Masami Hagiya
Philip Wadler (Eds.)

Functional and
Logic Programming

8th International Sympasium, FLOPS 2006
Fuji-Susono, Japan, April 2006
Proceedings

LNCS 3945

1-53

| @_ Springer

Fq] 1 Masami Hagiya Philip Wadler (Eds.)

Functional and
Logic Programming

8th International Symposium, FLOPS 2006
Fuji-Susono, Japan, April 24-26, 2006
Proceedings

| AR

@ Springer E200603553

Volume Editors

Masami Hagiya

University of Tokyo

and NTT Communication Science Laboratories
Department of Computer Science

Graduate School of Information Science and Technology
E-mail: hagiya@is.s.u-tokyo.ac.jp

Philip Wadler

University of Edinburgh

Department of Informatics

James Clerk Maxwell Building, The King’s Buildings
Mayfield Road, Edinburgh EH9 3JZ, UK

E-mail: wadler@inf.ed.ac.uk

Library of Congress Control Number: 2006923563

CR Subject Classification (1998): D.1.6, D.1, D.3, F.3,1.2.3
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-33438-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-33438-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11737414 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler »

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3945

Lecture Notes in Computer Science

For information about Vols. 1-3840

please contact your bookseller or Springer

Vol. 3946: T.R. Roth-Berghofer, S. Schulz, D.B. Leake
(Eds.), Modeling and Retrieval of Context. XI, 149 pages.
2006. (Sublibrary LNAI).

Vol. 3945: M. Hagiya, P. Wadler (Eds.), Functional and
Logic Programming. X, 295 pages. 2006.

Vol. 3939: C. Priami, L. Cardelli, S. Emmott (Eds.), Trans-
actions on Computational Systems Biology IV. VII, 141
pages. 2006. (Sublibrary LNBI).

Vol. 3936: M. Lalmas, A. MacFarlane, S. Riiger, A.
Tombros, T. Tsikrika, A. Yavlinsky (Eds.), Advances in
Information Retrieval. XI, 584 pages. 2006.

Vol. 3934: J.A. Clark, R.F. Paige, FA. C. Polack, P.J.
Brooke (Eds.), Security in Pervasive Computing. X, 243
pages. 2006.

Vol. 3933: F. Bonchi, J.-F. Boulicaut (Eds.), Knowledge
Discovery in Inductive Databases. VIII, 251 pages. 2006.

Vol. 3931: B. Apolloni, M. Marinaro, G. Nicosia, R. Tagli-
aferri (Eds.), Neural Nets. XIII, 370 pages. 2006.

Vol. 3930: D.S. Yeung, Z.-Q. Liu, X.-Z. Wang, H. Yan

* (Eds.), Advances in Machine Learning and Cybernetics.

‘

XXI, 1110 pages. 2006. (Sublibrary LNAI).

Vol. 3928: J. Domingo-Ferrer, J. Posegga, D. Schreckling
(Eds.), Smart Card Research and Advanced Applications.
X1, 359 pages. 2006.

Vol. 3927:J. Hespanha, A. Tiwari (Eds.), Hybrid Systems:
Computation and Control. XII, 584 pages. 2006.

Vol. 3925: A. Valmari (Ed.), Model Checking Software.
X, 307 pages. 2006.

Vol. 3924: P. Sestoft (Ed.), Programming Languages and
Systems. XII, 343 pages. 2006.

Vol. 3923: A. Mycroft, A. Zeller (Eds.), Compiler Con-

“ struction. XIII, 277 pages. 2006.

Vol. 3922: L. Baresi, R. Heckel (Eds.), Fundamental Ap-
proaches to Software Engineering. XIII, 427 pages. 2006.

Vol. 3921: L. Aceto, A. Ing6lfsdéttir (Eds.), Foundations
of Software Science and Computation Structures. X'V, 447
pages. 2006.

Vol. 3920: H. Hermanns, J. Palsberg (Eds.), Tools and
Algorithms for the Construction and Analysis of Systems.
X1V, 506 pages. 2006.

Vol. 3918: W.K. Ng, M. Kitsuregawa, J. Li, K. Chang
(Eds.), Advances in Knowledge Discovery and Data Min-
ing. XXIV, 879 pages. 2006. (Sublibrary LNAI).

Vol. 3917: H. Chen, F.Y. Wang, C.C. Yang, D. Zeng, M.

Chau, K. Chang (Eds.), Intelligence and Security Infor-
matics. XI, 186 pages. 2006.

Vol. 3916: J. Li, Q. Yang, A.-H. Tan (Eds.), Data Min-
ing for Biomedical Applications. VIII, 155 pages. 2006.
(Sublibrary LNBI).

Vol. 3915: R. Nayak, M.J. Zaki (Eds.), Knowledge Dis-
covery from XML Documents. VIII, 105 pages. 2006.

Vol. 3914: A. Garcia, R. Choren, C. Lucena, P. Giorgini,
T. Holvoet, A. Romanovsky (Eds.), Software Engineering
for Multi-Agent Systems IV. XIV, 255 pages. 2006.

Vol. 3910: S.A. Brueckner, G.D.M. Serugendo, D. Hales,
F. Zambonelli (Eds.), Engineering Self-Organising Sys-
tems. XII, 245 pages. 2006. (Sublibrary LNAI).

Vol. 3909: A. Apostolico, C. Guerra, S. Istrail, P. Pevzner,
M. Waterman (Eds.), Research in Computational Molec-
ular Biology. XVII, 612 pages. 2006. (Sublibrary LNBI).

Vol. 3907: F. Rothlauf, J. Branke, S. Cagnoni, E. Costa, C.
Cotta, R. Drechsler, E. Lutton, P. Machado, J.H. Moore, J.
Romero, G.D. Smith, G. Squillero, H. Takagi (Eds.), Ap-
plications of Evolutionary Computing. XXIV, 813 pages.
2006.

Vol. 3906: J. Gottlieb, G.R. Raidl (Eds.), Evolutionary
Computation in Combinatorial Optimization. XI, 293
pages. 2006.

Vol. 3905: P. Collet, M. Tomassini, M. Ebner, S.
Gustafson, A. Ekért (Eds.), Genetic Programming. XI, 361
pages. 2006.

Vol. 3904: M. Baldoni, U. Endriss, A. Omicini, P. Tor-
roni (Eds.), Declarative Agent Languages and Technolo-
gies III. XII, 245 pages. 2006. (Sublibrary LNAI).

Vol. 3903: K. Chen, R. Deng, X. Lai, J. Zhou (Eds.), Infor-
mation Security Practice and Experience. XIV, 392 pages.
2006.

Vol.3901: PM. Hill (Ed.), Logic Based Program Synthesis
and Transformation. X, 179 pages. 2006.

Vol. 3899: S. Frintrop, VOCUS: A Visual Attention System
for Object Detection and Goal-Directed Search. XIV, 216
pages. 2006. (Sublibrary LNAI).

Vol. 3898: K. Tuyls, P.J. 't Hoen, K. Verbeeck, S. Sen
(Eds.), Learning and Adaption in Multi-Agent Systems.
X, 217 pages. 2006. (Sublibrary LNAI).

Vol. 3897: B. Preneel, S. Tavares (Eds.), Selected Areas in
Cryptography. XI, 371 pages. 2006.

Vol. 3896: Y. Ioannidis, M.H. Scholl, J.W. Schmidt, F.
Matthes, M. Hatzopoulos, K. Boehm, A. Kemper, T. Grust,
C. Boehm (Eds.), Advances in Database Technology -
EDBT 2006. XIV, 1208 pages. 2006.

Vol. 3895: O. Goldreich, A.L. Rosenberg, A.L. Selman
(Eds.), Theoretical Computer Science. XII, 399 pages.
2006.

Vol. 3894: W. Grass, B. Sick, K. Waldschmidt (Eds.), Ar-
chitecture of Computing Systems - ARCS 2006. XII, 496
pages. 2006.

Vol. 3893: L. Atzori, D.D. Giusto, R. Leonardi, F. Pereira
(Eds.), Visual Content Processing and Representation. X,
224 pages. 2006.

Vol. 3891: J.S. Sichman, L. Antunes (Eds.), Multi-Agent-
Based Simulation VI. X, 191 pages. 2006. (Sublibrary
LNAI).

Vol. 3890: S.G. Thompson, R. Ghanea-Hercock (Eds.),
Defence Applications of Multi-Agent Systems. XII, 141
pages. 2006. (Sublibrary LNAI).

Vol. 3889: J. Rosca, D. Erdegmus, J.C. Principe, S. Haykin
(Eds.), Independent Component Analysis and Blind Sig-
nal Separation. XXI, 980 pages. 2006.

Vol. 3888: D. Draheim, G. Weber (Eds.), Trends in Enter-
prise Application Architecture. IX, 145 pages. 2006.

Vol. 3887: J.R. Correa, A. Hevia, M. Kiwi (Eds.), LATIN
2006: Theoretical Informatics. XVI, 814 pages. 2006.

Vol. 3886: E.G. Bremer, J. Hakenberg, E.-H.(S.) Han,
D. Berrar, W. Dubitzky (Eds.), Knowledge Discovery in
Life Science Literature. XIV, 147 pages. 2006. (Sublibrary
LNBI).

Vol. 3885: V. Torra, Y. Narukawa, A. Valls, J. Domingo-

Ferrer (Eds.), Modeling Decisions for Artificial Intelli-
gence. XII, 374 pages. 2006. (Sublibrary LNAI).

Vol. 3884: B. Durand, W. Thomas (Eds.), STACS 2006.
X1V, 714 pages. 2006.

Vol. 3882: M.L. Lee, K.L. Tan, V. Wuwongse (Eds.),
Database Systems for Advanced Applications. XIX, 923
pages. 2006.

Vol. 3881: S. Gibet, N. Courty, J.-F. Kamp (Eds.), Gesture

in Human-Computer Interaction and Simulation. XIII,
344 pages. 2006. (Sublibrary LNAI).

Vol. 3880: A. Rashid, M. Aksit (Eds.), Transactions on
Aspect-Oriented Software Development I. IX, 335 pages.
2006.

Vol. 3879: T. Erlebach, G. Persinao (Eds.), Approximation
and Online Algorithms. X, 349 pages. 2006.

Vol. 3878: A. Gelbukh (Ed.), Computational Linguistics
and Intelligent Text Processing. X VII, 589 pages. 2006.

Vol. 3877: M. Detyniecki, J.M. Jose, A. Niirnberger, C. J.
¢, van Rijsbergen (Eds.), Adaptive Multimedia Retrieval:
User, Context, and Feedback. XI, 279 pages. 2006.

Vol. 3876: S. Halevi, T. Rabin (Eds.), Theory of Cryptog-
raphy. XI, 617 pages. 2006.

Vol. 3875: S. Ur, E. Bin, Y. Wolfsthal (Eds.), Hardware and
Software, Verification and Testing. X, 265 pages. 2006.

Vol. 3874: R. Missaoui, J. Schmidt (Eds.), Formal Concept
Analysis. X, 309 pages. 2006. (Sublibrary LNAI).

Vol. 3873: L. Maicher, J. Park (Eds.), Charting the Topic
Maps Research and Applications Landscape. VIII, 281
pages. 2006. (Sublibrary LNAI).

Vol. 3872: H. Bunke, A. L. Spitz (Eds.), Document Anal-
ysis Systems VIL XIII, 630 pages. 2006.

Vol. 3870: S. Spaccapietra, P. Atzeni, WW. Chu, T.
Catarci, K.P. Sycara (Eds.), Journal on Data Semantics
V. X111, 237 pages. 2006.

Vol. 3869: S. Renals, S. Bengio (Eds.), Machine Learning
for Multimodal Interaction. XIII, 490 pages. 2006.

Vol. 3868: K. Romer, H. Karl, F. Mattern (Eds.), Wireless
Sensor Networks. XI, 342 pages. 2006.

Vol. 3866: T. Dimitrakos, F. Martinelli, P.Y.A. Ryan, S.
Schneider (Eds.), Formal Aspects in Security and Trust.
X, 259 pages. 2006.

Vol. 3865: W. Shen, K.-M. Chao, Z. Lin, J.-P.A. Barthes,
A. James (Eds.), Computer Supported Cooperative Work
in Design IL. XTI, 659 pages. 2006.

Vol. 3863: M. Kohlhase (Ed.), Mathematical Knowledge
Management. X1, 405 pages. 2006. (Sublibrary LNAI).

Vol. 3862: R.H. Bordini, M. Dastani, J. Dix, A.E.F.
Seghrouchni (Eds.), Programming Multi-Agent Systems.
X1V, 267 pages. 2006. (Sublibrary LNAI).

Vol. 3861: J. Dix, S.J. Hegner (Eds.), Foundations of In-
formation and Knowledge Systems. X, 331 pages. 2006.

Vol. 3860: D. Pointcheval (Ed.), Topics in Cryptology —
CT-RSA 2006. XI, 365 pages. 2006.

Vol. 3858: A. Valdes, D. Zamboni (Eds.), Recent Advances
in Intrusion Detection. X, 351 pages. 2006.

Vol. 3857: M.P.C. Fossorier, H. Imai, S. Lin, A. Poli
(Eds.), Applied Algebra, Algebraic Algorithms and Error-
Correcting Codes. XI, 350 pages. 2006.

Vol. 3855: E. A. Emerson, K.S. Namjoshi (Eds.), Verifi-
cation, Model Checking, and Abstract Interpretation. XI,
443 pages. 2005.

Vol. 3854: 1. Stavrakakis, M. Smirnov (Eds.), Autonomic
Communication. XIII, 303 pages. 2006.

Vol. 3853: A.J. Ijspeert, T. Masuzawa, S. Kusumoto (Eds.),
Biologically Inspired Approaches to Advanced Informa-
tion Technology. XIV, 388 pages. 2006.

Vol. 3852: P.J. Narayanan, S.K. Nayar, H.-Y. Shum (Eds.),
Computer Vision—ACCV 2006, Part I1. XXXI, 977 pages.
2006.

Vol. 3851: P.J. Narayanan, S.K. Nayar, H.-Y. Shum (Eds.),
Computer Vision —ACCV 2006, Part I. XXXI, 973 pages.
2006.

Vol. 3850: R. Freund, G. Piun, G. Rozenberg, A. Salomaa
(Eds.), Membrane Computing. IX, 371 pages. 2006.

Vol. 3849: 1. Bloch, A. Petrosino, A.G.B. Tettamanzi
(Eds.), Fuzzy Logic and Applications. XIV, 438 pages.
2006. (Sublibrary LNAI).

Vol. 3848: J.-F. Boulicaut, L. De Raedt, H. Mannila (Eds.),
Constraint-Based Mining and Inductive Databases. X, 401
pages. 2006. (Sublibrary LNAI).

Vol. 3847: K.P. Jantke, A. Lunzer, N. Spyratos, Y. Tanaka
(Eds.), Federation over the Web. X, 215 pages. 2006. (Sub-
library LNAI).

Vol. 3846: H. J. van den Herik, Y. Bjornsson, N.S. Ne-
tanyahu (Eds.), Computers and Games. XIV, 333 pages.
2006.

Vol. 3845: J. Farré, 1. Litovsky, S. Schmitz (Eds.), Imple-
mentation and Application of Automata. XIII, 360 pages.
2006.

Vol. 3844: J.-M. Bruel (Ed.), Satellite Events at the MoD-
ELS 2005 Conference. XIII, 360 pages. 2006.

Vol. 3843: P. Healy, N.S. Nikolov (Eds.), Graph Drawing.
XVII, 536 pages. 2006.

Vol. 3842: H.T. Shen, J. Li, M. Li, J. Ni, W. Wang (Eds.),
Advanced Web and Network Technologies, and Applica-
tions. XXVII, 1057 pages. 2006.

Vol. 3841: X. Zhou, J. Li, H.T. Shen, M. Kitsuregawa, Y.
Zhang (Eds.), Frontiers of WWW Research and Develop-
ment - APWeb 2006. XXIV, 1223 pages. 2006.

Faylo W

Preface

This volume contains the proceedings of the 8th International Symposium on
Functional and Logic Programming (FLOPS 2006), held in Fuji-Susono, Japan,
April 24-26, 2006 at the Fuji Institute of Education and Training.

FLOPS is a forum for research on all issues concerning functional program-
ming and logic programming. In particular it aims to stimulate the cross-
fertilization as well as the integration of the two paradigms. The previous FLOPS
meetings took place in Fuji-Susono (1995), Shonan (1996), Kyoto (1998),
Tsukuba (1999), Tokyo (2001), Aizu (2002) and Nara (2004). The proceedings
of FLOPS 1999, FLOPS 2001, FLOPS 2002 and FLOPS 2004 were published
by Springer in the Lecture Notes in Computer Science series, as volumes 1722,
2024, 2441 and 2998, respectively.

In response to the call for papers, 51 papers were submitted. Each paper was
reviewed by at least three Program Committee members with the help of expert
external reviewers. The Program Committee meeting was conducted electroni-
cally for a period of 2 weeks in December 2005 and January 2006. After careful
and thorough discussion, the Program Committee selected 17 papers (33%) for
presentation at the conference. In addition to the 17 contributed papers, the
symposium included talks by two invited speakers: Guy Steele (Sun Microsys-
tems Laboratories) and Peter Van Roy (Université Catholique de Louvain).

On behalf of the Program Committee, we would like to thank the invited
speakers who agreed to give talks and contribute papers, and all those who
submitted papers to FLOPS 2006. As Program Chairs, we would like to sin-
cerely thank all the members of the FLOPS 2006 Program Committee for their
excellent job, and all the external reviewers for their invaluable contribution.
The support of our sponsors is gratefully acknowledged. We are indebted to
the Japan Society for Software Science and Technology (JSSST), the Associa-
tion of Logic Programming (ALP), and the Asian Association for Foundation of
Software (AAFS). Finally we would like to thank members of the Local Arrange-
ments Committee, in particular Yoshihiko Kakutani, for their invaluable support
throughout the preparation and organization of the symposium.

February 2006 Masami Hagiya
Philip Wadler

Program Co-chairs

FLOPS 2006

Symposium Organization

Program Chairs

Philip Wadler Edinburgh, UK
Masami Hagiya Tokyo, Japan

Program Committee

Vincent Danos Paris, France

Jacques Garrigue Nagoya, Japan

Manuel Hermenegildo New Mexico, USA & Madrid, Spain
Gabrielle Keller UNSW, Sydney, Australia
Michael Rusinowitch INRIA Lorraine, France
Konstantinos Sagonas Uppsala, Sweden

Ken Satoh NII, Tokyo, Japan

Peter Selinger Dalhousie, Canada

Eijiro Sumii Tohoku, Japan

Naoyuki Tamura Kobe, Japan

Peter Thiemann Freiburg, Germany

David Warren Stony Brook, USA

Local Arrangements Chair

Masami Hagiya Tokyo, Japan

VIII Organization

Referees

Tatsuya Abe

Amal Ahmed
Kenichi Asai

Demis Ballis

Maria Garcia de la Banda
Bruno Blanchet
Daniel Cabeza
Venanzio Capretta
Olga Caprotti
Francois Charoy
Ezra Cooper
Markus Degen
Rachid Echahed
Carl Christian Frederiksen
Naoki Fukuta
Martin Gasbichler
Samir Genaim
Michael Hanus
Ralf Hinze

Hiroshi Hosobe
Haruo Hosoya
Zhenjiang Hu
Atsushi Igarashi
Koji Kagawa
Yoshihiko Kakutani
Dominique Larchey
Pedro Lopez

Ugo Dal Lago
Toshiyuki Maeda
Julio Marino
Yasuhiko Minamide

Jean-Yves Moyen
Susana Munoz
Keiko Nakata

Jorge Navas
Matthias Neubauer
Tobias Nipkow
Susumu Nishimura
Shin-ya Nishizaki
Martin Odersky
Yoshihiro Oyama
Mikael Pettersson
David Pichardie
Benjamin Pierce
Paola Quaglia
Christophe Ringeissen
Don Sannella
Ganesh Sittampalam
Yasuyuki Tahara
Yoshiaki Takata
Yasuyuki Tsukada
Satoshi Tojo
Akihiko Tozawa
Rafael del Vado
German Vidal
Dimitrios Vytiniotis
Hironori Washizaki
Stefan Wehr
Stephanie Weirich
Jeremy Yallop
Akihiro Yamamoto
Mitsuharu Yamamoto

Table of Contents

Invited Papers

Parallel Programming and Parallel Abstractions in Fortress
Guy L. Steele.o 1

Convergence in Language Design: A Case of Lightning Striking Four
Times in the Same Place
Peter Vo BOW viessmrms wmsmsansbmsmsss i impas voise s ems £osa b 2

Refereed Papers

Data Types

“Scrap Your Boilerplate” Reloaded
Ralf Hinze, Andres Loh, Bruno C.d.S. Oliveira

Ruler: Programming Type Rules
Atze Dijkstra, S. Doaitse SWierstraccooiuiiiiinna... 30

A Framework for Extended Algebraic Data Types
Martin Sulzmann, Jeremy Wazny, Peter J. Stuckey

FP Extensions

Lock Free Data Structures Using STM in Haskell
Anthony Discolo, Tim Harris, Simon Marlow, Simon Peyton Jones,
Satnam Singh 65

XML Type Checking Using High-Level Tree Transducer
Akihiko Tozawa

Type Theory

A Computational Approach to Pocklington Certificates in Type Theory
Benjamin Grégoire, Laurent Théry, Benjamin Werner

Defining and Reasoning About Recursive Functions: A Practical Tool
for the Coq Proof Assistant
Gilles Barthe, Julien Forest, David Pichardie, Viad Rusu

X Table of Contents
LP Extensions

Soutei, a Logic-Based Trust-Management System
Andrew Pimlott, Oleg Kiselyov

A Syntactic Approach to Combining Functional Notation, Lazy

Evaluation, and Higher-Order in LP Systems
Amadeo Casas, Daniel Cabeza, Manuel V. Hermenegildo 146

Analysis

Resource Analysis by Sup-interpretation
Jean-Yves Marion, Romain Péchoux 163

Lazy Set-Sharing Analysis
Xuan Li, Andy King, Lunjin Lu

Size-Change Termination and Bound Analysis
James Avery

Contracts

Typed Contracts for Functional Programming
Ralf Hinze, Johan Jeuring, Andres Loh 208

Contracts as Pairs of Projections
Robert Bruce Findler, Matthias Blume

Web and GUI

iData for the World Wide Web — Programming Interconnected Web
Forms
Rinus Plasmetjer, Peter Achten............. 242

Crossing State Lines: Adapting Object-Oriented Frameworks to
Functional Reactive Languages

Daniel Ignatoff, Gregory H. Cooper, Shriram Krishnamurthi

WASH Server Pages
Peter Thiemanmo 277

Author Index 295

Parallel Programming and Parallel
Abstractions in Fortress

Guy L. Steele

Sun Microsystems Laboratories

Abstract. The Programming Language Research Group at Sun Mi-
crosystems Laboratories seeks to apply lessons learned from the Java
(TM) Programming Language to the next generation of programming
languages. The Java language supports platform-independent parallel
programming with explicit multithreading and explicit locks. As part of
the DARPA program for High Productivity Computing Systems, we are
developing Fortress, a language intended to support large-scale scientific
computation. One of the design principles is that parallelism be encour-
aged everywhere (for example, it is intentionally just a little bit harder
to write a sequential loop than a parallel loop). Another is to have rich
mechanisms for encapsulation and abstraction; the idea is to have a fairly
complicated language for library writers that enables them to write li-
braries that present a relatively simple set of interfaces to the application
programmer. We will discuss ideas for using a rich polymorphic type sys-
tem to organize multithreading and data distribution on large parallel
machines. The net result is similar in some ways to data distribution
facilities in other languages such as HPF and Chapel, but more open-
ended, because in Fortress the facilities are defined by user-replaceable
libraries rather than wired into the compiler.

M. Hagiya and P. Wadler (Eds.): FLOPS 2006, LNCS 3945, p. 1, 2006.
(© Springer-Verlag Berlin Heidelberg 2006

Convergence in Language Design:
A Case of Lightning Striking
Four Times in the Same Place

Peter Van Roy

Université catholique de Louvain,
B-1348 Louvain-la-Neuve, Belgium
pvr@info.ucl.ac.be
http://www.info.ucl.ac.be/people/cvvanroy.html

Abstract. What will a definitive programming language look like? By
definitive language I mean a programming language that gives good so-
lutions at its level of abstraction, allowing computer science researchers
to move on and work at higher levels. Given the evolution of computer
science as a field with a rising level of abstraction, it is my belief that
a small set of definitive languages will eventually exist. But how can we
learn something about this set, considering that many basic questions
about languages have not yet been settled? In this paper, I give some
tentative conclusions about one definitive language. I present four case
studies of substantial research projects that tackle important problems in
four quite different areas: fault-tolerant programming, secure distributed
programming, network-transparent distributed programming, and teach-
ing programming as a unified discipline. All four projects had to think
about language design. In this paper, I summarize the reasons why each
project designed the language it did. It turns out that all four languages
have a common structure. They can be seen as layered, with the follow-
ing four layers in this order: a strict functional core, then deterministic
concurrency, then message-passing concurrency, and finally shared-state
concurrency (usually with transactions). This confirms the importance
of functional programming and message passing as important defaults;
however, global mutable state is also seen as an essential ingredient.

1 Introduction

This paper presents a surprising example of convergence in language design.! I
will present four different research projects that were undertaken to solve four
very different problems. The solutions achieved by all four projects are significant
contributions to each of their respective areas. The four projects are interesting
to us because they all considered language design as a key factor to achieve
success. The surprise is that the four projects ended up using languages that
have very similar structures.

! This paper was written to accompany an invited talk at FLOPS 2006 and is intended
to stimulate discussion.

M. Hagiya and P. Wadler (Eds.): FLOPS 2006, LNCS 3945, pp. 2-12, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Convergence in Language Design 3

This paper is structured as follows. Section 1.1 briefly presents each of the four
projects and Section 1.2 sketches their common solution. Then Sections 2 to 5
present each of the four projects in more detail to motivate why the common
solution is a good solution for it. Finally, Section 6 concludes the paper by
recapitulating the common solution and making some conclusions on why it is
important for functional and logic programming.

Given the similar structure of the four languages, I consider that their com-
mon structure deserves to be carefully examined. The common structure may
turn out to be the heart of one possible definitive programming language, i.e.,
a programming language that gives good solutions at its level of abstraction,
so that computer science researchers can move on and work at higher levels.
My view is that the evolution of programming languages will follow a similar
course as the evolution of parsing algorithms. In the 1970s, compiler courses
were often built around a study of parsing algorithms. Today, parsing is well
understood for most practical purposes and when designing a new compiler it
is straightforward to pick a parsing algorithm from a set of “good enough” or
“definitive” algorithms. Today’s compiler courses are built around higher level
topics such as dataflow analysis, type systems, and language design. For pro-
gramming languages the evolution toward a definitive set may be slower than
for parsing algorithms because languages are harder to judge objectively than
algorithms.

1.1 The Four Projects
The four projects are the following:?

— Programming highly available embedded systems for telecommunications
(Section 2). This project was undertaken by Joe Armstrong and his col-
leagues at the Ericsson Computer Science Laboratory. This work started in
1986. The Erlang language was designed and a first efficient and stable im-
plementation was completed in 1991. Erlang and its current environment,
the OTP (Open Telecom Platform) system, are being used successfully in
commercial systems by Ericsson and other companies.

— Programming secure distributed systems with multiple users and multiple se-
curity domains (Section 3). This project was undertaken over many years by
different institutions. It started with Carl Hewitt’s Actor model and led via
concurrent logic programming to the E language designed by Doug Barnes,
Mark Miller, and their colleagues. Predecessors of E have been used to im-
plement various multiuser virtual environments.

— Making network-transparent distributed programming practical (Section 4).
This project started in 1995 with the realization that the well-factored design
of the Oz language, first developed by Gert Smolka and his students in
1991 as an outgrowth of the ACCLAIM project, was a good starting point
for making network transparent distribution practical. This resulted in the
Mozart Programming System, whose first release was in 1999.

2 Many people were involved in each project; because of space limitations only a few
are mentioned here.

4 P. Van Roy

— Teaching programming as a unified discipline covering all popular program-
ming paradigms (Section 5). This project started in 1999 with the realization
by the author and Seif Haridi that Oz is well-suited to teaching program-
ming because it covers many programming concepts, it has a simple seman-
tics, and it has an efficient implementation. A textbook published in 2004
“reconstructs” the Oz design according to a principled approach. This book
is the basis of programming courses now being taught at more than a dozen
universities worldwide.

1.2 The Layered Language Structure

In all four research projects, the programming language has a layered struc-
ture. In its most general form, the language has four layers. This section briefly
presents the four layers and mentions how they are realized in the four projects.
The rest of the paper motivates the layered structure for each project in more
detail. The layers are the following:

— The inner layer is a strict functional language. All four projects start with
this layer.

— The second layer adds deterministic concurrency. Deterministic concurrency
is sometimes called declarative or dataflow concurrency. It has the property
that it cannot have race conditions. This form of concurrency is as simple
to reason in as functional programming. In Oz it is realized with single-
assignment variables and dataflow synchronization. Because Oz implements
these variables as logic variables, this layer in Oz is also a logic language.
In E it is realized by a form of concurrent programming called event-loop
concurrency: inside a process all objects share a single thread. This means
that execution inside a process is deterministic. The Erlang project skips
this layer.

— The third layer adds asynchronous message passing. This leads to a sim-
ple message-passing model in which concurrent entities send messages asyn-
chronously. All four projects have this layer. In E, this layer is used for
communication between processes (deterministic concurrency is used for
communication inside a single process).

— The fourth layer adds global mutable state.? Three of the four projects have
global mutable state as a final layer, provided for different reasons, but always
with the understanding that it is not used as often as the other layers. In the
Erlang project, the mutable state is provided as a persistent database with
a transactional interface. In the network transparency project, the mutable
state is provided as an object store with a transactional interface and as a
family of distributed protocols that is used to guarantee coherence of state
across the distributed system. These protocols are expensive but they are
sometimes necessary. In the teaching programming project, mutable state is
used to make programs modular. The E project skips this layer.

3 By global, I mean that the mutable state has a scope that is as large as necessary,
not that it necessarily covers the whole program.

Convergence in Language Design 5

This layered structure has an influence on program design. In all four projects,
the starting point is the functional inner layer, complemented by the message-
passing layer which is just as important. In three of the four projects, the final
layer (global mutable state) is less used than the others, but it provides a critical
functionality that cannot be eliminated.

Note that the network-transparent distribution project and the teaching pro-
gramming project were undertaken by many of the same people and started
with the same programming language. Both projects were undertaken because
we had reasons to believe Oz would be an adequate starting point. Each project
had to adapt the Oz language to get a good solution. In the final analysis, both
projects give good reasons why their solutions are appropriate, as explained in
Sections 4 and 5.

2 Fault-Tolerant Programming

The Erlang programming language and system is designed for building high
availability telecommunications systems. Erlang was designed at the Ericsson
Computer Science Laboratory [5,4]. Erlang is designed explicitly to support
programs that tolerate both software and hardware faults. Note that software
faults are unavoidable: studies have shown that even with extensive testing,
software still has bugs. Any system with high availability must therefore have
a way to tolerate faults due to software bugs. Erlang has been used to build
commercial systems of very high availability [8]. The most successful of these
systems is the AXD 301 ATM switch, which contains around 1 million lines of
Erlang, a similar amount of C/C++ code, and a small amount of Java [29].

An Erlang program consists of a (possibly very large) number of processes. An
Erlang process is a lightweight entity with its own memory space. A process is
programmed with a strict functional language. Each process has a unique iden-
tity, which is a constant that can be stored in data structures and in messages.
Processes communicate by sending asynchronous messages to other processes.
A process receives messages in its mailbox, and it can extract messages from
the mailbox with pattern matching. Note that a process can do dynamic code
change by receiving a new function in a message and installing it as the new
process definition. We conclude that this structure gives the Erlang language
two layers: a functional layer for programming processes, and a message-passing
layer for allowing them to communicate.

To support fault tolerance, two processes can be linked together. When one
process fails, for example because of a software error, then the other fails as well.
Each process has a supervisor bit. If a process is set to supervisor mode, then
it does not fail when a linked process fails, but it receives a message generated
by the run-time system. This allows the application to recover from the failure.
Erlang is well-suited to implement software fault tolerance because of process
isolation and process linking.

Erlang also has a database called Mnesia. The database stores consistent
snapshots of critical program data. When processes fail, their supervisors can
use the database to recover and continue execution. The database provides a

6 P. Van Roy

transactional interface to shared data. The database is an essential part of Erlang
programs. It can therefore be considered as a third layer of the Erlang language.
This third layer, mutable state with a transactional interface, implements a form
of shared-state concurrency [26].

Because Erlang processes do not share data, they can be implemented over a
distributed system without any changes in the program. This makes distributed
programming in Erlang straightforward. Using process linking and supervisors,
Erlang programs can also recover from hardware failures, i.e., partial failures of
the distributed system.

3 Secure Distributed Programming

The E programming language and system is designed for building secure dis-
tributed systems [21,19]. The E language consists of objects (functions that
share an encapsulated state) hosted in secure processes called vats that commu-
nicate through a secure message-passing protocol based on encryption. Within
the language, security is provided by implementing all language references (in-
cluding object references) as capabilities. A capability is an unforgeable reference
that combines two properties that cannot be separated: it designates a language
entity and it provides permission to perform a well-defined set of operations on
the entity. The only way to perform an operation is to have a capability for that
operation.

Capabilities are passed between language entities according to well-defined
rules. The primary rule is that the only way to get a capability is that an entity
to which you already have a capability passes you the capability (“connectivity
begets connectivity”). A system based on capabilities can support the Principle
of Least Authority (POLA): give each entity just enough authority to carry
out its work. In systems based on POLA the destructive abilities of malicious
programs such as viruses largely go away. Unfortunately, current programming
languages and operating systems only have weak support for POLA. This is why
projects such as E and KeyKOS (see below) are so important [25].

Inside a vat, there is a single thread of execution and all objects take turns
executing in this thread. Objects send other objects asynchronous messages that
are queued for execution. Objects execute a method when they receive a message.
This is a form of deterministic concurrency that is called event-loop concurrency.
Single threading within a vat is done to ensure that concurrency introduces no
security problems due to the nondeterminism of interleaving execution. Event-
loop concurrency works well for secure programs; a model based on shared-state
concurrency is much harder to program with [20]. Between two or more vats,
execution is done according to a general message-passing model.

In a system such as E that is based on capabilities, there is no ambient au-
thority, i.e., a program does not have the ability to perform an operation just
because it is executing in a certain context. This is very different from most
other systems. For example, in Unix a program has all the authority of the user
that executes it. The lack of ambient authority does not mean that E necessarily
does not have global mutable state. For example, there could be a capability

