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Editorial Policy

for the publication of monographs

In what follows all references to monographs, are applicable also to multiauthorship
volumes such as seminar notes.

§ 1. Lecture Notes aim to report new developments - quickly, informally. and at a high
level. Monograph manuscripts should be reasonably self-contained and rounded off.
Thus they may, and often will, present not only results of the author but also related work
by other people. Furthermore, the manuscripts should provide sufficient motivation,
examples and applications. This clearly distinguishes Lecture Notes manuscripts from
journal articles which normally are very concise. Articles intended for a journal but too
long to be accepted by most journals, usually do not have this “lecture notes™ character.
For similar reasons it is unusual for Ph. D. theses to be accepted for the Lecture Notes
series.

§ 2. Manuscripts or plans for Lecture Notes volumes should be submitted (preferably in
duplicate) either to one of the series editors or to Springer- Verlag, Heidelberg . These
proposals are then refereed. A final decision concerning publication can only be made
on the basis of the complete manuscript. but a preliminary decision can often be based
on partial information: a fairly detailed outline describing the planned contents of each
chapter, and an indication of the estimated length, a bibliography, and one or two sample
chapters - or a first draft of the manuscript. The editors will try to make the preliminary
decision as definite as they can on the basis of the available information.

§ 3. Final manuscripts should preferably be in English. They should contain at least 100

pages of scientific text and should include

- a table of contents;

- an informative introduction, perhaps with some historical remarks: it should be
accessible to a reader not particularly familiar with the topic treated;

- a subject index: as a rule this is genuinely helpful for the reader.

Further remarks and relevant addresses at the back of this book.
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Preface

Edmund Landau’s 1913 paper “Einige Ungleichungen fiir zweimal differenzierbare Funk-
tionen”, based on earlier work of Hardy and Littlewood, initiated a vast and fruitful research
activity involving the study of the relationship between the norms of (i) a function and its
derivatives and (ii) a sequence and its differences. These notes are an attempt to give a
connected account of this effort. Detailed elementary proofs of basic inequalities are given.
These are accessible to anyone with a background of advanced calculus and a rudimentary
knowledge of the L? and [P spaces, yet the reader will be brought to the frontier of knowledge
regarding several aspects of these problems. Many open questions are raised.

We thank Judy Beumer and Diane Keding for their careful typing of this difficult manuscript.
Special thanks are also due Mari-Anne Hartig for never losing patience with our repeated
requests for changes and without whose expertise in constructing graphs, tables, getting
cross-references right, etc. this final version would not have been possible.
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Introduction

The norm of a function y may not be related to the norm of its derivative y’. One may be
large while the other is small. More precisely, given any positive numbers uy and u;, there

exists a differentiable function y satisfying
lyll = wo and [|y']| = ui. (0.1)
This is true and easy to prove in particular for the classical p-norms:

i1}

llyllee

/Iy(f.)|”dt, I1<p< oo
J

ess. sup |y(t) |, p= o0

where J is any bounded or unbounded interval of the real line.

Given another positive number uy: Does there exist a function y which satisfies, in addi-
tion to (0.1), also
lyll = ua ?
The answer is no, thus giving rise to another question: How are the norms of a function y

and its derivatives related to each other? It is this question we study in this monograph.

Of primary interest is the classical inequality

ly®m < &yl * gk

often associated with the names of Landau, Hardy and Littlewood, Kolmogorov, among

others, and its discrete analogue

[ake|™ < Cllzf** A

Our goal is to give a basically self-contained exposition requiring only a background of
advanced calculus and the basics of Lebesque integration theory, yet we aim to bring the

reader to the frontier of knowledge for some aspects of these inequalities. Many results



obtained here are from papers less than 15 years old; in the discrete case, less than 10 years.
Some are more recent than that. A lot of open problems are mentioned, many of which, we
believe, are “accessible”. An extensive bibliography is also provided which includes some of

the vast Soviet literature on this topic.



Chapter 1

Unit Weight Functions

In this chapter, we discuss the values that the norm of a function and its derivatives can
assume. Considered are the classical LP norms with unit weight. Some basic inequalities are
discussed, including those often associated with the names of Landau, Hardy-Littlewood and

Kolmogorov.

Although the subject matter treated in this chapter is very classical and the methods
used are elementary, there are some results here which do not seem to have been published

before.

1.1 The Norms of y and y™

The classic p-norms are defined by

1/p
ol = ([ twcorar) ™, 1sp <o,

lylloc = ess sup |y(t)], t€J, p=oo.
Here J is any nondegenerate interval of the real line, bounded or unbounded.

The set of equivalence classes (with respect to Lebesgue measure) of functions whose p
norms are finite is the classical Banach space L”(J), 1 < p < oo. Below, y(™) denotes the n'®
derivative of y and y(™) € L9(J) means that y(*~1) is absolutely continuous on any compact
subinterval of J, so that y(") exists a.e. and is locally integrable, and lly(™]], is finite. The
symbol [|y]|p,s will be used when we wish to emphasize the dependence of the norm on the
interval J. If p or J is fixed in a result or argument we may merely use the symbol ||y||.

Throughout the book, p and ¢ are assumed to satisfy 1 < p, ¢ < oc.
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We define W (J) to be the subspace of LP(J) consisting of functions y € LP(.J) such
that y(™ e LI(J). No integrability conditions are imposed on y(¥) for 1 < k < n.

Two exponents p and ¢ (1 < p,qg < oo0) are said to be conjugate to each other if
p1 4+ ¢! = 1. We follow the usual convention that p = 1 when ¢ = oo and p = oo

when ¢ = 1.

The symbol C™(J) denotes the set of complex-valued functions with a continuous n't

derivative on J, C*(J) is the set of infinitely differentiable functions on J, and C§°(J) is the

set of infinitely differentiable functions with compact support in the interior of J.

In this monograph we are concerned with various inequalities among the norms of deriva-
tives of a funetion. Our first result ensures the existence of a function whose norm and whose
n't derivative’s norm are respectively equal to two arbitrary given positive numbers. This is

not at all surprising and the proof is not difficult.

Theorem 1.1 Let1 < p, g < oo, let n be a positive integer, and let J be any interval on the
real line, bounded or unbounded. Given any positive numbers u and v there exists a function

y € C™(J) such that
lylly =, [ly™]ly = v. (1.1)

Proof.

Casel. 1<p,g<o0,J=R=(-00,00).

Choose y in C§°(R) such that y > 0 but not identically zero and y has compact support.

Consider

Yab(t) = ay(bt), a>0, b>0

and note that with z = bt

llyasll}

[T

[ @lenra = o [ jy@)rds = sl
R R

/a"b”"|y(”)(bt)|th:a"b”q_l/ Iy (2)|"de
R R

= @y

Choose b such that
pra—l+a/p — vq||y||;’,u—ql|y(")||;q (1.2)

(observe that y(™ is not identically zero since y has compact support and is not the zero

function), and then choose a = b'/Pu /||y||, -



1.1. THE NORMS OFY AND Y®)

(o5, ]

The proof for J/ = Rt = (0, 00) is similar. Since translation and reflection preserve norms,

all other half-line cases (—o0,a) or (a,00),—00 < a < o0, reduce to RT.

Case 2. 1<p,g<oo,J =(a,b),—00<a<b< oco.

First consider the case J = (0,1). Define

QW) =1y ™lla/lyllps vy € Wyy(J) = X.

Since the norm is a continuous function from X into [0, 00) it follows that @ is a continuous
function from X — {0} into [0,00). We show that @ is onto. Let Q(y) = «a, Q(z) = S,
0 < a <"B: Then y and z are linearly independent. Thus S = span{y,z} — {0} is a
two-dimensional connected subset of X. Since the continuous image of a connected set is
connected, it follows that [, 3] C range ). By letting y(t) = 1 we see that we can choose

a = 0. To show that 3 can be chosen arbitrarily large, consider

y(t)=1t% 0<t<l1.

Then
1 d
lwllp = [ et = 1/(pd + 1)
1
ly™llg = h(d) [ 44=de = hd)/(a(d = n) + 1),

0

where
h(d) = d(d—1)...[d — (n - 1)].

Thus

Q(y) = (h(d))Y(pd + 1)"/P(q(d = n) + 1)"V7 = o0 as d — .

We conclude that the range of Q) is [0,00). Let r = v/u. jFrom the above argument we know
there is a y € W (0,1) such that Q(y) = r. Choose the constant ¢ so that ||cyl|, = u, then
||cy(")||q = v. This completes the proof for the case J = (0,1). The general case of a bounded

interval J follows from this case and a transformation of the form t — ¢t + d = .

The proofs of the remaining cases (p = oo or ¢ = 0o, J bounded or unbounded) are left

to the reader as exercises. O

The proof of Theorem 1.1 is presented as above to point out the difference between the
cases of unbounded and bounded J. In the first case, the technique of “horizontal scaling”
(change of the independent variable) is a very useful tool, which is not available in the second

case.
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1.2 The norms of y, y*), and y™

The special case p = ¢, n = 1 of Theorem 1.1 says that the norm of a function and its
derivative on any interval, bounded or unbounded, can assume arbitrary positive values.
Can the norms of y, 3’, and y” assume arbitrary positive values? Below we will see that the

answer is no. But first we discuss some preliminary results.
Lemma 1.1 Let1 < p < co. Assume J = [a,b] is a compact interval of length L = b—a. If
y € LP(J) and y®) ezists on J and

ap = ax(J) = inf [yB(1)], teJ; (1.3)

then
ak(J)SAI]prJ k=1,2,3,..., (1.4)

where A is a constant independent of y given by
A= A(k,p, L) = 2F . 35K [=k=1/p (1.5)
where z(k) is defined recursively by

2(1)=1/p, z(k+1)=z(k)+k+1/p, k=1,2,3,.... (1.6)

Proof. The proof uses a “triple interval” argument and induction on k.

Case 1. p = oc.

Divide J into three equal subintervals: Jy = [a,a+ L/3], Jo =[a+ L/3, a+2L/3], and
Jy = [a+ 2L/3,b]. By the mean value theorem, for any ¢y in J; and t3 in J3 there exists

t* € (t1,t3) such that

ly' (1)) = |(y(t1) — y(t3))/(t1 — t3)]
3L (ly(t)] + [y(ts)]) < 6L [lloo,s-

2
A

IN

This establishes the case k = 1. To establish the inductive step it is convenient to use the
notation ax(J) to denote the dependence of ax on the interval J. For the sake of clarity we
consider first the case k = 2. Using the above notation, choose ¢; in J; so that ay(.J;) = |y/(t;)],

i = 1,3. By the mean value theorem we have, for some t* € (t;,13)

ay < Y'()] =1y () — ¥ (ta))/(tr — t3))]
< 3L7Yay(J1) + er(J3)
< BLTHO6(L/3) ylloo,ss + 6(L/3) ™ Iylloo,ss)
< 3-6% L7yllso-



|
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Assume (1.4), (1.5) hold in the k*! stage of our induction process. Let J = J; UJ, U J3 as
above in step k = 1. Then using the mean value theorem again with t; € Jy, t3 € J3 chosen

so that ax(J;) = [y®)(t;)], i = 1,3 we get

arpr(J) < ) = (3P (1) - yB(t3)) /(11 — t3)]
< L7'3(ak(Jh) + ar(J3))
< 317253 L/3) *(llylloo,ss + 11¥]loo,ds)
< L_k_12k+131+r(k)+k“y“ooJ-

This completes the proof of (1.4), (1.5) for p = oo.

Case 2. 1< p < oo.

Let p~1 + ¢! =1. Let J = J; UJ, U J3 be as in Case 1 above. Choose t; € .J; such that
ly(t;)] = min |y(t)|, t € J;, i = 1,3. ;From the mean value theorem and Hélder’s inequality

we have for some t* between t; and t3
ar < y(t*)] < L7'3(|y(t)] + ly(ts)])

and

Liy(t))/3 = /J ly(to)]dt < /J ly(0)]dt
<L/ yllpg, i=1,3.

iFrom these inequalities
o < VL2 |y ||, 0.

This is (1.4), (1.5) for k = 1. Assume (1.4), (1.5) hold for k. Decompose J as above and
choose t; € J; such that |y(¥)(¢;)| = inf |y¥)(2)| for t € J;, i = 1,3. Then, as above,

IN

ly* )] < 3L (M ()] + 1y W (1))
3L ak(h) + ak(J3))
< 3L to(2k3= R M a=ky Iy, 5,

ag1(J)

and the proof of Lemma 1.1 is complete. O

Lemma 1.2 Let 1 < p,q,7 < o0, I(J) = L < oco. Ify € LP(J) and y" € L7(J) then
y' € LY(J) and
I¥/lly < ALYTHIS "), 4 BLTI Py, (1.7)

where 1/r" + 1/r =1 and
A=2""Ye  p=22-13.31/p (1.8)
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Proof. We may assume, without loss of generality, that J is compact. With the notation

of Lemma 1.1 we have

ly' ()] < en +

t '
/ y"‘ <2-3PL7 Pl + 27y (1.9)
1

If ¢ = oo, (1.7), (1.8) follow from (1.9) since 1 < 2,2-3'/? < B. If ¢ < oo, we obtain from
(1.9)

/le'(t)l"dt < 2971(29. 39/P L9/ PY g9 4 L9/ y|2)
= Aqu/r’+q”y//”g +BqL'q"7/p+1|Iy|]Z (1.10)
using
a®+ b <(a+b)PF <2 N a*+b°), 1<s, a>0, b>0. (1.11)

Now (1.7) follows from (1.10) and the second half of the elementary inequality

2 Na® +b°)<(a+b)*<a*+b°, 0<s<1, a>0, b>0. o (1.12)
Lemma 1.3 Let 1 < p < oo, (J)=L < o0o. Given € > 0 there exists a K(e) > 0 such that
if y € LP(J), y' is locally absolutely continuous on J, y" € LP(J) then y' € LP(J) and

191, < e lly”llp + K(€) llyllp- (1.13)
Furthermore, for fized €, K(¢) can be chosen to be a nonincreasing function of the length

of J.

Proof. We consider p < oo first.

Case 1. Assume L < oo.
Let € > 0. If L < ¢/A then (1.13) follows from (1.7) with
K(e)= BL™', B=2%1P, (1.14)

If e = ¢/A < L < oo let J = UL,J;, where J; are nonoverlapping, I(J;) = €/2, i =
l,...,n—1,and /2 < I(J,) < €. Apply (1.10) to J;, ¢ = 1,...,n — 1 with L replaced by
€1/2 = €/2A, and ¢, by p, we get
[wr <o [+ apper [up<e [1r+apyer [r 1)
I I I I I

holding on each intervali [ = J;,i=1,...,n—1. On I = J, we get from (1.10)

fwr < e [+ [e
7§ ¥ I

ep/|y"|P+ (2,4B)pf"’/|g/|". (1.16)
i 1

IN
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Summing inequalities (1.15) and (1.16) over all the intervals J;, ¢ = 1,...,n and then taking
the ptP root we obtain (1.13) with

K(¢) = 2ABe™ . (1.17)

Case 2. L = o0o. Let J = U2, J;, where J; are nonoverlapping intervals each of léngth €.
Proceeding as above we get inequality (1.15) on each interval I = J;, ¢ = 1,2,3,.... Summing

over the intervals J; and taking the pt* root yields (1.13) with A (¢) given by (1.17).

For fixed e it is clear that K(¢), chosen according to (1.14) and (1.17) is a nonincreas-
ing function of the length of the interval J. This completes the proof for p < oo. The

modifications needed with p = oo are straightforward and hence omitted. O

Theorem 1.2 Let 1 < p < oo, let n, k be integers with 1 < k < n, and let J be any interval
of the real line, bounded or unbounded. Given any € > 0 there ezists a positive K (¢) such
that if y € LP(J), y*=1) is locally absolutely continuous and y("™) € LP(J) (i.e. y € Wi (K))
then y® € LP(J) and

1y @y < € Iy™ 1, + K(e) N1yl (1.18)

Furthermore, for a given € > 0 the constant K(€¢) can be chosen to be a non-increasing

function of the length of the interval J.

Proof. The proof is by induction on n. Since p is fixed throughout the proof we will
suppress the subscript p on the norm symbol. The case n = 2 is Lemma 1.3. Assume
Theorem 1.2 is true forn = N (and k = 1,2,..., N — 1) and suppose that y € WN+1(.J). We
need to show that y(*) € LP(J) for 1 < k < N 4+ 1 and (1.18) holds with n = N + 1,k < N.
Note that it does not follow immediately from the induction hypothesis that y(¥) € L?(J) for
k=1,...,N. But y¥) € L?(I) for any compact subinterval I of J since y*) is absolutely
continuous on I, k = 1,..., N. Hence by Lemma 1.3 given ¢; > 0 there exists a h'(¢) > 0

such that

Ny™r < ally™ ) + K(e)lly™ ),

ally™ )y + K(e)(elly™ ) + K(e)llyll)-

A

IN

Here we used the inductive hypothesis in the last step. Rearranging terms we get
(1= K(e)elly™ I < ally™* s + K(e) R (e)lyl

Choose €1 < €/2 and €3 such that 1/2 <1 — K(¢)ez < 1. Then dividing by 1 — K(¢;)ez and
using [|yllr < ||ylls we get

Iy ™z < eyl + 2K () K (e2)llyllo- (1.19)



