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Preface

Numerical methods for incompressible fluid dynamics have developed to the point at
which a survey of the field is both timely and appropriate. A major stimulus to the
field has been the large number of applications in which incompressible flows play
a crucial role, and this has spurred the interest of numerous computational engineers
and mathematicians. The articles which follow provide a reasonably broad view of
algorithmic and theoretical aspects of incompressible flow calculations.

It should be noted at the outset that it can be dangerous to define an algorithm for
simulating incompressible flows by setting, for example, the density to be constant in a
successful compressible flow algorithm. The nature of the pressure as a Lagrange multi-
plier rather than as a thermodynamic variable as well as the infinite speed of propagation
of disturbances and other factors peculiar to incompressible flows, make algorithmic de-
velopment and implementation in this context a unique undertaking (see Appendix 7A).

Perhaps the first major advance in the application of large scale digital computation to
incompressible flows occured in the late 1950s with the introduction of staggered mesh
techniques, exemplified, for example, by the Marker-and-Cell (MAC) scheme. The use
of staggered meshes in the context of the primitive variable formulation was found to
provide a stable discretization of the incompressibility constraint. Shortly thereafter,
it was realized that the use of staggered meshes could be avoided by employing the
streamfunction-vorticity formulation in which the incompressibility constraint does not
explicitly appear. Numerous finite difference algorithms were proposed and used based
on this formulation of the Navier-Stokes equations.

Despite the sucess of the stream function-vorticity approach, many difficulties asso-
ciated with practical computations remained unresolved, including complex geometries,
boundary condition treatments and flows in three dimensions. The success of finite ele-
ment methods in addressing these problems in the structural mechanics context naturally
led to interest in applying them to incompressible flows. Thus, starting in the early 1970s
and continuing to the present day, there has been an evergrowing understanding and use
of finite element methods for incompressible flow problems.

A different methodology, whose modern development started during the 1960s, in-
volves the use of point vortex and related singular functions to approximate solutions
of the Navier-Stokes equations at relatively small viscosities. These methods have the
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viii PREFACE

apparent advantage of being grid-free, at least for certain types of problems involving
simple boundaries. Vortex methods are currently enjoying a period of intense develop-
ment.

More recently, the potentially high accuracy possible with spectral methods has gen-
erated considerable interest in their application to incompressible flows. The need to
account for complicated boundaries naturally leads to the spectral element method which
in turn is closely related to the p-version of the finite element method.

Another recent development has been covolume algorithms employing Voronoi-
Delaunay dual tesselations of general domains. The discrete equations of the covolume
technique can be chosen so that when specialized to rectangular geometries, they coin-
cide with those of classical staggered mesh methods. In this way a generalization of the
MAC scheme to triangular and tetrahedral domains is obtained.

The chapters in the book are arranged alphabetically. The chapter by Engelman pro-
vides an overview of some of the many real world applications in which the numerical
simulation of incompressible flows plays a significant role.

A relatively large proportion of the papers is devoted to specific algorithms, or to
components of algorithms for incompressible flows. Thus, Puckett reviews the state-of-
the-art in vortex methods while Karniadakis, Orszag, Rgnquist, and Patera do likewise for
spectral methods. The latter also give a brief account of lattice gas methods. Nicolaides
describes the use of Voronoi-Delaunay tesselations as a basis for covolume discretizations
of the equations of incompressible flow. Temam considers methods based on notions
stemming from dynamical systems theory.

There are four papers addressing basic algorithmic issues in finite element methods
for incompressible flows. Dean and Glowinski give a review of some of the large
body of theoretical results concerning the finite element discretization and solution of
incompressible flows. Thatcher focuses on algorithms and elements that have proved
to be useful for three-dimensional flows; Verfiirth reviews some recent developments
in adative mesh-refinement techniques based on a posteriori error estimation; Franca,
Hughes, and Stenberg give a thorough account of “stabilized” finite element methods for
which some difficulties associated with discretizing the incompressibility constraint are
circumvented. :

Cardot, Mohamadi, and Pironneau discuss how to efficiently incorporate classical
turbulence models into existing laminar flow codes. Gunzburger discusses the application
of finite element analyses and methodologies to optimal design and control problems for
incompressible flows.

There are three chapters devoted to implementation issues in the context of engineering
applications. Lohner discusses practical aspects of the design of incompressible flow
solvers; Hafez and Soliman discuss issues arising in both the discretization and solution
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phases of an unstaggered grid method; a similar treatment of an algorithm using pressure
dissipation is given by Habashi, Peeters, Robichaud, and Nguyen.

There are some aspects of incompressible computational fluid dynamics that are not
considered, or are only briefly considered in the book. A non-exhaustive list of these
includes the application of wavelets, cellular automata, turbulence modeling and details
about the direct simulation of turbulent flows. We apologize to anyone offended by these
omissions; in some cases we tried to obtain contributions but were thwarted by unwilling
or tardy authors; in other cases we felt that the subject matter has not reached a sufficient
stage of development to merit inclusion in this volume. We also note incompressible
computational fluid dynamics is still a developing field so that necessarily, due to the
time it takes to put together such a book, some very recent developments could not be
included.

We, the editors, wish to take this opportunity to thank all the authors who contributed
to this book; we feel that we have gathered here a group of papers by outstanding
authorities and which are representative of the current state of computational methods
for incompressible flows. We also wish to thank our editor at Cambridge University Press,
Lauren Cowles, for her patience, understanding, and encouragement over the duration of
the praoject.

Acknowledgement

We would like to express our sincere thanks to the United States Air Force Office of
Scientific Research (M. D. G. and R. A. N.) and the Office of Naval Research (M. D. G.)
for supporting our research in incompressible CFD over the past several years.

M. D. Gunzburger, Blacksburg

R. A. Nicolaides, Pittsburgh



Contributing Authors

B. Cardot
STCAN
Paris, France

Edward J. Dean
Department of Mathematics, University of Houston
Houston, TX 77204, USA

Roland Glowinski
Department of Mathematics, University of Houston
Houston, TX 77204, USA

Max D. Gunzburger
Department of Mathematics, Virginia Polytechnic Institute and State University
Blacksburg, VA 24061, USA

Michael S. Engelman
Fluid Dynamics International
Evanston, IL 60201, USA

Leopoldo P. Franca
Laboratério Nacional de Computagiio Cientifica
22290 Rio de Janeiro, Brazil

W. G. Habashi
Concordia University
Montreal, Quebec, Canada

M. Hafez

Department of Mechanical and Aerospace Engineering
University of California at Davis

Davis, CA 95616, USA

L. Steven Hou
Department of Mathematics and Statistics, York University
Toronto, Ontario M3J 1P3, Canada

xi



x1i CONTRIBUTING AUTHORS

Thomas J. R. Hughes
Division of Applied Mechanics, Stanford University
Stanford, CA 94305, USA

George Em Karniadakis
Department of Mechanical and Aerospace Engineering, Princeton University
Princeton, NJ (08544, USA

Rainald Loéhner
School of Engineering and Applied Science, The George Washington University
Washington, DC 20052, USA

B. Mohammadi
INRIA
78153 Le Chesnay, France

V-N. Nguyen
Computational Methods Group, Pratt & Whitney
Montreal, Canada

Roy A. Nicolaides
Department of Mathematics, Carnegie Mellon University
Pittsburgh, PA 15213, USA

Steven A. Orszag
Department of Mechanical and Aerospace Engineering, Princeton University
Princeton, NJ 08544, USA

Anthony T. Patera

Department of Mechanical Engineering, Massachusetts Institute of Technology
Cambridge, MA 02139, USA

M. F. Peeters
Computational Methods Group, Pratt & Whitney
Montreal, Canada

Oliver Pironneau
INRIA
78153 Le Chesnay, France



CONTRIBUTING AUTHORS

Elbridge Gerry Puckett
Department of Mathematics, University of California at Davis
Davis, CA 95616, USA

M. P. Robichaud
Computational Methods Group, Pratt & Whitney
Montreal, Canada

Einar M. Rgnquist
Nektonics, Inc.
Cambridge, MA, USA

M. Soliman

Department of Mechanical and Aerospace Engineering
University of California at Davis

Davis, CA 95616, USA

Rolf Stenberg
Faculty of Mechanical Engineering, Helsinki University of Technology
02150 Espoo, Finland

Thomas P. Svobodny
Department of Mathematics and Statistics, Wright State University
Dayton, OH 45435, USA

Roger Temam
Department of Mathematics, Indiana University
Bloomington, IN 47405, USA

R. W. Thatcher
Department of Mathematics, UMIST
Manchester M60 1QD, UK

R. Verfiirth
Institut fiir Angewandte Mathematik, Universitit Ziirich
Ziirich CH-8001, Switzerland

Xiii



Contents

Preface
Contributing Authors

A Few Tools For Turbulence Models In Navier-Stokes Equations
B. Cardot, B. Mohammadi, and O. Pironneau

On Some Finite Element Methods for the Numerical Simulation of
Incompressible Viscous Flow
Edward J. Dean and Roland Glowinski

CFD - An Industrial Perspective
Michael §. Engelman

Stabilized Finite Element Methods
Leopoldo P. Franca, Thomas J. R. Hughes, and Rolf Stenberg

Optimal Control and Optimization of Viscous, Incompressible Flows
Max D. Gunzburger, L. Steven Hou, and Thomas P. Svobodny

A Fully-Coupled Finite Element Algorithm, Using Direct and Iterative
Solvers, for the Incompressible Navier-Stokes Equations
W. G. Habashi, M. F. Peeters, M. P. Robichaud and V-N. Nguyen

Numerical Solution of the Incompressible Navier-Stokes Equations in
Primitive Variables on Unstaggered Grids
M. Hafez and M. Soliman

Spectral Element and Lattice Gas Methods for Incompressible
Fluid Dynamics

George Em Karniadakis, Steven A. Orszag, Einar M. Ronquist,
and Anthony T. Patera

Design of Incompressible Flow Solvers: Practical Aspects
Rainald Léhner

vii

xi

17

67

87

109

151

183

203

267



vi

10

11

12

13

14

CONTENTS

The Covolume Approach to Computing Incompressible Flows

R. A. Nicolaides 295
Vortex Methods: An Introduction and Survey of Selected Research Topics
Elbridge Gerry Puckett 335
New Emerging Methods in Numerical Analysis: Applications to

Fluid Mechanics

Roger Temam 409
The Finite Element Method for Three Dimensional Incompressible Flow

R. W. Thatcher 427
A Posteriori Error Estimators and Adaptive Mesh-Refinement Techniques

for the Navier-Stokes Equations

R. Verfiirth 447

Index 477



1 A Few Tools For Turbulence Models In
Navier-Stokes Equations

B. Cardot, B. Mohammadi, and O. Pironneau

Abstract

This article is for those who have already a computer program for incompressible viscous
transient flows and want to put a turbulence model into it. We discuss some of the
implementation problems that can be encountered when the Finite Element Method is
used on classical turbulence models except Reynolds stress tensor models. Particular
attention is given to boundary conditions and to the stability of algorithms.

1.1 Introduction

Many scientists or engineers turn to turbulence modeling after having written a Navier-
Stokes solver for laminar flows.

For them turbulence modeling is an external module into the computer program. Gen-
erally, the main ingredients to built a good Navier-Stokes solver are known; this includes
tools like mixed approximations for the velocity u and pressure p to avoid checker board
oscillations and also upwinding to damp high Reynolds number oscillations; however
the problems that one may meet while implementing a turbulence model are not so well
known because these models have not been studied much theoretically.

Judging from the literature [3][11][12][15][19}[22] the most commonly used turbulence
models seem to be

e algebraic eddy viscosity models (zero equation models)
e k — ¢ models (two equations models)
e Reynolds stress models

All three start from a decomposition of v and p into a mean part and a fluctuating part
u'. However oscillations are understood either as time oscillations or space oscillations
or even variations due to changes in initial conditions. In any case, the decomposition
u+u' is applied to the Navier-Stokes equations. After averaging (and several handwaving
steps) some closed set of equations are obtained for the mean flow variables (still denoted
u and p here). We do not intend to discuss the validity of the models or how well they
compares with experiments; we want to discuss the discretization of the equations and the
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2 B. CARDOT, B. MOHAMMADI, AND Q. PIRONNEAU

stability properties if any. So we shall take them one by one and make a few comments
along the way. Note however that this paper is by no means a review as the literature is
way too rich on this subject.

In Section 1.2 we shall start with the easiest, the algebraic models of Smagorinsky [21]
and Baldwin-Lowmax [2]. Wall laws will also be discussed in this section.

Then in Section 1.3, we shall discuss the ¥ — € model and its variations. Emphasis
will be on the positivity of the variables.

In Section 1.4 some numerical results are presented including a k& — ¢ simulation of
the flow behing a cylinder at moderate Reynolds number.

We shall not discuss the Reynolds stress models because they are still controversial
and because it appears that they may be easier to implement in a compressible flow
solver directly. This is because they make the Navier-Stokes equations hyperbolic even
in the case of incompressible fluids. Also the complexity of the equations of the R;; —¢
model makes the mathematical analysis quite difficult and messy.

For laminar flow the Navier-Stokes equations are

Ou+uVu+ Vp— pAu =0 (1.1.1)
V. u=0in Qx]0,T] (1.1.2)

u =ur on I'x]0, T[(I' = 992) (1.1.3)
Ulg—p = u° in §} (1.1.4)

In our numerical tests these have been discretized by piecewise biquadratic quadrilateral
elements for v and piecewise linear discontinuous triangular elements for the pressure p
(each quadrilateral is divided into two triangles) (see [9][18] or [23] for example).
Furthermore upwinding was implemented by using the characteristic Galerkin method
[51, 8], [17].
Then (1.1.1)-(1.1.4) is approximated by

1 +1 m--1 m+1
— (up ,T)h) - (p V- 'Uh) + V(VU : V’Uh) =
e " " (1.1.5)

1
g(uZ‘oXﬁ", vp), Yo, € Vg

(v ’ u;zw-l"-'Ih) =0, \VIQIL € Qh (1.1.6)

Here 6t is the time step size, (f,g) stands for [, f(z)g(x)dz, Vs is the space of
piecewise biquadratic velocities on the quadrangulation of ) which are zero on I'; ¢y, is
the space of piecewise linear discontinuous pressure on the triangulation of 2. Finally,
X}3™(x) is an approximation at t* of the solution of

ax

pm =ul( Xy, 7); XY =2 XM(z) = X(t™) (1.1.7)
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Note that X;*(2) ~ z — u}(z)6t and that (u]"*'(z) — ujroX}") /6t is an approximation
of 6tu;,, + upVuy,.

Alternatively we could have used a Galerkin least square upwinding or a Newton
method without upwinding with an implicit in time discretization of 8,u. Other popular
elements for spatial discretizations include the P' — iso — P2/P! element or the mini-
element [1] on triangles. Much of what will be said applies also if these alternative
choices are made.

One advantage of (1.1.5)—(1.1.6) is that it yields a symmetric linear system at each time
step; the price to pay is the computation of a complicated integral: Jo Ul (X (z))vp(x)de.

The linear system has the form

(3 D)()-(0) 4-(88) »=(5) om

where v is the vector of degrees of freedom of uy, and P for p;,. The matrix A is also a
bloc matrix where

D = éw,uﬂ') + (Y, Vud) (1.1.9)

where w' is the hat finite element scalar basis function at vertex 7. Thus the two com-
ponents of uy, are coupled through the pressure only by BE = —(q¢', 00 /Oxy,).

1.2 Zero Equation Models
1.2.1  Eddy viscosity
Most zero equation models consist of the Navier-Stokes equations

du+uVu+ Vp - V- [up(Vu + VuT)] =0 (1.2.1)
V-ou=0 (1.2.2)

with a non constant viscosity (eddy viscosity) ur which is a given function of position
z and velocity p.
In his subgrid scaled model Smagorinsky [21] (see also [7]115]{20]) suggested

pr = v+ ch*|Vu + VuT| (1.2.3)

where v is the molecular (reduced) viscosity ¢ is a numerical constant (¢ = 0.01) and
h(x) is the average mesh size around z. In order to have a reasonably smooth function
h(z), one method is to define it at the vertices of the quadrangulation as the average of
the edges which are issued from the vertex.
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The Baldwin-Lomax [2] model is well suited to turbulent boundary layers. There vy
is also an algebraic function of V x u and the distance y(x) between z and T

0.02694;

=7 if y < ="t
vr =I5V x u| if y <y, 0+ 5500

otherwise (1.2.4)
If k = 0.41 is the Von-Karman constant, [ = xy(1 — e %) with A = 26(v/%L)2. The
boundary layer thickness is 6. Finally §; = f:(l — #ts))dy and y,. is such that both
functions in (1.2.4) match.

To discretize (1.2.1), (1.2.2) it is usually sufficient to take v at time m in the equations
which define «™*!. Thus the analogue of (1.1.5), (1.1.6) is

1
= (U™ on) — (Dp1V - vy)

ot 1 m+1 m+1\T T 1 (1.2.5)
+ 5 (R VUl + (Vul T : [V, + V) = 5 (ufto X, vs)

(V-ul! q) = 0. (1.2.6)
There are two additional difficulties here

e the matrix of the linear system now depends upon m through p7*

¢ the components of uhm+1 are coupled through the viscous terms also.

These difficulties may be removed by considering the scheme

5 WPt o) — (PP ) + (Br V! V) =
3 (Uit o X7 ) + (DrVup ™t s V) — M ((Vul + VaT) : [V, + Vol))
(1.2.7)
where U is close to y7' and recomputed every say 5 or 6th time step.
Convergence however is not guaranteed, unlike (1.2.3), (1.2.5) which is more stable
[13] than (1.1.5), (1.1.6).

1.2.2 Wall laws

Equations (1.2.1), (1.2.2) may develop boundary layers near the walls. An attempt can be
made to remove them from the computational domain by replacing the no slip condition
(1.1.3) by slip conditions of the type

u-n=40 (1.2.8)
VTg—Z‘T-FO!U'T:ﬂ (1.2.9)

where n is the outward normal to T', 7 is the tangent, and o, # may be non linear function
of u-7 and even Vu. Parés [16] has shown that such boundary conditions lead to a well
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posed problem for the Navier-Stokes equations provided some conditions on the growth
of o and 3 are satisfied.

Condition (1.2.8) must be enforced at vertices but n is defined on the edges of I';
some sort of average is needed to define n at the vertices.

Another way is to notice that when u € H!()?

(u,Vg) =0, Vge H(Q)=V-u=0inQ and u-nlr=0 (1.2.10)
because
(v, Vg) = —(V - u,q) +fu-nq. (1.2.11)
r

So consider the implementation of (1.2.8)—(1.2.9) in weak form in (1.2.7) in which the
normal n has completly disappeared:

1
E(uzn“,vh) — (Vo un) + (5rVul ™, Vo) + / ™y, =
: T

(1.2.12)
f(Uh)-I-/ﬁmUh'T
r
for all v, continuous piecewise bilinear
(uft!, Vgn) =0 Vg piecewise linear. (1.2.13)

In (1.2.13), f(wvy) denotes the right hand side of (1.2.7). Numerical test with this formu-
lation can be found in Pargs [16] and in [4].

1.3 The & — ¢ Model

Let k the turbulent kinetic energy and ¢ the turbulent rate of dissipated energy, so if u’

denotes the time oscillations of wu:
k= - <[W?> (1.3.1)

£ = < |V + VT2 >, (1.3.2)

T =

In the k — £ model it is assumed that the small time oscillations of u, p are equivalent to
an eddy viscosity:

T =cu— (1.3.3)
and that, away from the walls k — ¢ are governed by:

cu k? ) k?
k,t-l-qu—??NlH—Vu | —V-(cu?Vk)ﬂ—E =0 (1.3.4)

62

kZ
€t +uVe — %kWu +vuP—-v. (Ce?VS) + ap = 0 (1.3.5)
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with ¢, = 0.09, ¢; = 0.1296, ¢c; = 1.92, c. = 0.07.
Natural boundary conditions could be

k,egivenatt=0;klp =kpr =0, elp=er (1.3.6)

however et is not known so the model is not well posed near the solid walls. A coupling
with a one equation model (unknown &) near the walls can be done. Alternatively an
attempt is usually made to remove the low Reynolds regions from the computational
domain by applying walil laws

uw*3

K0

ou-71

2

_1
klr = v*¢,?, elr= (1.3.7)

w-n=0 oau-Tt+p8 =y (1.3.8)

where £ is the Von Karman constant (k = 0.41), 6 the grid size at the wall (an approx-
imation of the boundary layer thickness), u* (computed by (1.3.9)) the friction veloc-
ity, 8 = c,k*/e , a = B/[k6(B + k'log(6/D))] where D is a roughtness constant,
7 = —u*|u*| and B is such that (1.3.8) matches the viscous sublayer. To compute u*,
Reichard’s law may be used:

. u.T . YT gy
u'=———; f(u") =25log(1+04y")+7.8(1—e T — e 0P}  (1.39)
fw) 1

with y* = éu*/v. So a, 3, 7 in (1.3.8) are nonlinear functions of » - 7. For smooth
walls an easier alternative is o =y = 0.

For physical and mathematical reasons it is essential that the system (1.3.1)<(1.3.5)
yields positive values for k£ and e.

We shall now show that if the system has a smooth solution for given positive initial
data and positive Dirichlet conditions on the boundaries then k and ¢ stay positive and
bounded at later times. For this purpose one looks at

==. 1.3.1
0=~ (1.3.10)

If D; denotes the total derivative operator, 8/8t + uV and E denotes §|Vu + Vul|?,
then

1 k
DtH = —Dtk— —2Dt6
£ £ .
2 k? 2 k
= 6E(Cu—(ﬁ)*—l—f—(}z—*—qlV'?VG‘FZCMG VOV(§)

k_ K
+(eu =) 5V Ve (1.3.11)



