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PREFACE

This book is based on a course | gave at Columbia University in 1966-67.
Its writing was greatly facilitated by the notes for that course which were
taken by Tsit-Yuen Lam, M. Pavaman Murthy, and Charles Small. I am
extremely grateful to them for their assistance and criticism.

| had originally hoped to make the exposition here more or less
self-contained, modulo a first year algebra course. Because of the variety
of techniques employed, however, this ambition threatened to lead to
an infinite regress. Thus, Part 1 on preliminaries still contains, despite its
length, a few results which are merely quoted without proof.

Time prevented me from including here a treatment of the “K-theory
of symplectic modules,” which | hope to publish in the near future. For
the theory of “quadratic modules” there is so far only a discussion of
the formalism (construction of the classical invariants) in my Tata lec-
tures [4], and only partial results are known at present in the way of
general stability theorems. It is worth noting, however, that the discus-
sion in Chapter VII has been deliberately arranged so that it can be
applied directly to a variety of contexts. Thus, for example, one has
Mayer—Vietoris sequences and excision isomorphisms for the theories of
symplectic, quadratic, and Hermitian forms, for the Brauer group, and
for various other theories (roughly speaking, for those based on projec-
tive modules supplied with some type of tensor).

An important feature of algebraic K-theory, and one which has led
to genuinely new insights in pure algebra, is its ability to exploit the
techniques of a highly developed branch of topology—the homotopy
theory of vector bundles. In turn, and for entirely different reasons,
which go back to J.H.C. Whitehead'’s theory of simple homotopy types,
the topologists are active patrons of the subject, providing an abundant
supply of interesting and difficult questions with which the theory can
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viii 4 PREFACE

be tested and expanded. '

Under these circumstances it seemed worthwhile to make available
a reasonably comprehensive and systematic treatmentof the main ideas
of the subject, as so far developed. | have written these notes with that
intention. | hope they may be useful, as a reference to topologists, and
as an invitation to an area of new techniques and problems to algebraists.
Finally, | have tried to organize the notes so that they might serve as the
basis for a second-year graduate algebra course, such as the one from
which they originated.

HYMAN BASS

New York, New York
October 1967



INTRODUCTION

The ““algebraic K-theory” presented here is, essentially, a part of general
linear algebra. It is concerned with the structure theory of projective
modules, and of their automorphism groups. Thus, itis a generalization,
in the .most naive sense, of the theorem asserting the existence and
uniqueness of bases for vector spaces, and of the group theory of the
general linear group over a field. One witnesses here the evolution of
these theorems as the base ring becomes more general than a field.
There is a satisfactory “stable form” in which the above theorems
survive (Part 2). In a stricter sense these theorems fail in the general case,
and the Grothendieck groups (K¢) and Whitehead groups (K;) which
we study can be viewed as providing a measure of their failure.

A topologist can similarly seek such a generalization of the structure
theorems of linear algebra. He views a vector space as a special case of
a vector bundle. The homotopy theory of vector bundles, and topolo-
gical K-theory, then provide a completely satisfactory framework within
which to treat such questions. It is remarkable that there exists, in
algebra, nothing of remotely comparable depth or generality, even
though many of these questions are algebraic in character.

The techniques used here are, therefore, topologically msplred
They are based on the philosophy, supported by theorems of Swan
(Chapter X1V) and Serre (cf. Chapter 1V), that a projective module should
be thought of as the module of sections of a vector bundle. This dictates
the choice of projective modules (rather than some wider class of
modules) as the objects of the theory. This point of view further exhibits
the stability theorems (Part 2) as direct imitations of their topological
precursors (cf. Chapter X1V). It was Serre [1] who originated the tech-
niques for proving such stability theorems in a purely algebraic setting.

The formalism of K-theory originated with Grothendieck’s proof of
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xiv . _ INTRODUCTION

the generalized Riemann—Roch theorem. The ideas were then quickly
developed in topology by Atiyah and Hirzebruch, who made the Groth-
endieck groups, K(X), part of a generalized cohomology theory, using
the suspension functor. While our point of view leads to an obvious
translation of K(X), there is no clear algebraic counterpart for suspen-
sion. As a result our algebraic K-theory in Part 3 is far from complete,
and the treatment here should be regarded as a provisional one, albeit
sufficient for a number of applications in later chapters.

The development in Part 3 is axiomatic so that the results can be

usefully applied to many categories  other than those of projective
module$. The exposition there is substantially influenced by ideas of
Milnor. It was he who first called attention to the existence and im-
portance of the Mayer—Vietoris sequence of a Cartesian square, and this
has become a cornerstone of the whole theory. In particular, it leads to
a very general analog of the excision isomorphisms. Otherwise the re-
*sults of Part 3 are taken largely from a paper of Heller [1]. The latter
contains another major tool of the theory, the exact sequence of a
localizing functor, which does not seem to have any familiar topological
counterpart. Chapter VIII also contains a striking new theorem of Leslie
Roberts, with which he has computed K; for nonsingular projective
algebraic varieties. - -

" There has been some recent progress in finding satisfactory

definitions of higher algebraic K’s. For example, Milnor has defined a
Kz, on which some work has been done by Gersten [2]. From a quite
. different point of view, A. Nébile and O. Villamayor [1] have con-
structed an algebraic K-theory with functors Ka for all n = 0. Other
(unpublished) definitions have been proposed as well. However, in none
of these cases are the new functors yet very well understood. It there-
fore seemed premature to attempt an excursion in that direction in
these notes.

In Part 4 the general results of Parts 2 and 3 are assembled and
applied to the computation of Grothendieck groups Ko (A) and White-
head groups K;(A) for a variety of rings A. Special emphasis is given to
the case of group rings A = Zm because of the interest of the groups
Ki(Zm) to topologists. In particular, the long Chapter XI is devoted to a
new exposition of techniques, developed by Swan and Lam, which are
based on the theory of induced representations for finite groups.

There are two unanticipated, and mathematically interesting, high
points in the theory. The first is the fact that when A is a Dedekind ring,
the group theory of SLa(A), as formulated in terms of Kj, is intimately
connected with certain “reciprocity laws” in A. The latter include the
classical power reciprocity laws in totally imaginary number fields as
well as certain geometric reciprocity laws on algebraic curves. This
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phenomenon was first witnessed in the recent papers of C. Moore [1]
and of Bass—Milnor-Serre [1]. The discussion of this in Chapter VI is an
axiomatization, based the latter reference. | am further indebted here
to T.-Y. Lam for a number of suggestions. The upshot of this theory is
that known reciprocity laws can be used to compute K;. Conversely,
using the machinery developed in later chapters, we can sometimes
compute K; directly, and in turn use these calculations to exhibit new
reciprocity laws. Examples of both of these procedures occur in the
text (cf. Chapters VI and XII).

The other surprise is the “Fundamental Theorem” in Chapter XII,
§7, which computes K;(A[t, t1]). Its principal feature is that Ko(A)
appears as a natural direct summand of Ky (A[t, t™1]). This is surprising
because, at least algebraically, Ko and K; look like rather different kinds
of animals. The surprise disappears, however, if one interprets the
theorem topologically, whereupon it is seen to be an algebraic analog
of Bott’s complex periodicity theorem (cf. Chapter XIV, §6). This theorem
first appeared (in a less precise form) in the paper of Bass—Heller—Swan
[1]. A new feature, which emerged only at the end of the writing of these
notes, is that the fundamental theorem has a built-in iteration procedure,
which can be used to manufacture a whole sequence of functors K.,
(n = 0) with which to extend the (K, Ko)—exact sequence to the right.
They help to clarify some calculations made in Bass—Murthy [1], but their
significance is otherwise still unclear (to me).



LOGICAL DEPENDENCE OF CHAPTI';RS

The following diagram is a rough indication of the logical interdepend-
ence of the chapters. If Chapter B depends logically on Chapter A then
A is placed above B; the converse is not necessarily true. In some cases
this dependence is rather peripheral, so a line joining A and B appears
only when the contents of A are an essential prerequisite for the read-
ing of B. ‘ '
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SOME GENERAL NOTATION

Let A be a ring. We write
mod-A and A-mod

for the categories of right and left A-modules, respectively. We have
the full subcategories

P(A)YC H(A) C M(A)C mod-A
defined as follows: M e M(A)<=>M is a finitely generated A-module, and
M e P(A)<=>M is also projective. Finally, M ¢ H(A)<=>M has a finite
resolution by objects of P(A) (see Chapter Ill, §6).

Let R be a commutative ring and suppose A is an R-algebra. Let S
be a multiplicative set in R and let C be a subcategory of mod-A. Then
C, denotes the full subcategory of all M & Csuch that ST M = 0.
T The ring of n by n matrices over A is denoted Ma(A), and its in-
vertible elements constitute the group GLa(A). We often identify Ma(A)
with the A-endomorphisms of the right A-module A®. When n = 1
we write

U(A) = GL1(A)

so that GLa(A) = U(Ma(A)).

If C is any category we write

= . s

for the category of pairs (M, a) (M e C, a € Autg (M)) (see Chapter VII,
§1), i.e., the category of automorphisms of objects of C.
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Part 1
PRELIMINARIES

Chapter |
SOME CATEGORICAL ALGEBRA

- This chapter introduces some of the basic language
of categories and functors. It should be used mainly for
reference, rather than being read outright. The first
sections lead up to the notion of an Abelian category, in
§4. In §85-6 we assemble some basic facts about homology
and projective resolutions which will be used extensively
in the following sections. In §8 we prepare some less
standard results on direct limits, which are needed in
Chapter VII.

Essentially all cf the material of this chapter can
be found in the books of MacLane [1] and Mitchell [1].

§1. CATEGORIES AND FUNCTORS

Recall that a category A consists of objects, ob A,

a set of morphisms, A(A, B), for each A, B ¢ ob A, and a
composition
A(B C) x A(A B)

The latter is associative, and there are identities

lA.e Q(A A) with the usual properties. The dual category A0

has the same objects, QO(A, B) = A(B, 4), ‘and composition

> A(A c), (a, b) > ab

is reversed. The dual of a statement about categories is the
same statement but interpreted in A’. In this senge, general

theorems about categories hava duals, and the latter are
also theorems.



"2 ' PRELIMINARIES

The notion of subcategory is obvious. Similarly, we
%can form the Cartesian product of categories, in a naive
way, to obtain new categories.

We shall often confuse A with ob A, and write A € A

in place of A € ob A. The class of all morphisms in A is
denoted mor A.

a: A > B means a e é(A, B)

as usual. We call g an isomorphism if there exists b ¢
A(B, A) such that agb = 1B and ba = lA’ i.e. if a is

invertible. We call a a monomorphism (resp., epimorphism)
if ab = ac => b = ¢ (resp., ba = ca => b = c), whenever
"the indicated compositions are defined. Note that an
isomorphism is both a monomorphism and an epimorphism. The
converse fails in general. For example, in the category of
topological groups and continuous homomorphisms, an in-
clusion of a dense subgroup is an epimorphism and a
monomorphism.

We shall commonly use the following alternative

notations: .

. HomA(A, B) = A(A, B)
End (A)

Aut, (A) = the group of automorphisms of A (in A).

AA, A)

A functor T: A

> B consists of a map on objects,

A | > TA, and maps on morphisms
T‘(=TA’ g): A(A, B)

which preserve composition and identities. T is called
faithful (resp., full) if TA B is injective (resp.,
) ’

surjective) for all A, B ¢ é. Note that a faithful functor

- E(TA, TB)

might carry nonismorphic objects to ismorphic ones (e.g.,

the functor (topological groups) ignore the (groups) )
topology

but this cannot happen if it is also full. A contravariant

functor A > B is a functor Al > B. Functors of several

variables are just functors on product categories.

In practice a category will often be specified by
naming only its objects. Such license will be allowed when
either the morphisms and composition are clear from the
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context, or, if there is some ambiguity, it is of no conse-
quence for the discussion at hand. Similarly, we shall often
define functors by specifying their effect on objects when
their effect on morphisms is then clear from the context.
The functors from A to B are themselves the objects

of a category, denoted §é. The morphisms are sometimes

called natural transformations, so we write

Nat. Tran.(T, §) = B(T, §)

A natural transformation a: T —> S is a family,
a = (a,) , of B - morphisms o, : TA > SA such
A = A
AeA
that Sf a, = ag Tf whenever f : A > B in A. (Rather

innocent assumptions on A and B will guarantee that
EQ(T,'S) is a set; this will alvays be so in the examples

we treat.) Composition is defined in the obvious way.
Suppose we are given functors
T
A ) > B >
= = —
Ts

U

@]
Vv
no

and a morphism a: T;——> T,. Then we have the composite

functors, TiS, UTi’ etc., and we also have morphisms

aS : T;8 ——> T,S (aS)A = ag, (A € é)
and '

Ua : UTy —> UT, (Uoz)B = U(aB) (B € B)
1f sl: él > A and ul: D > 21 are functors, and if
al: T, > T3 is a morphism of functors then we have the
following easily verified rules:

a(ss!) = (as)s! , (Ult)a = vl (Vo)

1. S =1 '

T.S =

Ti i ’ = lTi lUTi

(ala)s = (alS)(as) , U(ala) = (Ual) (Ua)
The latter show that composition with S and U defines
functors -S : gg > gé and U- : gg > QE,
respectively.

A functor T : é > B is an isomorphism if there

is a functor S

{[fer]

> A such that TS = lp and ST = lA'



