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Editor’s Preface

For a period of more than a decade some members of the Jena Department of
Relativistic Physics have been studying the literature on the exact solutions of
Einstein’s gravitational field equations. Following this line of work, they also did a
considerable amount of research on the classification of these solutions and on new
methods of finding such solutions (H. Stephani on the embedding method, D. Kramer
and G. Neugebauer on the invariance transformation method, E. Herlt on stationary
axisymmetric solutions). After some years, conditions seemed favourable for a syste-
matic treatment of these subjects. As is well known among specialists, many inter-
esting exact solutions have been independently discovered two or more times.

This situation inspired H. Stephani and D. Kramer to write a monograph on
exact solutions of Einstein’s field equations, presenting the most important methods \
and solutions in a systematic way, with the aim of accomplishing a kind of catalogue
which would give a good survey of the solutions already discovered and help to
avoid duplications of discovery. It was originally hoped to offer this monograph to
the international relativity community on the occasion of Einstein’s 100th birthday,
but soon an enormous amount of material accumulated. Therefore the target date
was amended to that of the 9th International Conference on General Relativity and
Gravitation in July 1980 at Jena, and to achieve even this aim required very sub-
stantial support from the Jena Department of Relativistic Physics and the Sektion
Physik of the Friedrich Schiller University. We were all very happy that, in addition
to E. Herlt, M. MacCallum (Queen Mary College, London) could be enlisted as an
author. Furthermore, M. MacCallum agreed to revise the English text. As the head
of the department and as the editor of this monograph I would like to thank the
authorities of the Friedrich Schiller University, Jena, for their constant help.

Jena, February 1979
Ernst Schmutzer

Friedrich Schiller
University Jena



Authors’ Preface

When, in 1975, two of the authors (D. K. and H. 8.) proposed to change their field
of research back to the subject of exact solutions of Einstein’s field equations, they
of course felt it necessary to make a careful study of the papers published in the
meantime, so as to avoid duplication of known results. A fairly comprehensive review
or book on the exact solutions would have been a great help, but no such book was
available. This prompted them to ask “Why not use the preparatory work we have
to do in any case to write such a book?” After some discussion, they agreed to go

' - ahead with this idea, and then they looked for co-authors. They succeeded in finding

two. :
The first was E. H., a member of the Jena relativity group, who had been engaged
before on the exact solutions and was also inclined to return to them.

The second, M. M., became involved by responding to the existing authors’ appeal
for information and then (during a visit by H. S. to London) agreeing to look over the

. English text. Eventually he also agreed to write some parts of the book. He wishes to
record that any infelicities remaining in the English arose because the generally
good standard of his colleagues® English lulled him into a false sense of security.

Our original optimism somewhat diminished when references to over 2000 papers
had been collected and the magnitude of the task became all too clear. How could we
extract even the most important information from this mound of literature? How
could we avoid constant re-writing to incorporate new information, which would have
made the job akin to the proverbial painting of the Forth bridge? How could we
decide which topics to include and which to omit? How could we check the calcu-
lations, put the results together in a readable form, and still finish in a reasonable
time?

Looking back now at the result of three years’ work, we cannot really feel that we
solved any of these questions in a completely convincing manner. In particular, we
feel sure we must have accidentally overlooked many useful results and solutions.
However, we did manage to produce an outcome in a finite time, largely because the
labour of reading those papers conceivably relevant to each chapter, and then drafting
the related manuseript, was divided. (Roughly, D. K. was responsible for most of
the introductory Part I., M. M., D. K. and H. S. dealt with groups (Part II.), H. 8.,
D.K. and E. H. with algebraically special solutions, and D. K. and H.S8. with
Part IV. (special methods) and Part V. (tables).) Each draft was then criticized by the
other authors, so that its writer could not be held wholly responsible for any errors or

" omissions. (Since we hope to maintain up-to-date information, we will be glad to hear
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from any reader who detects such errors or omissions; we will also be pleased to
answer as best we can any requests for further information.)

This book could not have been written, of course, without the efforts of the many
scientists whose work is recorded here, and especially the many contemporaries who
sent preprints, reprints, references and advice. More immediately, it would not have
appeared without the help of Frau Kaschlik and Frau Reichardt in Jena, and
Mrs. Smith in London, who did all the secretarial work including typing the illegible
and apparently interminable manuscript, of the students in Jena who maintained our
reference files, of Prof. Schmutzer, who supported the project from the beginning,
and of the Sektion Physik in Jena and the Department of Applied Mathematics at
Queen Mary College, London. Last but not least, we thank wives, families and col-
leagues for tolerating our incessant brooding and discussions.

January 1979

Dietrich Kramer

Hans Stephani

Eduard Herlt
Jena

Malcolm MacCallum
London
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 Notation

All symbols are explained in the text. Here we list only some important ‘conventions
which are frequently used throughout he book.

Complex conjugation is denoted by a bar over the symbol.

Indices

Small Latin indices run, in an n-dimensional space, from 1 to #, in space-time V,
from 1 to 4. Indices from the first part of the alphabet (a, b, ..., h) are tetrad indices,
i.e. they refer to a general basis {e,} orits dual {®%}; 1, 4, ... are reserved for a coordi-
nate basis {9/8z%} or its dual {dz?}. For a vector v and a 1-form ¢ we write v = %e,
= ¢ 9/0x?, 0 = g,w® = 0; dx’. Small Greek indices run from 1 to 3, if not otherwise
stated. Capital Latin indices are either spinor indices (4, B =1, 2) or indices in
group space (4, B = 1...r), or they label the coordinates in a Riemannian 2-space
Vo (M,N =1, 2).
Symmetrization and antisymmetrization of index pairs:

1 1
Viapy = E ('Uab + '”ba)9 Vgt = E (vab — Vpq) -

Metric and tetrads

Line element in terms of dual basis {w9}: ds* = g ,w%w°.

Signature of space-time metric: (+ 4+ 4 —).

Commutation coefficients: D¢ ; [€,, €,] = D° €.

(Complex) null tetrad: {e,} = (m, M, L, k), g,, = 2mTy — 2kl
ds? = 20lw? — 23w,

Orthonormal basis: {E,}.

Projection tensor: kg = ¢up + %ty wu® = —1.

Bivectors

Levi-Civita tensor: egpey; Eapegm molk? = 1.
. pe 1

Dual bivector: X, = 5 EabcaX .

(Complex) self-dual bivector: X% = X, + iX,,.
Basis of self-dual bivectors: Uy, = 2 ly), Vi = 2kiamy), Wy = 2mgmy; — 2Kkl



-16 Notation

Derivatives

Partial derivative: comma in front of index or coordinate, e.g.

Li=éfjeat=0if, [f.=of/eC.

- Directional derivative: denoted by stroke or comma, fa = .o = €,(f), if followed
by a numerical (tetrad) index, we prefer the stroke, e.g. fia = f.ikt. Directional
derivatives with respect to the null tetrad (m, i, 1, k) are symbolized by 6f = f,

Bf = f|2, Af = f[a’ Df = f|4-
Covariant derivative: \/; in component calculus, semicolon. (Sometimes other
symbols are used to indicate that in ¥, a metric different from g,, is used, e.g.

hab"c =0, Yap—c = 0.)
Lie derivative of a tensor T with respect to a vector »: £,T.
Exterior derivative: d.

Connection and curvature

Connection coefficients: I'%,, v*., = v%,, + %"
Connection 1-forms: I'ty = I't, . w¢, dw® = —I'%, A wd.
Riemann tensor: Biy, 20,0, = vgR%,.

1
Curvature 2-forms: @%, = Y Royq0° A 0% = dI'%, 4 T8, A T,

Ricci tensor, Einstein tensor, and scalar curvature:

By = Boyer, Gap = Bop — % Egy, E=REp°.
Weyl tensor in V,:

Coabea = Ropeq + g JoreGap — Jareloap + GopcBara-
Null tetrad components of the Weyl tensor:

¥y = Crpeak®mPkems, V= abc;k‘“lbkcmd,

Wy = = Con (b1 — mm),

Y, = Cyplokbleme, Y, = Cypal®mblems.
Metric of a 2-space of constant curvature:
do? = da? 4+ X%(z, ¢) dy?,
Z(z, &) = sin z, x, sinh & resp. when e = 1, Oor —1.
Gaussian curvature: K.
Physical fields f
Energy-momentum tensor: Ty, Thutub =0 if wu® = —1.

1 —_
Electromagnetic field : Maxwell tensor F,,, Tgp = 5 FrFE.



