auspices of the ESPRIT Basic Research Action 3245, “Logical
Frameworks: Design, Implementation and Experiment.” It took place in Edin-
burgh, Scotland from the 19th to the 24th of May, 1991. Ninety-three people
attended the Workshop.

We thank the European Community for the funding which made the Work-
shop possible. We also thank George Cleland and Monika Lekuse who looked
after local arrangements, and Claire Jones who put together the prelimi-
nary proceedings as an electronic document. Finally, we thank the following
researchers who acted as referees: G. Bellin, R. Constable, S. Berardi,
Y. Bertot, L. Danos, G. Dowek, H. Geuvers, R. Harper, C. Jones, D. Kesner,
J. W. Klop, Y. Lafont, Z. Luo, D. Miller, C. Murthy, T. Nipkow, M. Parigot,
C. Paulin-Mohring, R. Pollack, D. Pym, D. Sangiorgi, D. Sannella, P. Scott,
I. Smith, and B. Werner.

This volume is a follow-up to the book “Logical Frameworks,” which we
previously edited, and which was published by Cambridge University Press in
1991.

G. Huet, INRIA-Rocquencourt
G. Plotkin, Edinburgh University

Introduction

The topic of this book lies at the frontier of Mathematical Logic and Computer
Science. That Computer Science needs Logic has been well-understood from
the very beginning of the subject: we speak of the “logic” of a circuit, alluding
to propositional logic as the foundation of one level of hardware description.
Software needs more expressive logics in order to describe recursive programs,
for they are descriptions of potentially infinite state transition systems. More
sophisticated descriptive formalisms, i.e. high-level programming languages,
need still more sophisticated logics, able to formalise much of constructive
mathematics. One then speaks of specification languages, of mathematical
semantics, of logics of concurrency, and so on. Thus in the last twenty years
the software revolution has resulted in the creation of a major application area
for Mathematical Logic.

That Logic needs Computer Science became apparent as a consequence of
the heavy use of logic in computer science. The need for software verification
generated a need for the automation of large formal proofs. Sophisticated algo-
rithms for deciding propositional calculus, or semi-deciding predicate logic, had
to be designed and implemented. A whole new field emerged, called variously
Automated Deduction or Computational Logic. The search for complete and
efficient algorithms for pattern-matching, for equation solving (unification),
for proof synthesis (resolution), for reasoning with equalities (rewriting), for
organizing libraries of mathematical knowledge (modules), gave new direction
and applicability to the field of Proof Theory.

The convergence of efforts between Logic and Computer Science was partic-
ularly motivated by the discovery that a fundamental structure of proof theory,
namely that of natural deduction trees, is isomorphic to a fundamental struc-
ture of functional programming languages, namely the typed A-calculus. This
isomorphism — called the Curry-lloward correspondence — associates types
to logical propositions, and expressions of the typed A-calculus to constructive
proofs. It suggests that the foundations of software design fall within a very
general programme of constructive mathematics.

A flurry of new logics arose from the modelling of computational paradigms
— dynamic logics, modal logics, temporal logics, linear logics, logics of com-
putable functions and other logics of partial objects. These, in their turn,
provoked a flurry of inference systems, proof search algorithms, and theorem-
proving implementations. However, many basic problems are common to all
such formalisms, and it was judged a waste of energy to duplicate efforts which

X

X Introduction

could be treated generically. It must be understood here that the implemen-
tation of a robust theorem prover such as HOL (the Cambridge Higher Order
Logic system) or the Boycr-Moore theorem prover is a titanic software en-
deavour, requiring ycars of development by skilled programmers with a deep
understanding of the underlying theoretical issues.

This problem of genericity may be attacked from two different angles. The
first one is to choose an extremely general formal system, such as Set Theory,
and to axiomatise in it the relevant theory. This is basically the approach
chosen in the Automath project, in Martin-Lof’s type theory (or such variants
as in the systems Nuprl or ALF), and in the Calculus of Constructions (or
variants such as those in the systems Coq or LEGO). The second one is to
build-in the specific logic not as axioms in a very general language, but rather
as rules in a general formalism called a “Logical Framework.” Typical examples
of this second approach are the Edinburgh Logical Framework (ELF), the
Isabelle proof assistant, and the A-PROLOG language. Both approaches have
their advantages. The second permits a finer control of the encoding of the
specific logic by the general metalogic, allowing, for example, the proof of
conservativity results.

In 1989 the main European research teams working on generic proof systems
formed a common consortium in the ESPRIT Basic Research program, entitled
“Logical Frameworks.” The first general workshop of this action was organised
in May 1990 in Sophia-Antipolis, in the south of France. A selection of the
papers presented at this workshop were edited as a book, also called Logical
Frameworks. The second gencral workshop was organised in Edinburgh in
May 1991; the present book offers a selection of the papers presented there.
The title “Logical Environments” reflects a general awareness that, despite
minor differences, the community now agrees on the general form of logical
frameworks: most proposed such frameworks can be presented uniformly as a
Generalised Type System, or GTS for short, i.e. as a kind of typed A-calculus.
But there remains much to do as regards the general design of a proof assistant
helping the user to manage large proofs interactively. For instance, we need
a flexible facility for manipulating definitions. But when definitions should be
expanded is largely a research problem. Similarly, we need a general language
in which to describe proof developments in a modular fashion. We also need to
develop large libraries of mathematical facts, such as basic theorems concerning
the usual data structures of programming. Many such issues are tackled in the
papers constituting this volume. These have been arranged according to four
themes.

The first theme concerns the general problem of representing formal systems
in logical frameworks. In the first paper, “Metalogical Frameworks,” David A.
Basin and Robert L. Constable present their view of the general architecture
of a proof assistant, and in particular of the respective positions of the imple-
mentation language of the prover, the meta-language in which proof tactics are
written, and the extraction language which underlies the constructive nature
of proofs. They also discuss the respective role of the object logic, imple-

Introduction xi

mented by the prover, and of the programming logic, used for reasoning about
the correctness of the implementation. They describe a coherent architecture
in which the metalogic is primary, and is sufficiently powerful to encode all
the relevant meta-reasoning, such as proving that an internal simplification
routine is correct and always terminates. In the second paper, “Encoding of
data types in Pure Construction Calculus: a semantic justification,” Stefano
Berardi presents a uniform encoding of data types in the pure Construction
Calculus, together with a semantic justification. This work gives a general
solution to the problem of axiomatising mathematical structures using the
Berarducci-Bohm encoding ol data types in the polymorphic A-calculus. S.
Berardi shows that first-order program properties do not introduce paradoxes.
The semantic justification uses a model for the Calculus of Constructions, built
using partial equivalence relations.

In the third paper of this section, “Experience with F'Sy as a Framework
Theory,” Sean Matthews, Alan Smaill and David Basin present experiments
in using F'Sy as a Framework Theory. The formalism F'S; is due to Solomon
Feferman, and provides general means for the description of primitive recur-
sive algorithms on recursively defined data structures. As such, it is strongly
related to LISP-like computations on S-expressions. The authors describe an
experiment using F'.Sy to axiomatise operations on formulas. They give a so-
lution to the thorny problem of manipulating expressions containing bound
variables, without resorting to codings (such as de Bruijn’s indices), and with-
out the need to quotient all operations by a complicated renaming congruence
(a-conversion). The last paper of this section, “Logical Support for Modulari-
sation,” is by Razvan Diaconescu, Joseph Goguen and Petros Stefaneas. This
paper studies some properties of logical systems that support the definition,
combination, parameterisation and reuse of modules. Rather than using a type
theory to represent the syntactic structure of logics, the authors make use of
the framework of institutions. I'hese are an abstraction of Tarski’s seman-
tic definition of truth based on a relation of satisfaction between models and
sentences.

The second theme concerns basic algorithms of general use in proof assis-
tants. The first paper, “Algorithmic definition of lambda-typed lambda calcu-
lus,” is by N. G. de Bruijn, the pioneer of Automath, which may justly qualify
as the first logical framework. He presents an algorithmic definition of the
A-typed A-calculus AA, which is the underlying formal structure of Automath
terms. A complete type-checking algorithm is presented in detail for the first
time in the literature.The correctness and complexity of the various algorithms
presented in the paper are discussed. In the next paper, “A Canonical Cal-
culus of Residuals,” Yves Bertot gives a general methodology for tracing, for
every substructure of a proof term, the justification for its construction. This
method is based on a generalisation of the notion of residual, from A-calculus
theory. This mechanism gives a uniform way to explain to the user why a
particular proof succeeds or fails. It can thus be considered an essential tool
for debugging proof developments.

xii Introduction

In the last paper of this section, “Order-Sorted Polymorphism in Isabelle,”
Tobias Nipkow describes the algorithm actually implemented in the Isabelle
proof assistant for type-checking. This combines the kind of genericity present
in polymorphic programming languages, such as ML, with the kind of over-
loading present in systems describing subclasses of objects in a hierarchy, in
the tradition of object-oriented formalisms. It uses the theory of order-sorted
algebras. The author discusses why this generic mechanism is essential in using
Isabelle as a meta-logic.

The third theme is concerned with various logical issues. In the first paper,
“An Interpretation of Kleene’s Slash in Type Theory,” Jan Smith transfers
Kleene’s slash operation from intuitionistic logic to type theory — particularly
Martin-Lo6f’s intensional type theory. This gives conditions for a typeable term
containing free variables to have a normal form beginning with a constructor;
for closed terms one essentially obtains Tait’s computability method. In the
second paper, “Inductive Data Types: Well-orderings Revisited,” Healfdene
Goguen and Zhaohui Luo discuss inductive data types in the framework of
intensional type theory. It is shown that a large class of inductive data types
may be faithfully represented in the system, completed by a type of well-
ordered trees (W-types), provided a number of so-called “filling-up” equality
rules are added. The consequences for the meta-theoretic analysis of such
systems are discussed.

The last three papers consider how to extract constructive content from clas-
sical proofs. Well-known indirect methods make use of logical results trans-
lating classical proofs to constructive ones. The challenge is to extract the
constructive content directly from the classical proofs, and obtain practically
executable algorithms. In the first paper, “Witness Extraction in Classical
Logic through Normalization,” Franco Barbanera and Stefano Berard; carry
out this programme for Kreisel’s result that any Y9-formula provable in clas-
sical logic is also provable in intuitionistic logic. The authors’ method is to
make use of (their generalisation of) Prawitz’ work on strong normalisation
for reduction rules for certain systems of classical logic. These rules can be
applied to extract the needed witnesses of existential statements. It is partic-
ularly noteworthy that the system of rules is non-confluent, unlike the case of
intuitionistic logic.

The second paper, “Finding the Answers in Classical Proofs: A Unifying
Framework,” is by Chetan Murthy. The paper uses continuations to provide a
uniform treatment of various methods for extracting computational informa-
tion from classical proofs. In particular, Murthy treats in this way the work
of Barbanera and Berardi, peviously described. In the third paper, “Church-
Rosser Property in Classical Free Deduction,” Michel Parigot presents free de-
duction, which is a deduction system for classical logic. This possesses a global
cut-elimination procedure. By imposing a choice of “input” for each formula
(on the left or the right) cut elimination becomes confluent, and strongly nor-
malising. This can be considered as a first step towards using free deduction
as a mechanism for computing with classical proofs.

Introduction xiil

The fourth and final theme concerns large-scale experiments with proof as-
sistants. In the first paper, “Completing the Rationals and Metric Spaces
in LEGO,” Claire Jones presents the proof development of the completion of
rationals and metric spaces in the LEGO proof assistant. This large proof
development, which is motivated by the development of constructive anal-
ysis in the Bishop-Stolzenberg style, uncovered certain difficulties with the
management of a large library of mathematical definitions and lemmas. The
development discusses interesting issues of representation of mathematical no-
tions such as collections of intervals. The second paper, “A Machine Checked
Proof that Ackermann’s Function is not Primitive Recursive,” is by Nora Szasz.
The proof was written in Martin-L6f’s type theory and carried out using the
Goteborg system ALF (Another Logical Framework). As often happens, the
process of formalisation necessitates choice of representations of mathematical
structures, and decisions on proof structure. Here N. Szasz presents a care-
ful discussion of such matters as the treatment of inductive definitions and
abstract specification as a way of modularising proofs.

Contents

Preface
Introduction

1. Representing Formal Systems in Logical Frameworks
Metalogical Frameworks
David A. Basin and Robert L. Constable

Encoding of data types in Pure Construction Calculus:
a semantic justification

Stefano Berardi

Experience with F'Sy as a Framework Theory
Sean Matthews, Alan Smaill and David Basin

Logical Support for Modularisation
Rdzvan Diaconescu, Joseph Goguen and Petros Stefaneas
2. Algorithms for Logical Environments

Algorithmic definition of lambda-typed lambda calculus
N. G. de Brugjn

A Canonical Calculus of Residuals
Yves Bertot

Order-Sorted Polymorphism in Isabelle

Tobias Nipkow

3. Logical Issues

An Interpretation of Kleene’s Slash in Type Theory
Jan Smith

Inductive Data Types: Well-orderings Revisited
Healfdene Goguen and Zhaohui Luo

Witness Extraction in Classical Logic through Normalization
Franco Barbanera and Stefano Berardi

Finding the Answers in Classical Proofs:

A Unifying Framework

Chetan R. Murthy

Church-Rosser Property in Classical IFree Deduction
Michel Parigot

vii

1X

30

61

83
131

131

146

164
189

189

198

219

247

273

viii Contents

4. Experiments 297
Completing the Rationals and Metric Spaces in LEGO
Claire Jones 297

A Machine Checked Proof that Ackermann’s Function
is not Primitive Recursive

Nora Szasz 317

Metalogical Frameworks

David A. Basin

Max-Planck-Institut fiir Informatik, Saarbriicken, Germany

Robert L. Constable
Cornell University, Ithaca, NY, USA

Abstract

In computer science we speak of implementing a logic; this is done
in a programming language, such as Lisp, called here the implemen-
tation language. We also reason about the logic, as in understanding
how to search for proofs; these arguments are expressed in the meta-
language and conducted in the metalogic of the object language being
implemented. We also reason about the implementation itself, say to
know it is correct; this is done in a programming logic. How do all these
logics relate? This paper considers that question and more.

We show that by taking the view that the metalogic is primary,
these other parts are related in standard ways. The metalogic should
be suitably rich so that the object logic can be presented as an abstract
data type, and it must be suitably computational (or constructive) so
that an instance of that type is an implementation. The data type
abstractly encodes all that is relevant for metareasoning, i.e., not only
the term constructing functions but also the principles for reasoning
about terms and computing with them.

Our work can also be seen as an approach to the task of finding a
generic way to present logics and their implementations, which is for ex-
ample the goal of the Edinburgh Logical Frameworks (ELF) effort. This
approach extends well beyond proof-construction and includes compu-
tational metatheory as well.

Introduction

Role of Logical Frameworks and Formalized Meta-

mathematics

At one time logic seemed to be a finished subject, and computers, like radio
telescopes and linear accelerators, seemed to be the tools of big science. Now
computers are ubiquitous and their software systems have brought logics to
life. We see limitless expansion in both domains with computers destined to

1

2 Metalogical Frameworks

play a part in nearly every aspect of life and the logics of their systems needed
to bring order and sense to this activity and provide a basis for realizing
ever bolder dreams. This is a new role for logic and with it come new tasks
and problems; this paper is about some of them, especially those that fall to
computer scientists to address. Let us be more specific about this new role for
logic and put these tasks in context, starting with the most familiar.

The first generation of software systems were brought under control with the
development of automata theory, formal languages, and programming logics.
Modern compilers are built with tools and techniques based on a deep un-
derstanding of parsing and compilation, and the methods of rigorous program
development make it possible to achieve high levels of reliability for a range of
specifiable programs.

Now the field seeks to do more and to carry the techniques forward into more
imaginative systems which have formal logics as components. For instance
there will be programming languages with type systems that are equivalent
to logics, and the type checkers will be little theorem provers (maybe even
big ones). There will be formal specification languages and program verifiers
both based on a formal logic of some kind. There will be systems that support
program synthesis and hardware synthesis. There will be more experimental
systems such as programmer’s assistants. In all of these systems formal logic
is playing its new role. Moreover, there will be many different logics and many
different implementations of each. So as in the case of compiler construction,
there will be an industry for building and modifying the implemented logics.

Thus far, there are few tools designed specifically to support the activity of
implementing logics. So systems are built from scratch using tools intended
for other purposes. What is wanting is a framework for designing these logics
and supplying the generic tools. This is one of the main goals of research in
logical frameworks.

Another way to approach the topic of this paper is to consider the activity
of generating formal mathematics, as pioneered by the project of Automath
[11]. This has been taken up with considerable energy in computer science
because it is seen as an integral part of some of the new kinds of systems
mentioned above and because it is related to concerns in Al and programming.
One of the subjects that is most promising to formalize is metamathematics,
in part because the results of that work feed back directly to the task of
generating formal theorems. In the context of formalizing metamathematics,
we are confronted with many of the same questions facing the designer of a
logical framework. This paper considers why this is so. Moreover we claim
that the vantage point of formalized metamathematics is a good way to look
at the task of logical frameworks, and we advocate its primacy, hence the title
of the paper.

Scientists actually doing formal mathematics have come to understand the
importance of metareasoning from experience. They quickly saw that nearly
all informal mathematics is a mixture of object theory and metatheory. The
work of Howe [27], comes to our minds in this connection. Also the style of

David A. Basin and Robert L. Constable 3

automating reasoning via tactics involves programming in a metalanguage, and
if one applies the methodology of programming systems based on the proofs-as-
programs principle, such as Nuprl [15] and the Calculus of Constructions (CoC)
[17], then many of these tactics should be extracted from metatheorems. A
great deal of work has been done in this direction at Cornell [30, 26, 3]. Also
even if the proofs-as-programs principle is not underlying the programming
style, it has been widely noticed that substantial economies in proof generation
are possible if tactics are replaced by the metatheorems that they implement.

The key component in an implemented logic is usually the inference en-
gine, and our starting point is the observation that the systems will need ways
to modify and progressively enhance it. Our response to the situation is to
conjecture that the problems of understanding, specifying and modifying the
inference engine are best dealt with in the framework of a formalized meta-
logic. It will be important to reason about the object logic (the one being
implemented) in a very expressive metalogic.

1.2 Conceptual Issues

Logicians have been concerned for years with treating their subject more ab-
stractly and generally. The elementary formal systems of Smullyan were an
attempt to characterize the deductive machinery of Principia Mathematica,
and lately Feferman has proposed more usable formalisms [22, 21] such as
F'Sp. There are abstract semantic characterizations of logic [5, 6] and the the-
orem of Lindstrom in abstract model theory characterizing first-order logics.
There are other efforts along these lines such as [2].

The work of logicians deals with many of the issues central to the problem
of logical frameworks such as what is a logic and what are the different ways
to present them. Their concern for the most general setting for major results
such as Godel’s theorems or Lob’s theorem is directly germane to the task
of formalizing metamathematics. But some of the issues faced in defining
a logical framework and formalizing mathematics on a machine are new. For
example, how should bound variables be represented? How can a sequent based
proof economize on storage? What is the best way to realize computational
content? What is the essential difference between sequent style proofs and
natural deduction style, and does it apply to all logics?

Inevitably discoveries about logical frameworks will contribute to a concep-
tual understanding of logic. From the vantage point of this paper we see that
the efforts to formalize metamathematics will contribute as well. This might
not be so obvious a priori.

1.3 Results

Beyond advocating the primacy of metalogic this paper contributes some spe-
cific technical results. We propose a particular way to specify logics, namely
using types that one might call higher-order abstract data types or ADT’s for

4 Metalogical Frameworks

this paper. We show that an implementation of a logic can be seen then as
an instance of the abstract data type. There are many interesting connections
between these types and other approaches to data abstraction in type theory
and programming languages.

We also look at constructive metatheory in action and illustrate by example
why a framework for automating logic will want access to the results of for-
malized metamathematics. This practical need is remarkably congruent to the
philosophical stance adopted by the first metamathematicians who used fini-
tist or constructivist metatheories. This historical accident means that there
is a deep literature of informal implicitly computational metatheory to draw
on as well the explicitly computational results of modern computer scientists
such as unification, resolution, term rewriting, and the like, and moreover that
formalizing these results makes them clearer and more general, thus fulfilling
the promise of formalized mathematics. Indeed given the deep literature in
proof theory, there is much to be done in this vein to bring it to life and make
it available to applied logicians. But also new kinds of metamathematical re-
sult are needed in reasoning about implemented logics, and we mention some
of them as well.

We show that by taking a rich constructive metalogic as the basis for a logical
framework, the context becomes simpler and the relationship between the con-
cerns of logical frameworks and those of the formal metamathematics stands
out. Finally, rather than choosing a specific metalogic which is adequate, such
as Nuprl or CoC, we talk about the requirements for such a theory.

2 Data Abstraction in Type Theory

In this section, we provide a brief account of data abstraction within type the-
ory. Our notion of data abstraction has similarities to two standard techniques
used to define data within type theories; these are the techniques of defining
data-types within minimal type theories such as CoC, and the definition of
ADTs as X-types within predicative type theories.

Within type theories such as the CoC standard data-types (e.g., pairing,
lists, etc.) are encoded by inductive definitions. These data-types are specified
by:

e naming a set (type) that members will inhabit;

e giving function constants (and their types) for constructing members of
the set;

e providing rules for reasoning about type members and functions defined
over them.

These declarations can be seen as capturing the rules for type formation, in-
troduction and elimination (right/left rules), and computation. In theorem

David A. Basin and Robert L. Constable 5

LIST = A:Type —

List : Type

Nil:List

Cons : A — List — List

Lind: P:(List — Type) — I: List — P(Nil)

— (h:A — t:List — P(t) — P(Cons(h,t))) — P(l)

P:(List — Type) — 1:List — g: P(Nil) — i:(h: A — t: List — P(t) —
P(Cons(h,t))) — Lind(P,Nil,g,i) = g
AVh:A.Vt:List. Lind(P,Cons(h,t),g,7) = i(h,t, Lind(P,t, g,1))

MSET = A:Type —
MSet:Type
Empty: MSet
Add: A — MSet — MSet
Va,b:A.Vs: MSet. Add(a, Add(b,s)) = Add(b, Add(a, s))
Mind: P:(MSet — Type) — |: MSet — P(Empty)
— {i:(a: A — s: MSet — P(s) — P(Add(a, s))) |
Va,b:A.Vs: MSet.Vp: P(s).i(a, Add(b, s),i(b, s, p)) = i(b, Add(a, 5),i(a, s, p))}
— P(1)
P:(MSet — Type) — l:MSet — g: P(Empty)
—i:{i:(a:A — s: MSet — P(s) — P(Add(a, s))) |
Va,b:A.Vs: MSet.Vp: P(s).i(a, Add(b,s),i(b, s, p)) = i(b, Add(a, s),i(a, s,p))}
— Mind(P, Empty,g,i) =g
AVa:A.Vs:MSet. Mind(P, Add(a,s),g,%) = i(a,s, Mind(P, s, g,i))

Figure 1: List and Multi-set ADT

provers for CoC such as LEGO [12] these declarations are made within a con-
tezt, and one reasons within the scope of these declarations.

When a type theory is enriched with ¥-types, a second approach is possible
whereby the declarations of the ADT are packaged together with a (iterated)
L-type; theorems are then proved within the context of these types. This
has the conceptual advantage of unifying the data-type definition into a single
type and the practical advantage of allowing parameterization of one ADT
by another. It can also be seen as a natural generalization of signatures in
ML, Extended ML [44], and other languages implementing data-abstraction
using dependent types and is also related to the ideas of Bauer and his group at
Munich on nonfree algebraic types [9]. This is the approach we shall take. One
complication is that such modularization requires predicative quantification
and hence a type hierarchy. For simplicity, we shall use the first universe of
types (which we call T'ype) as the type of ADT parameters and set carriers.

Figure 1 contains two examples of ADTs: parameterized lists and finite
multi-sets (sometimes called “bags”). Members of the LIST type are func-
tions: when applied to a parameter type A, they return a tuple in which the
first projection, the carrier of the ADT, is the type of lists over A whose mem-
bers are built from the functions inhabiting the Nil and Cons projections.
The multi-set ADT is similar except for the defined carrier equality and the

