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Preface

The rapid development of scanning probe microscopy (SPM) has
made possible investigations of morphological and physical properties of
insulating surfaces with unprecedented resolution. Since the ‘father’ of the
SPM family — the scanning tunneling microscope (STM) — can only be
applied to image ultrathin insulating films grown on conducting surfaces,
most of the SPM investigations on insulators have been performed using
the atomic force microscope (AFM). The principle of AFM is simple: an
ultrasharp tip is driven over a surface, and the tip-surface interaction
is reconstructed by monitoring the deflection of a flexible cantilever
supporting the tip. Thanks to the extraordinary sensitivity of the piezo-
elements used for positioning the tip with respect to the surface, atomically
resolved images of several insulating crystal surfaces can be readily obtained
in such a way.

Before introducing the AFM and STM techniques, we briefly discuss the
crystallographic structures and preparation methods of various insulating
surfaces in the first two chapters. Our attention will be limited to alkali
halide surfaces and to oxide surfaces with large band gaps. We will not
address other insulating surfaces, such as those of polymers, plastics, glasses
and minerals like mica, where the interpretation of the SPM results is often
not so conclusive. We will also not cover issues like chemical reactivity of
the surfaces except when they become relevant to interpret SPM images.

Alkali halide surfaces have a simple structure and can be easily prepared
and characterized in an ultra high vacuum environment (UHV). For these
reasons, they have quickly become reference models to investigate crystal
growth processes on the nanometer scale. Alkali halide surfaces are also
important playgrounds for nanoscale phenomena such as self-assembly of
metal clusters and large organic molecules, or friction and wear processes.

vii
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Insulating oxide surfaces find a broad use in several applications, ranging
from interfaces for electronic ceramics to chemical catalysis. FEven if
they are more difficult to characterize, these surfaces are still amenable
to fundamental investigations on the nanoscale, and high-resolution SPM
images can be obtained after the surfaces have been carefully prepared.

The central part of the book begins with Chapters 4 and 5. Here we will
focus on bulk and ultrathin insulating surfaces as imaged by SPM. Atomic
resolution is unquestionable when single defects are imaged, which is now
commonly achieved on several structures studied by AFM. Some defects
like vacancies can be even created and subsequently imaged by the same
AFM tip, which gives important information on the scanning process itself.
Several experimental results have been also complemented by theoretical
simulations of the imaging process, which allowed to identify the main forces
responsible for atomic resolution.

Chapters 6, 7 and 8 introduce the interaction of ions, electrons and
photons with halide surfaces, with special emphasis on the nanostructures
created by the interaction processes. The discussion of the basic mechanisms
responsible for crystal erosion and large surface nanopatterning with
nanometer precision is supplemented by recent experimental results
obtained by means of high resolution AFM imaging.

Chapters 9 and 10 deal with self-assembly of metals and organic
molecules on bare and nanopatterned insulating surfaces. Once again
the discussion of the experimental results is complemented by theoretical
interpretations of the imaging process. Since the ordering of metal and
molecular adsorbates is often hindered by the weak interaction between
adsorbate and substrate, nanopatterns play an important role in improving
the stability of the adsorbed species. For instance, self-assembly can be
readily achieved along monatomic step edges or inside nanometer-sized pits
produced by electron irradiation. As a further step, connecting well-defined
molecular assemblies to external electrodes via metal nanowires grown on
insulating surfaces might become feasible in the near future.

In Chapter 11 we discuss force spectroscopy measurements on insulating
surfaces. In such cases, the response of the SPM tip is monitored at different
separations between tip and surface, which gives important information on
the tip-surface interaction. If a current flow between tip and sample can be
established, by decreasing the band gap in the material, scanning tunneling
spectroscopy (STS) is also possible. With this technique metals and organic
molecules deposited on thin insulating films can be also investigated, and
different electronic states of single molecules have been even identified.
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The last two chapters deal with mechanical phenomena induced and
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Chapter 1

Crystal Structures of Insulating
Surfaces

This chapter introduces the crystal structures and the main properties
of several insulating halide and oxide surfaces that have been addressed
by scanning probe microscopy on the nanometer scale. In the first part
of the chapter we distinguish between alkali and alkaline earth halides.
In the second part we introduce oxides surfaces, and divide them into
true insulators and mixed conductors. The preparation methods of these
surfaces are discussed in Chapter 2.

1.1 Halide Surfaces

1.1.1  Alkali halide surfaces

Alkali halides result from the binding of alkali metal to halogen ions. In
standard room conditions alkali halides are white or transparent crystals.
The most representative among them is sodium chloride (NaCl). Apart
from being a material of obvious importance in several aspects of everyday
life, NaCl plays a vital role in chemistry, biology, and several other scientific
disciplines. Sodium chloride crystallizes in the rock salt structure shown in
Fig. 1.1(a), which is common to all alkali halide crystals with the exceptions
of CsCl, CsBr, and Csl [Ashcroft and Mermin (1976)]. Only very few facets
of the NaCl structure are stable, in particular the (001) surface. This is
due to the arrangement of the Na* and Cl~ ions, which makes such a
facet electrically neutral. It is also well established that the ions at the
surface undergo only small relaxations with respect to their bulk-truncated
positions [Tasker (1979)].

In general, stable alkali halide surfaces are obtained by cleavage,
Le., by splitting a crystal along a definite plane. This process is always
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(a) (b)

Fig. 1.1  Crystal structures of (a) sodium chloride and (b) calcium fluoride. Brighter
spheres in (b) represent Ca?* and darker spheres correspond to F~ ions.

accompanied by the formation of steps, which play an important role in
many physical and chemical processes such as self-assembly of metal clusters
and of large organic molecules. Characteristic nanopatterns can also be
obtained by photon or electron irradiation or by ion bombardment of the
surfaces, as discussed in details in Chapters 7 and 8.

1.1.2 Alkaline earth halide surfaces

Alkaline earth halides are other ionic materials of great interest in
nanoscience. These crystals are formed by alkaline earth metal and halogen
ions. The most studied among alkaline earth halides is calcium fluoride
(CaF3). Calcium fluoride crystallizes in the fluorite structure, which is
shown in Fig. 1.1(b). In the fluorite structure each F~ ion is surrounded
by four Ca?* ions. Although the pure material is colorless, the mineral is
often deeply colored due to the presence of F-centers, i.e. crystallographic
defects in which a halogen vacancy in the crystal is filled by an electron.
The most stable facet of the CaF; crystal is the (111) surface. This surface
has a small lattice misfit of 0.6% with respect to Si(111), which makes
calcium fluoride quite attractive as epitaxial insulator (Sec. 5.2).

1.2 Oxide Surfaces

Ozides are chemical compounds of oxygen with more electropositive
elements or groups. Oxides have heterogeneous and complicated surfaces,
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which makes their fundamental properties quite difficult to recognize. In
the following we will distinguish between true insulating ozides and mized
conducting ozides [Fu and Wagner (2007)]. While true insulating oxides are
characterized by very large band gaps making their electric conductivity
practically negligible, mobile electronic and ionic defects can be generated
in mixed conducting oxides, according to distinct reactions, so that these
solids can exhibit a certain electric and ionic conductivity.

1.2.1 True insulating oxide surfaces
1.2.1.1  Aluminum ozxide

Aluminum oxide or alumina (AlzO3) has a band gap of 8.8 eV. Aluminum
oxide has a narrow range of stoichiometry, and bulk defects do not increase
its electronic conductivity. For these reasons Al,O3 is widely used as
a catalyst support and as a substrate for growth of metal films. The
most common way by which aluminum oxide crystallizes is the corundum
structure shown in Fig. 1.2, which is also known as a-aluminum ozide.
In this structure each unit cell contains six formula units of Al,O5 and
the oxygen atoms nearly form a hexagonal close-packed substructure with
aluminum atoms filling two thirds of octahedral interstices. Rubies and
sapphires are gem-quality forms of corundum with their characteristic colors
due to impurities in the crystal structure. The most stable among the
unreconstructed alumina surfaces is the a-AlyO5(0001) surface terminated
by a single Al layer. This surface undergoes a series of reconstructions upon
annealing at high temperatures in vacuum and oxygen desorption [French
and Somorjai (1970)].

Fig. 1.2 Unit cell of a-aluminum oxide (corundum). Black spheres represent aluminum
and gray spheres correspond to oxygen atoms. Reprinted from [Al-Abadleh and Grassian
(2003)], Copyright 2003, with permission from Elsevier.
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1.2.1.2 Magnesium oxide

Magnesium oxide or magnesia (MgO) has an energy gap of 7.8 eV and,
similar to aluminum oxide, is widely used as a substrate for epitaxial growth
of metal films and as a catalytic support. Magnesium oxide is a white solid
mineral, which appears in nature in the form of periclase. The crystal
structure of MgO is the same of NaCl. The MgO(001) surface is one of the
most studied oxide surfaces due to its simple structure, stable stoichiometry,
and easy preparation by cleavage. Furthermore, this surface is non-polar,
which makes it a good model system for theoretical studies of insulating
oxide surfaces.

1.2.1.3 Silicon dioxide

Silicon diozide or silica (SiOs) has a very large band gap of about 9.0 eV,
which makes this material a superior electric insulator with high chemical
stability. As well as being a major component in earth’s crust, SiOy plays
an important role in many technological applications, for example as a
dielectric layer in microelectronics and as a catalyst support. One of the
most common structures of silica is the a-quartz. This structure is formed
by spirals of SiO4 tetrahedra (Fig. 1.3) and is stable over a broad range
of temperatures and pressures. In general, surfaces of a-quartz have very
complicated structures, which makes their investigations on the nanoscale
quite challenging.

1.2.2 Mixed conducting oxide surfaces
1.2.2.1 Titanium dioxide

Titanium diozide or titania (TiO2) has a band gap of 3.2 eV. Titanium
dioxide has a wide range of applications. It is used in catalysis, in solar cells,
as white pigment, as anti-corrosion coating, in ceramics, as well as in electric
devices. Titanium dioxide usually crystallizes in the rutile structure, which
consists of octahedra with a titanium atom in the center and oxygen atoms
at the apices. Anatase and brookite are other known stable structures of
titanium dioxide.

Bulk-truncated TiO2(110) surfaces (the most stable ones) reveal two
kinds of termination: polar surfaces terminated with either Ti or O
atoms, and a non-polar surface containing both undercoordinated Ti and O
atoms. More precisely, on the non-polar surface coexist six-fold coordinated



