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PREFACE

Dissatisfaction with available textbooks on the subject of dynamics has been
widespread throughout the engineering and physics communities for some years
among teachers, students, and employers of university graduaies; furthermore,
this dissatisfaction is growing at the present time. A major reason for this
is that engineering graduates entering industry, when asked to solve dynamics
problems arising in fields such as multibody spacecraft attitude control, robotics,
and design of complex mechanical devices, find that their education in dynamics,
based on the textbooks currently in print, has not equipped them adequately to
perform the tasks confronting them. Similarly, physics graduates often discover
that; in their education, so much emphasis was placed on preparation for the
study of quantum mechanics, and the subject of rigid body dynamics was slighted
to such an extent, that they are handicapped, both in industry and in academic
research, but their inability to design certain types of experimental equipment,
such as a particle detector that is to be mounted on a planetary satellite. In this
connection, the ability to analyze the effects of detector scanning motions on the
attitude motion of the satellite is just as important as knowledge of the physics of
the detection, process itself. Moreover, the graduates in question often are totally
unaware of the deficiencies in their dynamics education. How did this state of
affairs come into being, and is there a remedy? i

For the mast part, traditional dynamics texts deal with the exposition of
eighteenth-century methods and their application to physically simple systems,
such as the spinning top with a fixed point, the double penélulum, and so forth. The
reason for this is that, prior to the advent of computers, one was justified in
«demanding no more of students than the ability to formulate equations of motion
for such simple systems, for one could not hope to extract useful mnformatiQon
from the equations governing the motions of more complex systems. Indeed,
considerable ingenuity and a ‘rather extensive knowledge of mathematics were
required to analyze even simple systems. Not surprisingly, therefore, even more
attention came to be focused on analytical -intricacies of the mathematics of
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X PREFACE

dynamics, while the process of formulating equations of motion came to be
regarded as a rather routine matter. Now that computers enable one to extract
highly valuable information from large sets of complicated equations of motion,
all this has changed. In fact, the inability to formulate equations of motion
effectively can be as great a hindrance at present as the inability to solve equations
was formerly. It follows that the subject of formulation of equations of motion
demands careful reconsideration. Or, to say it another way, a major goal of a
modern dynamics course must be to produce students who are proficient in the
use of the best available methodology for formulating equations of motion. How
can this goal be attained ?

In the 1970s, when extensive dynamical studies of multibody spacecraft,
robotic devices, and complex scientific equipment were first undertaken, it .
became apparent that straightforward use of classical methods, such as those of
Newton, Lagrange, and Hamilton, could entail the expenditure of very large,
and at times even prohibitive, amounts of analysts’ labor, and could lead to
equations of motion so unwieldy as to render computer solutions unacceptably
slow for technical and/or economic reasons. Now, while it may be impossible
to overcome this difficulty entirely, which is to say that it is unlikely that a way
will be found to reduce formplating equations of motion for complex systems to
a truly simple task, there does exist a method that is superior to the classical ones
in tHat Tts use leads to major savings in labor, as well as to simpler equations.
Moreover, being highly systematic, this method is easy to teach. Focusing attention
on motions, rather than on configurations, it affords the analyst maximum
physical insight. Not involving variations, such as those encountered in connection
with virtual work, it can be presented at a relatively elementary mathematical
level. Furthermore, it enables one to deal directly with nonholonomic systems
without having to introduce and subsequently eliminate Lagrange multipliers. It
follows that the resolution of the dilemma before us is to instruct students in the
use of this method (which is often referred to as Kane’s method). This book is
intended as the basis for such instruction.

Textbooks can differ from each other not only in content but also in organiza-
tion, and the sequence in which topics are presented can have a significant effect
on the relative ease of teaching and learning the subject. The rationale underlying
the organization of the present book is the following. We view dynamics as a
deductive discipline, knowledge of which enables one to describe in quantitative
and qualitative terms how mechanical systems move when acted upon by given
forces, or to determine what forces must be applied to a system in order to cause
it to move in a specified manner. The solution of a dynamics problem is carried
out in two major steps, the first being the formulation of equations of motion,
‘and the second the extraction of information from these equations. Since the
second step cannot be taken fruitfully until the first has been completed, it is
imperative that the distinction between the two be kept clearly in mind. In this
book, the extraction of information from equations of motion is deferred formally
to the last chapter, while the preceding chapters deal with the material one needs
to master in order to-be able to arrive at valid equations of motion.
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Diverse concepts come into play in the process of constructing equations of
motion. Here again it is important to separate ideas from each other distinetly.
Major attention must be devoted to kinematics, mass distribution considerations,
and force concepts. Accordingly, we treateach of these topics in its own right.
First, however, since differentiation of vectors plays a key role in dynamics, we
devote the initial chapter of the book to this topic. Here we stress the fact that
differentiation of a vector with respect to a scalar variable requires specification
of a reference frame, in which connection we dispense with the use of limits
because such use tends to confuse rather than clarify matters; but we draw directly
on students’ knowledge of scalar calculus. Thereafter, we devote one chapter
each to the topics of kinematics, mass distribution, and generalized forces, before
discussing energy functions, in Chapter 5, and the formulation of equations of
motion, in Chapter 6. Finally, the extraction of information from equations of
motion is considered in Chapter 7. This material has formed the basis for a one-
year course for first-year graduate students at Stanford University for more than
20 years. ’

Dynamics is a discipline that cannot be mastered without extensive practice.
Accordingly, the book contains 14 sets of problems intended to be solved by
users of the book. To learn the material presented in the text, the reader should
solve all of the unstarred problems, eath of which covers some material not
covered by any other. In their totality, the unstarred problems provide complete
coverage of the theory set forth in the book. By solving also the starred problems,
which are not necessarily more difficult than the unstarred ones, one can gain
additional insights. Results are given for all problems, so that the correcting of
problem solutions needs to be undertaken only when a student is unable to reach
a given result. It is important, however, that both students and instructors expend
whatever effort is required to make certain that students know what the point of
each problem is, not only how to solve it. Classroom discussion of selected
problems is most helpful in this regard. - ¥ :

Finally, a few words about notation will be helpful. Suppose that one is
dealing with a simple system, such as the top 4, shown in Fig. i, the top terminating
in a point P that is fixed in a Newtonian reference frame N. The notation needed
here certainly can be simple. For instance, one can let ® denote the angular
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velocity of 4'in N, and let v stand for the velocity in N of point A*, the mass
center of A4. Indeed, notations more elaborate than these can be regarded as
objectionable because they burden the analyst with unnecessary writing. But
suppose that one must undertake the analysis of motions of a complex system,
such as the Galilec spacecraft, modeled as consisting of eight rigid bodies
A, B, ..., H, coupled to each other as indicated in Fig. ii. Here, unless one
employs notations more elaborate than o and Vv, one cannot distinguish from
each other such quantities as, say, the angular velocity of 4 in a Newtonian
reference. frame N, the angular velocity of B in N, and the angular velocity of B
in A4, all of which may enter the analysis. Or, if 4* and B* are points of interest
fixed on 4 and B, perhaps the respective mass centers, one needs a notation that
permits one to distinguish from each other, say, the velocity of 4* in N, the
velocity of B* in N, and the velocity of B* in A. Therefore, we establish, and use
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consistently throughout this book, a few notational practices that work well in
such situations. In particular, when a vector denoting an angular velocity or an
angular acceleration of a rigid body in a certain reference frame has two super-
scripts, the right superscript stands for the rigid body, whereas the left superscript
refers to the reference frame. Incidentally, we use the terms *reference frame”
and “rigid body ” interchangeably. That is, every rigid body can serve as a reference
frame, and every reference frame can be regarded as a massless rigid body. Thus,
for example, the three angular velocities mentioned in connection with the
system depicted in Fig. ii, namely, the angular velocity of 4 in N, the angular
velocity of B in N, and the angular velocity of B in 4, are denoted by "o, "@?,
and “o®, respectively. Similarly, the right superscript on a vector denoting a
velocity or acceleration of a point in a reference frame is the name of the point,
whereas the left superscript identifies the reference frame. Thus, for example, the
aforementiohed velocity of A* in N is written Mv4°, and 4v®" represents the velocity
of B* in A. Similar conventions are established in connection with angular
momenta, kinetic energies, and so forth.

While there are distinct differences between our approach to dynamics, on
the one hand, and traditional approaches, on the other hang, there is no funda-
mental conflict between the new and the old. On the contrary, the material in
this book is entirely compatible with the classical literature. Thus, it is the purpose
of this book not only to equip students with the skills they need to deal effectively
with present-day dynamics problems, but also to bring them into position to
interact smoothly with those trained more conventionally.

Thomas R. Kane
v ‘ David A. Levinson
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TO THE READER

Each of the seven chapters of this book is divided into sections. A section is
identified by two numbers separated by a decimal point, the first number referring
to the chapter in which the section appears, and the second identifying the section
within the chapter. Thus, the identifier 2.14 refers to the fourteenth section of
the second chapter. A section identifier appears at the top of each page.

Equations are numbered serially within sections. For example, the equations
in Secs. 2.14 and 2.15 are numbered (1)~(31) and (1)~(50), respectively. References
to an equation may be made both within the section in which the equation appears
and in other sections. In the first case, the equation number is cited as a single
number; in the second case, the section number is included as part of a three-
number designation. Thus, within Sec. 2.14, Eq. (2) of Sec. 2.14 is referred to as
Eq. (2); in Sec. 2.15, the same equation is referred to as Eq. (2.14.2). To locate
an equation cited in this manner, one may make use of the section identifiers
appearing at the tops of pages.

Figures appearing in the chapters are numbered so as to identify the sections
in which the figures appear. For example, the two figures in Sec. 4.8 are designated
Fig. 4.8.1 and Fig. 4.8.2. To avoid confusing these figures with those in the
problem sets and in Appendix I, the figure number is preceded by the letter P
in the case of problem set figures, and by the letter A in the case of Appendix I
figures. The double number following the letter P refers to the problem statement
in which the figure is introduced. For example, Fig. P12.3 is introduced in
Problem 12.3. Similarly, Table 3.4.1 is the designation for a table in Sec. 3.4,
and Table P14.6.2 is associated with Problem 14.6.

Thomas R. Kane
David A. Levinson
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CHAPTER

ONE
DIFFERENTIATION OF VECTORS

The discipline of dynamics deals with changes of various kinds, such as changes
in the position of a particle in a reference frame, changes in the configuration of
a mechanical system, and so forth. To characterize the manner in which some of
these changes take place, one employs the differentjal calculus of vectors, a subject
that can be regarded as an extension of material usually taught under the heading
of the differential calculus of scalar functions. The extension consists primarily of
provisions made to accommodate the fact that reference frames play a central
role in connection with many of the vectors of interest in dynamics. For example, -
let A and B be reférence frames moving relative to each other, but having one point
O in common at all times, and let P be a point fixed in 4, and thus moving in B.
Then the velocity of P in A is equal to zero, whereas the velocity of P in B differs
from zero. Now, each of these velocities is a time-derivative of the same vector,

r%%, the position vector from O to P. Hence, it is meaningless to speak simply of
the time-derivative of r°”. Clearly, therefore, the calculus used to differentiate
vectors must permit one to distinguish between differentiation with respect to a
scalar variable in a reference frame A and differentiation with respect to the same
variable in a reference frame B. ]

When working with elementary prmcxples of dynamics, such as Newton’s
second law or the angular momentum principle, one needs only the ordinary
differential calculus of vectors, that is, a theory involving differentiations of vectors
with respect to a single scalar variable, generally the time. Consideration of
advanced principles of dynamics, such as those presented in later chapters of this

1



2 DIFFERENTIATION OF VECTORS 1.1

book, necessitates, in addition, partial differentiation of vectors.with respect to
several scalar variables, such as generalized coerdinates and generalized speeds.
Accordingly, the present chapter is devoted to the exposition of definitions, and
consequences of these definitions, needed in the chapters that follow.

1.1 VECTOR FUNCTIONS

When either the magnitude of a vector v and/or the direction of v in a reference
frame A depends on a scalar variable g, v is called a vector function of q in A. Other-
wise, v is said to be independent of q in A.

Example In Fig. 1.1.1, P represents a point moving on the surface of a rigid
sphere S, which, like any rigid body, may be regardea as a reference frame.
(Reference frames should not be confused with coordinate systems. Many

~ coordinate systems can be embedded in a given reference frame.) If p is the
position vector from the center C of S to point P, and if ¢, and ¢, are the angles
shown, then p is a vector function of ¢, and ¢, in S because the direction of
p in S depends on g, and ¢,, but p is independent of g5 in S, where g is the
distance from C to a point R situated as shown in Fig. 1.1.1. The position
vector r from C to R is a vector function of ¢, in §, but is independent of g,

. and g, in §, and the position vector q from P to R is a vector function of g,
q,,and g5 in S.

Figure 1.1.1

1.2 SEVERAL REFERENCE FRAMES .
wA vector v may be a function of a variable g in one reference frame, but be indepen-
dent of ¢-in another reference frame. A

=~

o Example The oilter gimbal ring A, inner gimbal ring B, and rotor C oéthe
‘gyroscope depicted in Fig. 1.2.1 each can be regarded as a reference frame.
If p is the position vector from point O to a point P of C, then pisa function of

4




1.3 SCALAR FUNCTIONS 3

Figure 1.2.1

g, both in 4 and in B, but is independent of g, in C; p is a function of g, in
A, but is independent of g, both in B and in C; and p is independent of g5
in each of 4, B, and C, but is a function of g5 in reference frame D.

1.3 SCALAR FUNCTIONS .
Given a reference frame 4 and a vector function v of n scalar variables g, ..., g,
inA, lgt a,,a,,a, beaset of nonparallel, noncoplanar (but not necessarily mutuaily
perpendicular) unit vectors fixed in A. Then there exist three unique scalar func-
tions vy, v,, v3 of q4, . . ., g, such that

vV=nv,a, + v,8, + V384 : (1)

This equation may be regarded as a bridge connecting scalar to vector analysis;
it provides a convenient means for extending to vector analysis various important
concepts familiar from scalar analysis, such as continuity, differentiability, and
so forth. The vector v;a, is called the a; component of v, and v; is known as the a;
measure number of v (i = 1, 2, 3).

When a,, a,, and a, are mutually perpendicular unit vectors, then it follows
from Eq. (1) that the a; measure’number of v is given by

p=va (=123 ()
and that Eq. (1) may, therefore, be rewritten as

V=v-aa, + v-a,a, + v-asa, RE))
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Conversely, if a,, a,, and a; are mutually perpendicular unit vectors and Egs.
(2) are regarded as definitions of v; (i = 1, 2, 3), then it follows from Eq. (3) that
v can be expressed as in Eq. (1). :

Example In Fig. 1.3.1, which shows the gyroscope considered in the example
in Sec. 1.2, a,, a,, a; and by, b,, b; designate mutually perpendicular unit
vectors fixed in 4 and in B, respectively. The vector p can be expressed both as

p=a;a, + 0,4, + o3aj3 (4)

and as
P = Bib; + B1b, + B3bs &)

where a;and f; (i = 1, 2, 3) are functions of q;, q,, and g;.To determine these
functions, note that, if C has a radius R, one can proceed from O to P by moving
through the distances R cos ¢, and R sin g, in the directions of b, and b,
(see Fig. 1.3.2), respectively, which means that

P+ R(c;b, + s;by) ' (6)

where ¢, and s, are abbreviations for cos g, and sin g,, respectively. Comparing
Egs. (5) and (6), one thus finds that

pi=0 By=Re;  Py=Rs; @)

@

E@\QL\*'Q

Figure 1.3.1



