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Preface

Computer-implemented numerical methods are now used extensively in
the undergraduate engineering curriculum. There are numerous reasons for
this: (1) industry expects engineering graduates to be computer-literate, (2)
accreditation agencies require computer exercises to be integrated into core
classes for engineering majors, (3) there has been an increase in accessibility
of computing capabilities for undergraduate students, (4) numerical meth-
ods allow the student to solve more complex problems, and (5) the ease of
obtaining an answer allows students to “experiment” with simulators.

In the past, students have largely been expected to teach themselves nu-
merical methods. Although students could take numerical analysis courses
from math departments, such courses are typically oriented toward proofs
and theorems and are not always useful for engineering students. As a result,
undergraduate engineering students often are ill-prepared to apply numerical
methods in their upper-division courses. Professors teaching these courses
either have to present problems that have analytical solutions, or they must
introduce numerical methods themselves. There are some drawbacks to these
approaches. Problems which have analytical solutions are usually idealized
and are not always the most relevant or interesting examples. In addition,
the analytical solution procedures can often be abstract mathematical de-
partures from the subject at hand and can confuse the student instead of
providing insight. Finally, when professors are forced to include numerical
techniques, they are usually only able to present a “cookbook” perspective
of the few numerical methods that they choose to illustrate.

A number of chemical engineering departments have decided to offer
courses that represent a unified perspective of the most useful methods for
the numerical solution of engineering problems. Considering the number
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of courses which are designed to teach the fundamentals of chemical engi-
neering, it appears useful to first teach students to solve the equations they
will learn to formulate. The goal of this text is to provide students with
the knowledge and experience to apply numerical methods efficiently for the
solution of engineering problems. In addition, the concepts of convergence,
stability, and accuracy are emphasized throughout the text.

The text is explicitly written at the sophomore level, where students
usually have difficulty understanding a general presentation of a numerical
algorithm. As a result, each such algorithm is presented in explicit detail
to aid the understanding of the algorithm. Approximately half of the exam-
ples used are chemical engineering examples. Although relatively advanced
chemical engineering examples are sometimes used, the final equations are
developed from the fundamentals for the student. For example, a student
may not have had a course in kinetics, but where kinetic examples are used
in the text, students are required only to solve the final equations, not to de-
velop them. As a result, the student is exposed to a wide variety of chemical
engineering subjects without having to be knowledgeable in those areas and
becomes aware of the usefulness of numerical techniques for the solution of
chemical engineering problems.

This text is not intended to be encyclopedic in coverage. Rather, it is
designed to present those methods which either are the most useful or il-
lustrate the relevant concepts. The organization of the text is largely based
upon problem type: algebraic equations, initial-value problems, boundary-
value problems, and optimization. Chapter 1 includes the introduction plus
a review of matrix operations, summation notation, and numerical errors.
Chapter 2 considers the solution of algebraic equations: linear equations,
a single nonlinear equation, and systems of nonlinear equations. Chapter
3 contains the finite difference approximations of derivatives and methods
for interpolation and integration. Chapter 4 considers initial value prob-
lems: a single ordinary differential equation (ODE), systems of ODE’s, and
partial differential equations. Chapter 5 covers one-dimensional and two-
dimensional boundary value problems. Chapter 6 introduces the student to
optimization. Chapter 7 presents linear regression, multiple linear regression,
nonlinear regression, and data smoothing. Chapter 8 provides a discussion
of modeling and an outline with which to approach modeling problems. In
addition, three advanced modeling problems are analyzed using the recom-
mended modeling approach.

An important feature of this book is that all the software presented is
available for IBM-compatible PC’s, for Apple computers, or on magnetic
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tape for mainframe computers. The availability of the software allows the
student not only to efficiently develop a working knowledge of numerical
methods, but also to take the software with him to his upper division classes
and even out into the workplace. The software is all written in FORTRAN;
however, some of the smaller programs are also available in BASIC. Following
is a listing of the library routines used by the text and included as software:

e Linear equation solver

e Multidimensional unconstrained optimizer

o A variable step size/variable order integrator for ODE’s
e A finite element program

A least squares, variable order spline data smoother

In addition, a number of useful codes are developed in the text:

e Cubic spline interpolator

e Thomas method

e Gauss-Seidel method

e N-dimensional Newton method

e Runge-Kutta integrator

o One-dimensional boundary value problem solver
e One-dimensional optimizer

o Linear regression method

e Multiple linear regression method

e Arc length homotopy algorithm

All the software is documented with user instructions. In addition, ex-
amples of the use of each of the programs are provided. In summary, the key
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features of this text are that it is explicitly written for the undergraduate
and that a powerful collection of software is available with the book.

Lubbock, Tezas James B. Riggs
November, 1987
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Chapter 1

Introduction

1.1 Background and Objectives

Today’s chemical engineer is heavily dependent upon a variety of applica-
tions of computing technology. These include scientific computing, word pro-
cessing, data management, and data acquisition. These tools have greatly
enhanced his capabilities and productivity. This book is concerned with the
development of numerical methods skills required for scientific computing.

Scientific computing is a generic term that applies to a variety of com-
putational applications ranging from the use of computer-aided design pack-
ages to solving for the root of a single equation to developing from scratch
a computer-implemented model for a novel, complex process. Numerical
methods are an integral part of each of these problems. That is, numer-
ical methods are the means by which model equations are solved on the
computer. Moreover, the understanding of numerical methods as well as
the understanding of the concepts of convergence, stability, and accuracy
of an approximation are necessary for the successful solution of scientific
computing problems.

Before the widespread availability and use of computers, classroom in-
struction of chemical engineering relied almost solely upon problems that
lend themselves to analytical solutions, especially problems involving differ-
ential equations. But today much more interesting, relevant problems can be
studied because we are not nearly as restricted in the type of problem that
can be efficiently solved. In fact, even when an analytical solution exists for
a particular problem, it is usually easier to solve the problem numerically.
In many cases, the numerical solution procedures actually provide a better
physical illustration of the dominant factors of a problem.
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CHAPTER 1. INTRODUCTION

Each field of chemical engineering (i.e., kinetics, thermodynamics, con-
trol, mass transfer, etc.) has its own requirements for numerical methods.
Table 1.1 lists the most common types of problems encountered for each
area. Note the prominence of initial value problems, systems of nonlinear
algebraic equations, boundary value problems, systems of linear equations,
and optimization in the table. Methods directed at the solution of these
classes of problems are the major emphasis of this book.

Table 1.1

Types of Chemical Engineering
Problems Listed by Area

AREA

MATERIAL AND

ENERGY BALANCES

HEAT TRANSFER

MASS TRANSFER

KINETICS

THERMODYNAMICS

CONTROL

DESIGN

MOST COMMON PROBLEM TYPE

Systems of linear equations; sometimes
systems of nonlinear algebraic equations.

Boundary value problems, initial value
problems.

Boundary value problems, initial value
problems.

Systems of nonlinear algebraic equations,
initial value problems.

System of nonlinear algebraic equations,
initial value problems, integration,
interpolation.

Initial value problems.

Optimization.

It is very important to be able to identify the type of problem you are
trying to solve since the problem type determines the numerical method re-
quired. For example, it makes very little difference whether an initial value
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problem comes from a reaction kinetics system or a control system. The
point is that the problem is an initial value problem and the particular char-
acteristics of the initial value problem will determine which numerical solu-
tion procedure is appropriate, not necessarily what type of physical problem

it represents.
Therefore, the objective of this book is to enable the student to do the

following:
1. Identify the general type of numerical problem he has undertaken

2. Based upon the characteristics of the equations, choose the proper
numerical technique

3. Effectively implement the numerical solution

We begin this study with a review of matrix operations, summation
notation, and an analysis of numerical errors.
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1.2 Matrix Operations

A matrix is a rectangular array of numbers, symbols, or functions. For
example,

1 2 4
-1 3 5
2 -3

22 y-2 2

a1 ax

az1 a2

are all matrices. Most of the matrices that we will encounter will be square
matrices; i.e., they have the same number of rows as columns like the first
and third cases in the previous example.

Consider a generalized rectangular matrix A with m rows and n columns

Am1 Qm2 Gp3... Gmn

If n = m, the matrix is a square matrix of order n which is also called an
n X n matrix. The numbers that comprise this matrix (a;;) are the elements
of the matrix in which i is the row number and J is the column number. A
row is a horizontal set of elements and a column is a vertical set. Elements
of the type a;; (e.g., a11, @22, Gnn, etc.) are called diagonal elements.

A special type of matrix is an identity matrix (I). An identity matrix is a
square matrix in which all elements are zeroes except the diagonal elements,
each of which has a value of one. That is, a fourth order identity matrix is

1000
0100
= 0 010
0 0 01
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A special class of square matrices is called “banded”. A banded matrix
has a triangle of zeros in the upper right and lower left corners, i.e.,

25 000
13200
02510
0 0 251
0 00 25

is a banded matrix with a band width of 3. A banded matrix with a band
width of 3 is also called a tridiagonal matrix. The band width is usually
the maximum number of non-zero elements in any row. More precisely, the
band width is the maximum number of non-zero elements to the right of the
diagonal plus the maximum number of non-zero elements to the left of the
diagonal plus one. For example, an identity matrix is a banded matrix with
a band width of one.

A sparse matrix contains a large number of zero elements. The locations
of the zero elements are not restricted for a sparse matrix. For example,
banded matrices are a subset of the general class of sparse matrices. An
example of a sparse matrix is

oL O O
WO oo
O H O OoON
O O - = O
O O O W

The transpose of a matrix is the matrix that results when the columns
are written as rows (or likewise if the rows are written as columns). That
is, the transpose of a matrix with elements a;; would have elements a;;; for
example,

I
o v
w A
~ oo

|
I

or e =
o
—~w o
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A vector is a special case of a matrix: a column vector has a single column

with a number of rows, e.g.,
2

1
3

A row vector has a single row with a number of columns, e.g., (2 1 3). Unless
otherwise specified, a vector is usually considered a column vector.
Two matrices are said to be equal, i.e.,

A=B

when corresponding elements are equal, i.e., when a;; = b;;, for all values of
i and 7.

Matrix addition is applicable only to matrices that have the same number
of rows and the same number of columns. For example, for

A+B=C

A, B, and C must have the same number of rows and columns. Also, the
equation indicates that
a;; + bi; = cjj

for all values of 7 and j. Therefore, matrix addition provides a concise means
of performing a number of parallel addition operations.

Matrix multiplication involves row and column multiplication, whereas
matrix addition involves only element addition. Consider the following ex-
ample:

AB=C
where

a;; a2
A= ax ap
azr asz
_ [ b1 b1

B =
ba1  bay
€11 Ci2
C=| cn c2

€31 C32
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By matrix multiplication, the first element of C, ¢;;, is given by the scalar
product of the first row of A and the column of B; i.e.,

b
e = (@11 ag2) . ( b:I ) = a1 b1 + a1z by

Likewise, cp; is formed by the scalar product of the second row of A and the
first column of B. In general, c;; is formed by the product of the ith row of
A and the jth column of B. Therefore, the number of columns of the first
matrix of the product must be equal to the number of rows of the second
matrix. It can easily be shown that in general

AB#BA
The inverse of a matrix (A~!) is defined such that
AAT7 =ATA=1

Matrix multiplication provides a very simple, concise means of representing
a system of linear equations. Consider the following ma#rtx equation

Ax=b

where
a;i; a2 a3
A= axn az a3
a31 azz ass

T bl
x=| z, b= b
T3 b3

Performing the matrix multiplication yields the following set of linear
equations:

a11 21 +a12 T3 +a13 3 = by
Q21 T1 4033 Ty +ag3 T3 = by
a31 €1 +a3z T3 +ags 3 = by

The A matrix is called the coefficient matrix. Therefore, a large system of
linear equations can be compactly expressed using a coefficient matrix A
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and a constant vector b. In addition, this form lends itself quite readily to
a generalized computer-based-solution algorithm.

Consider a function of two independent variables, f(z,y). Then the
gradient of f is a vector given as

of. ©&f.
gradf:a—£1+a—£.]

where i is the unit vector in the z direction and J is the unit vector in the y

direction.
The Jacobian matrix is generated for a system of n functions containing

n unknowns; i.e.,
fi(x) i=1,2,...,n

where
x = (21,22,...,2,)

A generalized element of the Jacobian is given as

0fi(x)

—l

52:‘

=
As an example, consider the following two functions:
fi(x) = z2e*

f2(x) = sin(z,) - (1 - 2})

Then the Jacobian matrix for these functions would be

2z, 2 z? e™

=2z, sin(z;) (1 - z2) cos(z,)

Eigenvalues ()’s) of matrix A are defined by the nontrivial solution of
the following equation:

(A-AI)x=0



