ClffB.Jones
- Software

Development
A Rigorous Approach

C.A.R. HOARE SERIES EDITOR

8263419

SOFTWARE

DEVELOPMENT: A
RIGOROUS APPROAGH

MIRRERAIN

E8263419

CLIFF B. JONES

IBM ESRI
La Hulpe, Belgium

Prentice,/Hall (488

NNN
OOOOOOOOOOOOOOOOOOOOOOOOOOOO

Library of Congress Cataloguing in Publication Data

JONES, CLIFFORD B 1944 —
Software development.
Bibliography: p.
Includes index.
1. Electronic digital computers — Programming.
L. Title
QA76.6.J66 001.6'42 79-14806
ISBN 0-13-821884-6

British Library Cataloguing in Publication Data

JONES, CLIFFORD
Software development.
1. Programming (Electronic computers)
1. Title
001.6'425 QA76.6
ISBN 0-13-821884-6

© 1980 by PRENTICE-HALL INTERNATIONAL, INC., LONDON

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise,
without the prior permission of Prentice-Hall International, Inc.
London.

ISBN 0-13-821884-6

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA PTY. LTD., Sydney
PRENTICE-HALL OF CANADA, LTD., Toronto
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Dehli
PRENTICE-HALL OF JAPAN, INC., Tokyo

PRENTICE-HALL OF SOUTHEAST ASIA PTE., LTD., Singapore
PRENTICE-HALL INC., Englewood Cliffs, New Jersey
WHITEHALL BOOKS LIMITED, Wellington, New Zealand

12345 8483828180

Printed and bound in Great Britain by
A. Wheaton & Co. Ltd, Exeter

TABLE OF SYMBOLS

Arithmetic and Logical Operators

+ plus, - minus, * multiply, / integer division, ** exponentiation
A and, NV or, = implies, & equivalence, ~ not

A for all, E there exists, E! there exists exactly one

v the unique object

(AxeX)(...) bounded quantification

Set Notation

{} set brackets

{x | p(x)} set of elements such that

x € X is a member

U union, N intersection, - difference, union distributed union
C subset, C proper subset

card cardinality

Bool = {TRUE,FALSE}

Nat = {1,2,..}

Nat0 = {0,1,2,...}

Int = {...-2,-1,0,1,2,...}

List Notation

<> list brackets
hd head, tl tail, len length, (i) indexing,
| | concatenation, elems collect to a set, conc distributed concatenation

Mapping Notation

[1 mapping brackets
dom domain, rng range, (i) application, 1 overwrite, | restrict

PREFACE

Without the ability to record its results, neither a science nor even a
civilization could make progress. This book teaches a method for
recording specifications and designs of computer systems.

Two major problems exist with the production of computer programs
(i.e. software). Firstly the created programs are frequently not
satisfactory to the people who have to use them and secondly their
production is too costly. Newspaper stories of the effects of computer
errors are myriad. Programmers are only too aware of the human
contribution to these errors. The problem of the productivity of the
development of computer systems is also linked to errors. Errors which
are made in the specification or early design stages are frequently
uncovered late in the development cycle and result in enormous
correction costs. Even this does not express the full dissatisfaction with
computer programs. There is another major problem in that the systems

" created are often unnecessarily difficult to use.

The computer industry faces a crisis which has been created by its
success. More and more powerful systems are demanded as industry puts
greater reliance on computers. In order to be able to produce such
systems, new development methods must be employed.

This book is intended for a course which will bring the results of
computer science into software development practice. The pre-requisites
are simple. Some programming experience is necessary. Furthermore,
the reader is assumed to have made errors in his programs and to be
dissatisfied with this state of affairs. The programs presented in this
book are written in the PL/I language. But, for the majority of the
examples, the language constructs which are used are common to nearly
all languages. No previous exposure to formal methods is assumed. The
book is self-contained in that all required notation is taught.

The ideas covered in this book can be considered under the headings
of specification and design. The techniques for recording specifications
in a precise and concise way have enabled the author and his colleagues
to analyze many existing computing concepts and systems. Not only has
this proved to be a powerful way of understanding such systems, but it

Xiii

xiv PREFACE

has also facilitated their documentation. However, the ultimate
advantage of such a specification tool is for the design of new systems. If
used in this way, systems will be created whose architecture makes them
much more usable.

For design purposes, a method is taught which permits the coherent
documentation of a design. A record of why each stage of design is
believed to be correct is an integral part of the documentation. For this
reason the design documentation can be reviewed easily and the danger
of errors remaining undetected is almost eliminated.

Webster’s Dictionary defines rigorous as “scrupulously accurate,
precise.” The approach taken here is rigorous: it is intended to be precise
without being completely formal. Thus the aim is to show ways in which
the confidence placed in newly developed software can be drastically
increased. Just as in other engineering disciplines, in order to work
reliably, one must first learn a formal basis. The final rigorous method is
not, however, very mathematical. The crucial point is that, having learnt
the theory, one can safely reason at a rigorous level. What one writes
will fit into a framework and because of this the developer, or others, will
know how to complete the formal details if necessary.

The book is divided into three parts. The first part is devoted to
programs which manipulate numbers. Key techniques are introduced
based on this simple data type. Pre- and post-conditions provide precise
specifications of a program. The development of the control structure of
a program can be put on a firm footing by showing how one can prove
that the specification is met.

The second part of the book concentrates on data structures. Here,
the advantages of documenting programs by using abstract data types are
shown to be precision, conciseness, and manipulability. This material
shows the applicability of the computer science results to data processing
applications. The refinement of such data types onto those available in
programming languages is also covered.

The techniques presented in the first two parts of the book are
collected in the third part into a coherent development method. A
number of examples of the application of this method are given.

Many exercises are included as well as a glossary and appendices
which are to be used as reference material both during and after studying
the text.

The material has been developed in an industrial environment where
it has been taught many times. One pattern in which it has been used is
in two or three week intensive courses. In industry courses, the sections
marked with * are normally omitted. If all of the remaining material is
taught, the students should be able to document both specifications and
design in a precise notation. Another possibility is to concentrate on
specification methods: in this case chapters 5, 6, 11, and the refinement
sections of chapters 12, 14 should also be omitted.

A number of sections have been included (marked *) which make
the material suitable for an M.Sc. course. For such an audience,
references are provided to related literature.

PREFACE XV

It is a pleasure to be able to acknowledge the help that I have
received with the creation of this book. The current text has evolved over
two years in the courses which I taught at the IBM European Systems
Research Institute—the students there have provided much useful
criticism. In particular Soren Brandt and Andre Fischer checked the
whole text.

The method of production of this book deserves fuller description
elsewhere. 1 should, however, like to express my gratitude to Derek
Andrews, Neal Eisenberg, and Charles Goldfarb without whom it would
have been impossible for me to employ the new technology which was
used to typeset this book.

. My cooperation with Prentice-Hall International has been a pleasure
from beginning to end—I should like to thank Derek Coleman, Ron
Decent, Henry Hirschberg and Tony Hoare for their help and encourage-
ment.

A debt of another kind is that to the sources of the ideas. Much of
the work presented in this book has been developed in conjunction with
my colleagues and friends at the IBM Laboratory Vienna. A continued
source of inspiration and criticism has been the meetings of IFIP
Working Group 2.3.

Examples and exercises have been taken from the works of
P.Henderson, G.Hay, B.Jousset, D.Parnas and P.D.Wright. Permission
to use the cartoon in chapter 1 was granted by the A.L.I. Press Agency,
Brussels.

8263419

CONTENTS

T\

Chapter I INTRODUCTION.. 0. oo b ki) onn.. 1
Structure of the Book \\ ol / 1
Background ,,/’/ 3
Summary 14
SUMMATY BXETCISES « vt v 4 2« 565 55 5 as s v v mmmmie oo mmmmoss 14

Part A PROGRAMS WHICH MANIPULATE NUMBERS....... 17

Chapter 2 SPECIFYING FUNCTIONS. 19
PUNCLIONS : < v v i v s tiee o s s amia oo s mimiee s s mimmie e s waien oo 22
Implicit Specifications. 23
Propositional Operators 27
QUANLITIETS 5w 2 ¢ s mwwsn s s o 9mm e 55 0085 5§53 Basmes s smmo s s o 33
Summary 37
Summary Exercises. 37

Chapter 3 PROOFS ABOUT FUNCTIONS. 38
Unconditional Functions 39
Conditional Functions 43
Recursive Functions 48
¥More Ofl LOZIC, : c v s s wmswossmumesssnmmsis amanssss 57
Summary 61
Summary Exercises. 61

Chapter 4 SPECIFYING PROGRAMS. 62
SEALES. . cmwnms s s @smiE s 55 mmEE s BEAE S BEEE R B S s e 63
Operationst 65
Specifying Operations 66
General Operations 69
SUMMAryo 72
SUMMATY EXEICISES s ¢ 5 v s+ 6 @558 55 5 65 5 o s sommmin s mn 72

Chapter S5 PROOFS IN PROGRAM DEVELOPMENT. 74
Sequential Statements . : : sues s s swmes s s s mmmcs s pEEe 5 0 81
Conditional Statements 89
Iterative Statements, 94

vi : CONTENTS

*More on Iterative Statements

......................... 101

SUMIMATY ¢ 5 5556 5 5 5 5665 5 5 oomn = o s o s smimon e o o mmo - 112
Summary Exercises. 114
Chapter 6§ OTHER ISSUES. . .. ¢ oveivvasinssomanssonnins 115
Documenting Algorithms. 115
*Predicate Transformers 119
Part B DATA TYPES IN PROGRAM DEVELOPMENT 123
Chapter 7 ON DATA TYPES.. 125
ATTAYS & o ittt e e e e e e e e e e 128
Extensions and New Data Types 132
Models of Data Types, 134
SUMMALY : s c s omsnsssssncscsonmesssanbessssnmasesss 135
Chapter 8 SET NOTATION.. 136
INOLALION s w1 s 3 simmp s s s vp s s SmEGE s 8 PMGEEE 3 HBHE 25 D 138
*Inductive Proofson Sets. 144

Use in Specifications 146
Recording Equivalence Relations 149
*Predicatesand Sets oo 154
SUMMATY & ¢ s s ssmn s s s Brwm s s Bamee i 5 SRAEEF s HEEH§ 5 50w 155
Summary Exercises. L i 156
Chapter 9 LIST NOTATION... 157
Notation.ottt e e 157
*Inductive Proofs on LastS = o : c ssssw s s smmmsss sume s s snms 162

Use in Specifications 164
SUMDVALY & » oo o ¢ mimeioi o 8 bibms £ 5 5 Shbs ¢ 5w Bbiss § 5 ookt 171
Summary Exercises. i 17
Chapter 10 DATA TYPE INVARIANTS................... 174
Chapter 11 DATA REFINEMENT. 178
Range of Representations 179
Retrieve Functionsty 181
Adequacy : »oams i s sume i 5 5oEE.s 1 GREEL ¥ I BEEE FF SRAE S 183
Refinement of Operations 185
Summary e 193
Summary EXerciSes s s muw <z ssne s s samus s s upmsms » wwpms s 8 194
Chapter 12 MAPPING NOTATION. 195
Notation. e e 197
Use in Specifications 201
Data Refinement. . oo s o smenwssonmmens s omamsssammesss 205
Recording Equivalence Relations 207
*Arbitrary Sets Modelled on Regular Arrays 212
SUMMATY & o ¢ s s smmuw s umanss s wmomsssnonssssws A 214
Summary Exercises. i 215
Chapter 13 *THEORIES OF DATA TYPES.. 218

Problem Description 219

CONTENTS vii

Forests e 219
Fischer-Galler Algorithm. 221
More about Forests. 226
Cleaning up Forests. 227
RIASS oo s s sanes s ommmps s s REEEs § 90REE s s GRBE s § vaEs 230
Ring Algorithm., 231
SUMMETY & 5 5.5 555 5 5 6 0is 5855 LFEHE 5 Mma s 55 amEm s s %aims 233
Summary Exercises.ttt e 234
Chapter 14 ABSTRACT SYNTAX.........., 235
Notation. e 238
Use in Specifications, 243
*Defining the Abstract Syntax of a Language. 247
*Structural Induction L. L o i oL, 250
Data Refinement: : : suswe:c snwss s snsnmss sannmss nusan 252
SUMMATY . . . oo e e e 254
Summary Exercises. e 256
Chapter 15 *ON BEING SUFFICIENTLY ABSTRACT. 259
Some Alternative Specifications. 259
Implementation Bias L ... 261
Dictionary Example. L i, 262
Difficult Refinement Steps. 264
SUMMATY . . . vttt e e e e et e et et 265
Chapter 16 *IMPLICIT DEFINITION OF DATA TYPES...... 266
Part C THE RIGOROUSMETHODcccivveennn. 271
Chapter 17 OVERVIEW OF THE RIGOROUS METHOD.. 273
A Top-Down View of the Method. 274
Language Support for Abstract Data Types 280
On lInterfaces i, 283
Limitations. ittt e e 283
Chapter 18 *EARLEY’S RECOGNIZER................... 285
Grammars and Parsing 286
SPECIHICAtION s : 5655556 smwim s s 3 IEEW 25 LEBHE & 3 BHEEE s 3 08 290
First Development Step, 292
Second Development Step 295
Third Development Step 296
*Alternative Proof. L L L 301
Fourth Development Step 302
Program 305
Modifications e 305
SUMMATY & ¢ 5 556w s 52 5nse s s smmusss Sumssis gMEs 36 8w0 305
Summary Exercises. i 306
Chapter 19 INPUT/OUTPUT STATEMENTS............... 307
Definition. 307
ProofS. o s s sisms s s s ammus s s mmnms s sommss s S@ussss pens 309

Summary e 312

viii CONTENTS

Summary Exercises. e 313
Chapter 20 JOSEPHUS RINGS.. 314
CITCIES s ssimmn s 55 swmm s 5 6 umma s s Ba@ER s 5 BEEES 5 b 65EE 315
Specification. e 317
Non-Rotation Algorithms 318
Pseudo-Rotation Algorithms. 323
Chapter 21 TELEGRAM ANALYSIS. 325
Henderson’s Specification 325
Abstract Specification. L Lo e 326
First Development Step. 327
Second Development Step 330
SUMMATY 5w 5 s s sme s 5 s@me 58 5GuE s MupEiss o pEsas 332
Summary Exercises. i i 332
Chapter 22 ONDESIGN. 333
Programs and Their Data 333
Anticipating Change . : . v svssssanmissavmsmess samasss 337
Input Independence. 338
Environment Independence 340
SUMMATY . . ottt et e e e e e e e e e et et 340
Appendix A *LANGUAGE DEFINITION. 341
Appendix B DEDUCTION RULES FOR PROOFS.. 344
Decomposition Steps i 344
Data Refinement. 347
Appendix C PROPERTIES OF OPERATORS. 348
Logic Notation - : - : s sewevssanwssssnwansssanssiss was 348
Set Notation.ottt ettt 349
List Notationt iiniiinnnnn.n 350
Mapping Notation. . « c s v s cocssesissanmasssnmnssssnsn 352
Operationsv ittt e 353
Abstract Syntax e e 353
Appendix D *SELECTED DETAILED PROOFS. 354
GLOSSARY. . . e 357
ANSWERS TO SELECTED EXERCISES................... 364
BIBLIOGRAPHY : i commm sz sumuss: s s aumae ¢ oasme s § 5 6auee 371

LIST OF ILLUSTRATIONS

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.

Organization, 2
Theory versus Practice 9
Cartoon 1
The Rigorous Method 13
Requirements for Specifications 20
Parameter Substitution 22
Implicit Function Specification 24
Meaning of Implicit Function Specification 25
Propositional Operators and Their Priority 27
Bounded Quantified Expression33
Proof Structure 40
ABinary Tree 49
Evaluation of Factorial 51
Program for Factorial 63
Implicit Operation Definition 66
Multiplication Program 80
Rules for Sequential Statements 81
Picture of Sequential Statement 82
Rules for Conditional Statements 90
Picture of Conditional Statement 90
Rules for Initialized Iteration (Up) 95
Picture of Initialized Iteration (Up) 96
Rules for Initialized Iteration (Down) 101
Picture of Initialized Iteration (Down) 102
Rules for Simple Iteration (Down) 110
Primes Program 117
Spectrum of Abstraction 124
Bill of Materials 125
Data TYPE s s 0 cwss i 65 556+ 5 viwmon oo omamas s o 127

ix

Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.

LIST OF ILLUSTRATIONS

Rules for DO/BY /TO Iteration
Picture of DO/BY/TO Iteration
Set Operators
Set Operatorsoiiiiiuiunnn.. .. 141
Specification of Students in Classroom Problem

........ 143
Properties of Relations over Integers 151
An Equivalence Relation 153
Recording Equivalence Relations 154
List Operators, 161
Specificationof Stack i, 165
Multiplication Table Viewed as List 166
Specification of Multiplication Table Problem 166
Extended List FUnctions « « « « v v osmmon consnsisss 168
Specification of Students who Complete Exercises Problem 175
Data Type Invariant R 177
Aspects of Stepwise Development 179
Correspondence of List Representation to Sets 181
Representations Viewed under Retrieve Functions 186
Operation Modelling 186
Rules for Proof of Refinement 187
Collections of Operations 188
Refinement of Students in Classroom Problem 189

Mapping for Students’” Whereabouts
Mapping Operatorsouuuunuenneenn.. 200

Specification of Students’ Whereabouts Problem 200
Specification of Equivalence Relation Problem 208
Recording Equivalence Relations 209
Versions of Equivalence Relation Problem 218
AUTTCE! 3.8 2 2 Eehmd e o o @ s o B s o e ol GEERE 8 219
Effect of Operation 222
Equivalence Relation Problem: MaptoKey 223
Alternative Trees0uiiininenn. .. 227
RifiF§ o ciwasins s usssssnnasss s as e s s ssss s «s 230
DO Statement Concrete Syntax 236
AULASE . cnis, 5 i o 3 9 5 B BERS & ASIRE 5 2 & AEEE 2 % FRTE 239
A Two-Level LiSt o s vssmssnmsnmmas sssmesssssms s 240
A Constructed Object 242
Rational NUMDBeELS : ssssssssanesss namsss soemmees 244
Specification of Rational Numbers Problem 245
Abstract Form of Factorial Program 248
Overall View of Rigorous Method 275
The Rigorous Method 275
Creating a Specification 278
RefINEMENt « v s snsmmss s swmn s smmans s o matuss ns 278
Decomposition i 279
Class-like Construct 281
Parsing an English Sentence 286

Grammar for Expressions 286

LIST OF ILLUSTRATIONS xi

Figure 78.
Figure 79.
Figure 80.
Figure 81.
Figure 82.
Figure 83.
Figure 84.
Figure 85.
Figure 86.

Parse Tree of a Logical Expression 289
Primes Example as Input/Output Operations 308
Rules for Sequential Statements with Output 310
Rules for Iteration with Output 310
Josephus Rings 314
Josephus Rings with Counting Interval of Two 314
ACountTree 321
Telegram Analysis: Main Program 329
Telegram Analysis: Subroutine 331

Chapter 1

INTRODUCTION

Structure of the Book

The body of the book is divided into three parts. Within each part there
are several chapters. Each chapter is broken down into a number of
sections and sub-sections. An overview of the organization is given in fig.
1.

The purpose of part A (chapters 2-6) is to bring the reader to the
point where he can prove programs correct. Since this idea is probably
unfamiliar, it is shown for numerical programs where there are no
additional problems of unfamiliar notation. Thus, apart from the
notation of logic which is being taught, only the familiar algebra (of
numbers) is used.

Part B (chapters 7-16) moves away from numerical algorithmic
problems into techniques which can be shown to apply to data manipulat-
ing problems. This part of the book discusses how abstract data types
can be used in writing specifications and in the development of programs.

These first two parts of the book present the basic techniques; both
parts cover specification and then proof; both parts begin formally and
then develop a less formal (but rigorous) style of proof when enough
practice has been gained to make this safe. Part C (chapters 17-22) fits
the various techniques into an overall systematic approach to program
design and applies the method to a number of problems.

The book is basically self-contained in that all required notation is
taught. Readers who are totally unfamiliar with logic notation would
benefit from studying chapters 1-3 and 14-15 of Lipschutz(64). (This is
the form of reference used throughout the book: the number in brackets
following the first author’s name refers to the year of publication. A
detailed bibliography is given at the end of the book). Four of the
chapters (13, 15, 16, and 18) and a number of sections are marked, in
the table of contents, with an asterisk: these present additional material

S.D.RA. B

Chapter 1

INTRODUCTION

Specification Proof Optional Material

O,
¥

2
A 3 *
4 *
5 *
6
{
8 *
B 9 *
10
11
12 ¥
13
14 *
15
16
C
18
19
/ 20
21
22

Figure 1 Organization

and are not necessary for a comprehension of the main text. Because it
is mainly intended for university use, the optional material is presented in

a more condensed form.

Structure of the Book 3

The programming language PL/I has been used because it is likely
to be familiar to practising programmers. The full language is far from
ideal for program proofs. It is, however, in the spirit of the approach of
this book to try to use a large language in a constrained way and then to
consider the features of the language as required. Here, a subset of PL/I
is used which is simple enough for the reader to have no difficulty in
translating into, say, Pascal.

At the back of the book there is a glossary of technical terms for
reference (terms in this glossary are marked on first reference
thus—predicate). Similarly, appendices are given which include
reference material of use during, and after, reading the book (e.g.
appendix C provides access to a number of definitions which are
developed as examples or exercises). Many exercises are provided since
practice with unfamiliar notation is the only way to gain confidence.
Answers are provided for those exercises which check the reader’s
comprehension of the notation. Most chapters contain a section of
summary exercises—these vary in difficulty but are generally more
complex than those in the body of the chapters.

Background

The overall requirement for a more effective way of developing software
systems is taken for granted here. From the viewpoint of those who wish
to see computers assist in solving their problems, there are two major
problems: software development is both highly error-prone and is
disproportionately costly. The principal bottleneck (both financially and
in terms of time) in implementing computer systems is now the
production of the software.

The above shortcomings are of concern in all computer applications.
As regards freedom from errors, most people would agree that the
requirements on, for example, missile early warning, patient monitoring
or nuclear power station control systems should be as stringent as
possible. Leaving aside such emotive examples one moves into an area
where the penalty for failure is easier to translate into financial terms.
Much of modern business life relies on computers. If the payroll
program fails, it is no longer practical to think in terms of manual
backup. In some industries, the cost of the failure could be a strike and
attendant loss of production. When assessing the cost of a program
failure, such items must be considered as well as expenses related to lost
files or security breaches. ~

Programmers do not usually work in a vacuum. Whoever is paying
the salaries of programmers today has cause for complaint at the cost of
creating programs.

Having identified that a problem exists, the next step towards its
solution is the location of some plausible cause. In the case of software
development, the cause is not hard to find. The scale of the applications

