~ PROGRAMMING FOR MICROCOMPUTERS Crr

— ‘L_w_‘.‘»._

s

]
] 3l H 2

" s E= a

HE & g SNEm - 8

EE SunE SEsN
G SUEDEBEEEE B B

" SEENEEE GEEE =
EEE EEESEEERER
SEEgEEEREEE ®
ERR RO BBEE
GRcENEENSEERED
EEES ENEEREE
EFT YT R TY T |

~

i

HOUGHTON MIFFLIN RS

mamt 2 o¥ o8 ¥ R %%}l T f !

(>

8556047

Programming for Microcomputers

Apple 1l BASIC

June Grant Shane
Indiana University

il

E8566047

il

HOUGHTON MIFFLIN COMPANY BOSTON

Dallas Geneva, lllinois Hopewell, New Jersey Palo Alto

To:
Leo C. Fay and Carl B. Smith

Apple is a registered trademark of Apple Computer Inc. This text is based on the use
of a 48K Autostart Apple Il with Applesoftin ROM. The list of reserved words and the
list of error messages found in the appendices are reproduced through the courtesy
of Apple Computer Inc.

Cover design and illustration by Ellen Clancy.

Copyright © 1983 by Houghton Mifflin Company. All rights reserved. No part of this
work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying and recording, or by any information storage
or retrieval system, except as may be expressly permitted by the 1976 Copyright Act
or in writing by the Publisher. Requests for permission should be addressed in
writing to Permissions, Houghton Mifflin Company, One Beacon Street, Boston,
Massachusetts 02108.

@

\
Printed in the U.S.A.
Library of Congress Catalog Card Number: 83-81563

ISBN: 0-395-35206-1

Programming for Microcomputers

Apple Il BASIC

Preface \

Are you interested in personal computers? Do you want to write your own
computer programs? Are you looking for a book with nontechnical
language, clear explanations, and good program models? If your answer
is yes, then Programming for Microcomputers: Apple Il BASIC is the
book for you.

This book has been designed for a wide range of potential users,
including students, professionals, and other individuals who are
interested in learning to understand and apply a new technology. The
text teaches you how to write computer programs in BASIC, which is a
computer language developed expressly for people who are just learning to
program. BASIC is the standard language for home computers and is also
widely used in educational settings. Likewise, the Apple® || microcomputers
have become popular choices for use in homes, schools, and offices.

The text can be used independently, in computer programming classes, or
in computer literacy courses. It is designed for situations in which you have
direct access to a computer so that you can enter the program examples
featured in the text and see the results immediately. You move sequentially,
one step at a time, from simple to increasingly complicated programs. You
begin by writing short programs and finish with long, well-documented
programs.

As the computer programs become longer and more time consuming to
write, you will see the need for developing good planning skills. To help you
in this planning process, the text uses a block structure and a top-down
design that lets you break down a problem into smaller, more manageable
parts. Grid sheets are used extensively to assist in the planning process.
Their use to design and code your programs will allow you to minimize the
amount of time needed to work at the computer. Moreover, the grid sheets
will provide you with a permanent record of your program’s development.

Special features

Programming for Microcomputers: Apple Il BASIC is organized in an
easy-to-follow format to help you learn new and exciting things and to
encourage you to become a knowledgeable advocate of structured
programming with top-down design, coding, and testing. The text has
successfully undergone extensive field testing with junior high and
secondary school students, undergraduate and graduate college
students, teachers, librarians, and other professional groups.

Following is a list of the text’s special features:

1.

@

10.

11.

12.

Acknowledgments

The text follows a sequential, step-by-step presentation,
moving from simple to more complex programs.

Program examples are carefully explained and easy to follow.
Charts and other illustrations of different processes are
included.

An outline of major topics appears on the first page of each
chapter.

Each chapter begins with the specific learning objectives to be
covered.

Each chapter ends with self-test activities for applying material
that has been learned.

Solutions to all problems and programs are included in the
text.

A glossary of special terms is provided.

Programs are shown in the form in which they are to be
entered, not in LIST, or computer printout, format.
Structured programming using block structure and a top-
down approach to program design, construction, and testing is
explained and demonstrated.

The book is written in nontechnical language and features a
highly readable style.

A Grid Sheet Booklet, which is available separately, provides a
supply of removable grid sheets on which programs can be
planned.

The advice and help given by Melanie Davis, Leo Fay, Eric Mielke, Sue
Sanford, Carl Smith, and Dorothy Winchester, all of Indiana University,
have béen greatly appreciated.

June Grant Shane

Contents

Preface

1 Introduction
You and Computer Programming
The Computer

2 Getting Started

Objectives

Special Terms

Keys and their Functions

Turn on the Computer

Immediate Execution

Deferred Execution
Syntax of a Statement

System Commands

Writing Short Programs

Algorithms and Flowcharts

More about System Commands LIST,
RUN, and NEW

Self-test

3 Alphanumeric Expressions
Obijectives
Special Terms
Syntax and Debugging
Program Lines
Text Distortion
Spacing
More about LIST
Simple Designs
Self-test

4 Numeric Operations and Repetition
Obijectives

Special Terms

Calculating with the Computer
Combined Expressions

Precedence

Parentheses

Repetition—Numeric Expressions

AN

O ~NOO”O O,

©

11
11
12
13
14
17

17

21
22
22
23
25
25
26
28
29
30

33
34
34
35
36
37
38
39

Repetition—Alphanumeric Expressions
Self-test

5 Format and Edit Commands

Objectives

Special Terms

Format Commands
HTAB
SPC(X)
VTAB

Chaining VTAB, HTAB, and
PRINT Commands

Fun with Formatting
INVERSE, NORMAL
FLASH, NORMAL
Columns with Commas
SPEED
Packing

Edit Commands
Pure Cursor Moves
Using the Same Line
Repeating Part of a Line
Inserting Text

Self-test

6 Storing and Retrieving Programs
Objectives
Special Terms
Floppy Disks
Booting DOS
Initializing a Disk
DOS Commands
SAVE
CATALOG
RUN
LOAD
RENAME
LOCK and UNLOCK
DELETE

40
42

45
46
46
47
48
48
49
50

51
51
52
52
53
53
54
54
56
57
58
59

63
64
64
65
65
66
67
68
68
68
69
70
71
71

vi

Making Backup Disks
Self-test

7 Variables

Objectives

Special Terms

Variables

LET Statements

Syntax for LET Statements
Assignment Operators and Incrementing
Naming Variables
Reserved Words

Using Variables

REM Statements

Self-test

8 INPUT Statements
Objectives

Special Terms

INPUT Statements

72
73

75
76
76
77
77
79
79
80
82
82
84
85

89
90
90
91

INPUT Statements with Numeric Variables92

The Advantage of INPUT Statements
INPUT Statements with String Variables
Another Way to Write INPUT Statements
Combining INPUT and PRINT Statements
Using More than One Variable
Using INPUT Statements
Quotation Marks and INPUT Statements
More about INPUT
The CLEAR Command
The GET Command
Self-test

9 Branching and Looping
Objectives
Special Terms
Important Computer Capabilities
Conditional Branching

IF..THEN Statements

The Decision Symbol

Evaluating Assertions

IF..THEN Statements with STQP
Unconditional Branching

The GOTO Statement

Infinite Loops

Fun with Commas and Semicolons

93
94
95
96
97
98
101
103
104
105
107

111
112
112
113
113
113
114
115
117
119
119
119
121

Controlling Loops

FOR...NEXT Statements
Writing FOR...NEXT Statements
Using Variables in FOR..NEXT
Statements

Spaghetti Code

Deleting More Than One Line

Using a Counter

Self-test

10 Designing a Program
Objectives
Special Terms
Top-down Design
Sarah’s Problem
Sarah’s Algorithm
Block Structure
You Have a Problem
Analyze the Problem
Develop a Solution
Write a Solution Algorithm
Determine Program Output
Storyboarding
Program Output and Planning Grids
The Big Question
Underlining
More about LIST and RUN
Self-test

11 subroutines

Objectives

Special Terms

Structured Programs
GOSUB...RETURN Statements
END and STOP

Program Design
Looking at Program Output

Program Construction

Subroutines

Block Structure

Coding the Program

Another Structured Program

ON...GOSUB and ON..GOTO
ON...GOSUB
ON..GOTO

Self-test

121
125

126

128

130
132
133
136

139
140
140
141
142
142
144
144
146
146
146
148
148
149
151
162
163
164

169
170
170
171
171
172
174
174
176
176
177
178
181
187
187
188
190

Contents

vii

12 Program Construction

Objectives

Special Terms

Program Design

Top-down Coding

Code the Program
Top-down Testing

Documentation

TRACE and NOTRACE

Self-test

13 Functions
Objectives
Special Terms
Number Format
The Greatest Integer Function
Rounding to the Nearest Whole
Number
Dollars and Cents
More Uses for INT
Random Numbers
If the Argument Is Positive
If the Argument Is Negative
If the Argument Is Zero
Rounding Random Numbers
Rolling Dice
Random Responses and Delay Loops
AND, OR, and NOT
OR and AND with Random Numbers
Self-test

14 READ..DATA Statements
Objectives
Special Terms
Assigning Values to Variables
READ...DATA Statements
READ...DATA with FOR..NEXT
The DATA Pointer
Writing DATA Statements
Values and Variables
Restoring Data
The Main Program
Average Score and Data List
High Score
Low Score

195
196
196
197
199
199
204
208
210
210

213
214
214
215
216
217

217
219
220
220
221
221
222
223
224
225
226
228

231
232
232
233
233
234
234
235
235
237
237
237
238
238

More about Strings

Flags

Math Test

LOOBY LOO with FOR...NEXT and
READ...DATA Statements

Random Questions with READ...DATA

Self-test

15 strings
Objectives
Special Terms
Manipulating Strings
The LEN Function
The LEFT$ Function
The RIGHT$ Function
Blank Spaces after Input
The MID$ Function
The VAL Function
The STR$ Function
The CHR$ Function
Self-test

16 Nested Loops
Objectives
Special Terms
Nested Loops

Let the Computer Explain
Crossed Loops
Three-level Nesting
Strings and Nested Loops
Self-test

17 More About Program Design
Obijectives
Another Problem
Define and Analyze the Problem
Develop a Solution
Write a Solution Algorithm
The Main Program
Subdivide the Major Modules
Think about the Solution Algorithm
Determine Program Output
The Beginning Section
The Middle Section
The End Section
Self-test

239
242
242
246

247
248

253
254
254
255
255
257
260
262
264
265
266
267
269

271
272
272
273
273
276
277
279
281

283
284
285
285
285
287
287
288
290
290
291
291
297
315

viii

18 Single Subscripted Variables
Objectives
Special Terms
Arrays

Subscripted Variables

DIM Statements

One-dimensional Arrays
Using One-dimensional Arrays

Load the Array

Get Average Score

Get Highest and Lowest Scores

Get Handicap Scores

Get Average Handicap Score

Program Output
Sorting a List of Numbers

The DATA Statement

Print Scores

Rearrange Scores
Alphabetizing a List

DATA Statements

Print Names

Rearrange Names

Program Output
Concatenation

Load the Array

Print List

Print List in Reverse Order
Self-test

19 Double Subscripted Variables
Objectives
Special Terms
Double Subscripted Variables
Using Two-dimensional Arrays
The Main Program
Load the Array
Print Average Score
Golf Scores and READ...DATA
The Main Program
Load the Array
DATA Statements
Print Average Score A\
Bowling Team Scores
The Main Program
Load the Array

317
318
318
319
319
320
320
321
322
322
323
323
324
324
325
325
326
326
327
328
328
328
329
329
330
330
331
332

333
334
334
335
336
336
336
337
338
338
338
339
339
339
340
340

DATA Statements

Series and Totals

Print Statistics
Search Address

The Main Program

Get Name

Search and Print

Press E or C

DATA Statements
Self-test

20 More About Program Construction
Obijectives
A Brief Review
Sequence and Logical Groups
Repetition and Conditional Flow
Calling Line Numbers
The Beginning Section
Code the Greeting
Code the Introduction
The Middle Section
Code Practice Test
Examine the Data Structure
Code Load Data Array
Code the Data Statements
Code Do Question
Code Randomize
Code Print Question
Code Get and Check Response
Think about It
The End Section
Code Summary
Code Evaluation
Code Conclusion
Code the Documentation
Summing Up

Appendix A: Glossary

Appendix B: Self-test Answers

Appendix C: Error Messages and
Reserved Words

Index

340
341
342
343
343
343
343
344
344
345

349
350
351
351
351
351
358
358
358
366
373
373
374
375
379
379
381
381
384
384
384
385
386
387
391

392

399

416

418

Introduction

When computers were large, expensive machines, operating them
seemed both mysterious and complex. People thought programmers
were mathematical Merlins and that programming was a black art,
something you and | would never understand. Yet, these machines
changed our lives through their tremendous ability to perform
calculations and process information.

Engineers and architects now use computers as they design and build
aircraft, bridges, and buildings. Computers help medical doctors and
other health professionals diagnose and treat health problems.
Insurance companies, banks, newspaper and publishing companies,
government agencies, and educational institutions use them to process
large amounts of data efficiently. Computers help our scientists and
astronauts explore outer space; our airlines check reservations; and our
fast-food chains provide just what you ordered on your hamburger.

Whether you plan a career as an engineer or teacher, as a secretary,
lawyer, or mechanic, chances are you'll find acomputerin your future. In

fact, the fastest growing job market is the computer field itself. If you
know how to run, operate, or fixa computer, your chances of finding a job
are better than most.

Work isn’'t the only part of our lives computers are changing. Today,
thousands and thousands of small, personal computers arein our homes.
People use these machines in different ways. They use them to control
home heating, get current stock market reports, make travel reservations,
monitor phone calls, provide electronic mail service, play games, and
improve learning skills. People also write computer programs—the
instructions that make the computer do what they want it to do. When
people write programs, they’'re using the computer to help them define
and solve their own problems.

Writing programs is one of the most powerful ways to use a computer. It's
also the best way to understand the computer and to prepare yourself for
life in our computerized world. Writing programs is what this book is
about.

You and computer programming

People of all ages, from first graders to retirees, are learning to program.
You can, too! You don’t have to be Merlin, the magician, or a
mathematical wizard, or an expert typist to learn how to program. Nor dc
you have to understand the inner workings of the computer. Most of us
learn to drive a car without knowing what goes on under the hood. We
also learn the traffic rules we must follow. Well, the computer is also a
machine—a machine for handling information. And you must follow rules
to operate it successfully. These rules are easy to learn, and this book is
here to help you.

Programming for Microcomputers provides a friendly, hands-on
approach to learning how to write computer programs. It teaches you
BASIC, the standard language for home computers. BASIC isan acronym for
Beginner's All-purpose Symbolic Instruction Code. It was developed at
Dartmouth College by John Kemeny and Thomas Kurtz. Kemeny and Kurtz
developed BASIC expressly for people like you—people just learning to
program.

BASIC is a very popular language, and many versions of it exist today. This
book uses the Applesoft version of BASIC, which will run on your Apple I, 11
Plus, br lle computer. Applesoft BASIC shares many features with other
versions of BASIC, so even if your computer doesn’t use Applesoft, you
should be able to use this book. The concepts it teaches apply to any version
of BASIC. Specific commands will differ, however. Most of the differences

1/Introduction 3

concern edit and format commands. Check the manual that came with your
version of BASIC to find equivalent commaan to those in Applesoft.

Like BASIC, Programming for Microcomputers is designed for you, the
beginner who wants to tap the full power of the computer. Beginning
programmers of all ages have used it successfully. Several special features
make this book easy to use:

1. The book progresses, as does the computer, step-by-step. It
takes you from the simple through the more complex steps
involved in writing programs. You begin with short programs and
finish with long, well-documented ones. The contents, objectives,
and special terms at the beginning of each chapter clearly outline
what you will learn; the self-test at the end of each chapter lets
you apply your new skills. You may check your work against the
answers in the back of the book. A glossary and an index, also at
the end of the book, help you find concepts or terms with ease.

2. Short programs illustrate every concept you learn. This is a book
to read and use at the computer. When you enter the sample
programs, you reinforce what you are learning. You gain the
deep understanding that only first-hand experience can provide.
These exercises prepare you for writing your own programs.

3. The book explains the concepts underlying programming. But
these explanations, like the rest of the book, are nontechnical.
They are written so that you can easily grasp important ideas.

4. Programming for Microcomputers provides a detailed, structured
approach to planning your programs—a vital, but often
overlooked, part of the programming process. It provides special
Program Planning and Output Grids. You'll see how these grids
will save time as you plan and write your programs.

5. Finally, even the physical design of Programming for Micro-
computers makes the book easy to use. We used a spiral binding
so that the book would stay open to the page you want. And we
decided to print program listings in regular type rather than
computer print-out because regular type is easier to read. Each
program line contains exactly as many characters as it will when
you type it into your Apple, even though the lines look a little
different because of the regular type. If a word is broken in a
strange place, you'll notice that the line ends at forty characters,
the total number that fits across the monitor of most Apple II's.

We think that you will enjoy Programming for Microcomputers, and that
you will find programming exciting and challenging. Here's what you will
learn: first, you will learn about the keyboard and the syntax, or rules, for
writing the commands and statements that make up programs. Then, you

The computer

will write short programs and learn more BASIC commands. You will learn
exactly what to input (type on the computer keyboard) to have the output
(what appears on the screen) appear just as you want it.

Once you have a good understanding of BASIC, you will begin to plan
programs using a top-down approach. This approach lets you break a
problem into smaller and smaller parts until all are easy to program. You will
also learn to use the grid sheets to plan just how you want your material to
look on the screen.

Later, you will use a top-down approach to coding—translating what you
have planned into lines of BASIC the computer can understand. You will
also use a top-down approach to test and debug (remove errors from) your
program. By the time you get this far, you will be a bonafide programmer.
And being a programmer has more benefits than the obvious one of getting
the computer to do what you want. Programming may help you to define
problems better and to think logically. You will learn how to plan, organize,
and evaluate things in a more systematic manner.

Before we get started, a word about the computer. The computer is a
fantastic machine for processing information. But, as we said before, itis
still just a machine—a tool for handling information. It is simply an
assembly of electronic switches that can be arranged in many patterns.
Everything the computer does is based on the fact that a switch can be
turned on or off! The computer responds only to specific instructions that
are written following preset rules. The instructions are the programs you
write, and the rules are the syntax of the programming language (in our
case, BASIC).

No matter what microcomputer you are using, it will have a central
processing system, a way of getting information into the system, a way of
getting information out of the system, and a means of storing information.
The Apple takes care of these functions with three pieces of equipment. The
central processing system is housed in abox that looks like a typewriter. The
keyboard lets you type in your instructions. This box connects to a monitor
that has a cathode ray tube, which looks like a television screen. Your output
appears on this screen. The box also connects to a disk drive, which stores
information.

That's al there is to it! You can see already that no Merlin-like powers are
necessary here—only curiosity and the desire to learn. So welcome, and
let's get started!

%

Getting Started

Objectives/6
Special Terms/6
Keys and their Functions/7
Turn on the Computer/8
Immediate Execution/9
Deferred Execution/11

Syntax of a Statement/11
System Commands/12
Writing Short Programs/13
Algorithms and Flowcharts/14
More about System Commands LIST, RUN, NEW/17
Self-test/17

Objectives In this chapter you will learn how to:

» Use the keyboard to have certain functions performed

» Write commands in immediate and deferred execution

» Distinguish between alphanumeric expressions, or character

strings, and numeric expressions

Write statements following the required syntax

Write a short program using the required syntax

Recognize the difference in format as a program is entered,

listed, and executed

Write an algorithm

Draw a flowchart to visualize an algorithm

Use the following commands:
System commands: NEW, LIST, RUN, END, CTRL C
Input/output commands: PRINT

vVVvYyy

vVvey

Special terms

Format commands: HOME

Algorithm

Alphanumeric expression

Character string
Command

Control key

CRT

Cursor

Debugging
Decision symbol
Deferred execution
Error message
Execute

Flowchart
Immediate execution
Insert

Keyword

Left arrow key
Line number
Loop

Monitor
Numeric expression
Process symbol
Prompt

Repeat key
RESET

RETURN

Right arrow key
Space bar
Statement
Syntax

System comand
Terminal symbol

2/Getting Started 7

Keys and their functions .

The computer keyboard resembles a typewriter keyboard in many ways.
As Figures 2.1 and 2.2 show, the letters of the alphabet are in their usual
positions on the third, home, and bottom lines. The RETURN key, which is
equivalent to the carriage return key on an electric typewriter, is similarly
familiar. This is the key you will use most frequently. You must press it after
each line that you type. Pressing RETURN signals the computer that you
have completed an instruction. It also returns the cursor (the blinking
square) to the left edge of the screen.

The space bar, another familiar key, functions just like a typewriter space
bar. Similarly, the two shift keys let you type the top character on two-
character keys. Some of these upper characters differ from those on a
regular typewriter, however.

The Apple keyboard differs from that of a typewriter in other ways as well.
Unless you have an Apple lle or have modified your Apple Il/11 +,you can
type only upper-case letters. This means you cannot use the lower-case
letter L for the number 7. The number keys are on the top row of the
keyboard. Notice that the zero symbol, 0, is slashed to distinguish it from
the upper-case letter O.

The computer keyboard also contains unique keys. Some of these, such as
the repeat key, enhance traditional operations. Others are essential for
writing programs or for using commercial computer software. The special
keys are:

The left arrow key backspaces. It moves the cursor to the
left.

The right arrow key moves the cursorto theright. Itactsasa
retype key as it moves the cursor over existing letters.

When you press a key and hold down the repeat key at the
REPT same time, the character appears repeatedly.

The control key does not put characters on the screen. It
CTRL instructs the computer to perform certain functions.

Rt nI0

Pressing control and C at the same time, or control and

CTRL reset at the same time, interrupts a program.

e

