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PREFACE

Without the ability to record its results, neither a science nor even a
civilization could make progress. This book teaches a method for
recording specifications and designs of computer systems.

Two major problems exist with the production of computer programs
(i.e. software). Firstly the created programs are frequently not
satisfactory to the people who have to use them and secondly their
production is too costly. Newspaper stories of the effects of computer
errors are myriad. Programmers are only too aware of the human
contribution to these errors. The problem of the productivity of the
development of computer systems is also linked to errors. Errors which
are made in the specification or early design stages are frequently
uncovered late in the development cycle and result in enormous
correction costs. Even this does not express the full dissatisfaction with
computer programs. There is another major problem in that the systems

" created are often unnecessarily difficult to use.

The computer industry faces a crisis which has been created by its
success. More and more powerful systems are demanded as industry puts
greater reliance on computers. In order to be able to produce such
systems, new development methods must be employed.

This book is intended for a course which will bring the results of
computer science into software development practice. The pre-requisites
are simple. Some programming experience is necessary. Furthermore,
the reader is assumed to have made errors in his programs and to be
dissatisfied with this state of affairs. The programs presented in this
book are written in the PL/I language. But, for the majority of the
examples, the language constructs which are used are common to nearly
all languages. No previous exposure to formal methods is assumed. The
book is self-contained in that all required notation is taught.

The ideas covered in this book can be considered under the headings
of specification and design. The techniques for recording specifications
in a precise and concise way have enabled the author and his colleagues
to analyze many existing computing concepts and systems. Not only has
this proved to be a powerful way of understanding such systems, but it
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xiv PREFACE

has also facilitated their documentation. However, the ultimate
advantage of such a specification tool is for the design of new systems. If
used in this way, systems will be created whose architecture makes them
much more usable.

For design purposes, a method is taught which permits the coherent
documentation of a design. A record of why each stage of design is
believed to be correct is an integral part of the documentation. For this
reason the design documentation can be reviewed easily and the danger
of errors remaining undetected is almost eliminated.

Webster’s Dictionary defines rigorous as “scrupulously accurate,
precise.” The approach taken here is rigorous: it is intended to be precise
without being completely formal. Thus the aim is to show ways in which
the confidence placed in newly developed software can be drastically
increased. Just as in other engineering disciplines, in order to work
reliably, one must first learn a formal basis. The final rigorous method is
not, however, very mathematical. The crucial point is that, having learnt
the theory, one can safely reason at a rigorous level. What one writes
will fit into a framework and because of this the developer, or others, will
know how to complete the formal details if necessary.

The book is divided into three parts. The first part is devoted to
programs which manipulate numbers. Key techniques are introduced
based on this simple data type. Pre- and post-conditions provide precise
specifications of a program. The development of the control structure of
a program can be put on a firm footing by showing how one can prove
that the specification is met.

The second part of the book concentrates on data structures. Here,
the advantages of documenting programs by using abstract data types are
shown to be precision, conciseness, and manipulability. This material
shows the applicability of the computer science results to data processing
applications. The refinement of such data types onto those available in
programming languages is also covered.

The techniques presented in the first two parts of the book are
collected in the third part into a coherent development method. A
number of examples of the application of this method are given.

Many exercises are included as well as a glossary and appendices
which are to be used as reference material both during and after studying
the text.

The material has been developed in an industrial environment where
it has been taught many times. One pattern in which it has been used is
in two or three week intensive courses. In industry courses, the sections
marked with * are normally omitted. If all of the remaining material is
taught, the students should be able to document both specifications and
design in a precise notation. Another possibility is to concentrate on
specification methods: in this case chapters 5, 6, 11, and the refinement
sections of chapters 12, 14 should also be omitted.

A number of sections have been included (marked *) which make
the material suitable for an M.Sc. course. For such an audience,
references are provided to related literature.
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Chapter 1

INTRODUCTION

Structure of the Book

The body of the book is divided into three parts. Within each part there
are several chapters. Each chapter is broken down into a number of
sections and sub-sections. An overview of the organization is given in fig.
1.

The purpose of part A (chapters 2-6) is to bring the reader to the
point where he can prove programs correct. Since this idea is probably
unfamiliar, it is shown for numerical programs where there are no
additional problems of unfamiliar notation. Thus, apart from the
notation of logic which is being taught, only the familiar algebra (of
numbers) is used.

Part B (chapters 7-16) moves away from numerical algorithmic
problems into techniques which can be shown to apply to data manipulat-
ing problems. This part of the book discusses how abstract data types
can be used in writing specifications and in the development of programs.

These first two parts of the book present the basic techniques; both
parts cover specification and then proof; both parts begin formally and
then develop a less formal (but rigorous) style of proof when enough
practice has been gained to make this safe. Part C (chapters 17-22) fits
the various techniques into an overall systematic approach to program
design and applies the method to a number of problems.

The book is basically self-contained in that all required notation is
taught. Readers who are totally unfamiliar with logic notation would
benefit from studying chapters 1-3 and 14-15 of Lipschutz(64). (This is
the form of reference used throughout the book: the number in brackets
following the first author’s name refers to the year of publication. A
detailed bibliography is given at the end of the book). Four of the
chapters (13, 15, 16, and 18) and a number of sections are marked, in
the table of contents, with an asterisk: these present additional material

S.D.RA. B
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INTRODUCTION

Specification Proof Optional Material

O,
¥
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A 3 *
4 *
5 *
6
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8 *
B 9 *
10
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12 ¥
13
14 *
15
16
C
18
19
/ 20
21
22

Figure 1 Organization

and are not necessary for a comprehension of the main text. Because it
is mainly intended for university use, the optional material is presented in

a more condensed form.



Structure of the Book 3

The programming language PL/I has been used because it is likely
to be familiar to practising programmers. The full language is far from
ideal for program proofs. It is, however, in the spirit of the approach of
this book to try to use a large language in a constrained way and then to
consider the features of the language as required. Here, a subset of PL/I
is used which is simple enough for the reader to have no difficulty in
translating into, say, Pascal.

At the back of the book there is a glossary of technical terms for
reference (terms in this glossary are marked on first reference
thus—predicate). Similarly, appendices are given which include
reference material of use during, and after, reading the book (e.g.
appendix C provides access to a number of definitions which are
developed as examples or exercises). Many exercises are provided since
practice with unfamiliar notation is the only way to gain confidence.
Answers are provided for those exercises which check the reader’s
comprehension of the notation. Most chapters contain a section of
summary exercises—these vary in difficulty but are generally more
complex than those in the body of the chapters.

Background

The overall requirement for a more effective way of developing software
systems is taken for granted here. From the viewpoint of those who wish
to see computers assist in solving their problems, there are two major
problems: software development is both highly error-prone and is
disproportionately costly. The principal bottleneck (both financially and
in terms of time) in implementing computer systems is now the
production of the software.

The above shortcomings are of concern in all computer applications.
As regards freedom from errors, most people would agree that the
requirements on, for example, missile early warning, patient monitoring
or nuclear power station control systems should be as stringent as
possible. Leaving aside such emotive examples one moves into an area
where the penalty for failure is easier to translate into financial terms.
Much of modern business life relies on computers. If the payroll
program fails, it is no longer practical to think in terms of manual
backup. In some industries, the cost of the failure could be a strike and
attendant loss of production. When assessing the cost of a program
failure, such items must be considered as well as expenses related to lost
files or security breaches. ~

Programmers do not usually work in a vacuum. Whoever is paying
the salaries of programmers today has cause for complaint at the cost of
creating programs.

Having identified that a problem exists, the next step towards its
solution is the location of some plausible cause. In the case of software
development, the cause is not hard to find. The scale of the applications



