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Everyone has been touched in
some way by the laws of chance.
From shuffling cards for a game
of bridge, to tossing a coin at the
start of a football game, to await-
ing the outcome of the Selective
Service draft lottery, to weighing the risks and benefits of
knee surgery, most of humanity encounters chance daily. The
statistics that describe our probabilistic world are everywhere
we turn: One-third don't survive their first heart attack. The
chance of a DNA match is 1 in 100 billion. Four out of every
10 marriages in America end in divorce. Batting averages, politi-
cal polls, and weather predictions are pervasive, but an under-
standing of the concepts underlying these statistics and prob-
abilities is not.

Misconceptions abound, and certain concepts seem to be
particularly problematic. To even the mathematically enlight-
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ened, some issues in probability are not so intuitive. Despite
curriculum reforms that have emphasized the teaching of prob-
ability in the schools, most experienced teachers would probably
agree with the math teacher who commented, “Teaching statis-
tics and probability well is not easy.”

Even in very serious decision-making situations, such as as-
sessing the evidence of guilt or innocence during a trial, most
people fail to properly evaluate objective probabilities. The psy-
chologists Daniel Kahneman and Amos Tversky illustrated this
with the following example from their research:

A cab was involved in a hit and run accident at night.
Two cab companies, the Green and the Blue, operate in
the city. You are given the following data:

(a) 85% of the cabs in the city are Green and 15% are
Blue.

(b) A witness identified the cab as Blue. The court
tested the reliability of the witness under the same cir-
cumstances that existed on the night of the accident and
concluded that the witness correctly identified each one
of the two colors 80% of the time and failed 20% of the
time.

What is the probability that the cab involved in the

accident was Blue rather than Green?
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A typical answer is around 80 percent. The correct answer is
around 41 percent. In fact, the hit-and-run cab is more likely to
be Green than Blue.

Kahneman and Tversky suspect that people err in the hit-
and-run problem because they see the base rate of cabs in the
city as incidental rather than as a contributing or causal factor.
As other experts have pointed out, people tend to ignore, or at
least fail to grasp, the importance of base-rate information be-
cause it “is remote, pallid, and abstract,” while target informa-
tion is “vivid, pressing, and concrete.” In evaluating the eye-
witness’s account, “jurors’ seem to overrate the eyewitness's
likelihood of accurately reporting this specific hit-and-run event,
while underrating the more general base rate of cabs in the city,
because the latter information seems too nonspecific.

Base-rate misconceptions are not limited to the average per-
son without an advanced mathematics education. Sophisticated
subjects have the same biases and make the same mistakes—
when they think intuitively. In a study at a prominent medical
school, physicians, residents, and fourth-year medical students

were asked the following question:

If a test to detect a disease whose prevalence is one in a
thousand has a false positive rate of 5 percent, what is the

chance that a person found to have a positive result actu-
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ally has the disease, assuming you know nothing about

the person’s symptoms or signs?*

Almost half of the respondents answered 95 percent. Only 18
percent of the group got the correct answer: about 2 percent.
Those answering incorrectly were once again failing to take into
account the importance of the base-rate information, namely,
(only) 1 person among 1000 tested will have the disease.

The commonsense way to think mathematically about the
problem is this: Only 1 person in 1000 has this disease, as
compared with about 50 in 1000 who will get a false positive
result (5 percent of 999). It is far more likely that any one
person who tests positive will be one of the 50 false positives
than the 1 true positive. In fact, the odds are 1 in 51 that any
one person who tests positive actually has the disease, and that
translates into only a 2 percent chance, even in light of the
positive test.

Another way to state the issue is that the chances of hav-
ing this disease go from 1 in 1000 when one takes the test to 1
in 51 if a person gets a positive test result. That’s a big jump
in risk, to be sure, but it’s a far cry from the 95 out of 100
chance many people erroncously believe they have after a posi-

tive test.



False positives are not human errors or lab errors. They hap-
pen because screening tests are designed to be overly sensitive in
picking up people who deviate from some physiological norm,
even though those people do not have the disease in question. In
order to be sensitive enough to pick up most people who have
tuberculosis, for example, skin tests for TB infection will always
yield a positive result for around 8 percent of people who do not
have the infection but who have other causes for reaction to the
test; if 145 people are screened, roughly 20 will test positive. Yet
only 9 of these 20 will turn out to have TB infection.’

The rate of false positives can be reduced by making screen-
ing tests less sensitive, but often this just increases the percent-
age of false negatives. A false negative is a test result that indi-
cates no disease in a person who actually has the disease. Because
false negatives are usually considered more undesirable than false
positives (since people who get a false negative will not receive
prompt treatment), the designers of screening tests settle on a
compromise—opting for a very small percentage of false nega-
tives and a somewhat larger percentage of false positives than we
might prefer. In the case of tuberculosis, whereas roughly 7.5
percent of people tested will receive a false positive result, only
0.69 percent (roughly 1 person out of every 145 screened) will
get a false negative test result. In other words, out of 145 people



145 screened

/N

125 negative 20 positive

(I false negative) / \

Il noTB 9 TB cases
detected

FIGURE | Really well, or really sick? If a person has a routine screening test
for tuberculosis, she or he has a 10 in 145 (about 7 percent) chance of having
the infection at the time of the test. If the result comes back positive, the
patient’s odds of having TB go up to 9 in 20 (45 percent). If the result comes
back negative, the patient still has a 1 in 125 chance of having the disease
(about 0.8 percent); the original risk has been drastically reduced, but not
eliminated, by the doctor’s “good news.”
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screened for TB using this method, 9 cases of the disease will be
detected and 1 case will remain undetected (see Figure 1).

Considering that even highly educated medical personnel
can make errors in understanding probabilistic data of this kind,
we should not be at all surprised that probability often seems to
be at odds with the intuitive judgments of their patients and
other ordinary people.

In addition to base-rate misconceptions, psychologists have
shown that people are subject to other routine fallacies in evalu-
ating probabilities, such as exaggerating the variability of chance
and overattending to the short run versus the long run.® For
example, the commonly held notion that, on a coin toss, a tail
should follow a string of heads is erroneous. Children seem
particularly susceptible to this fallacy. Jean Piaget and Barbel
Inhelder, who studied the development of mathematical think-
ing in children and whose work will be described frequently
in the following chapters, pointed out that “by contrast with
(logical and arithmetical] operations, chance is gradually dis-
covered.”

One would think that the experiences acquired over a life-
time ought to solidify some correct intuitions about statistics
and probability. Intuitive ideas about chance do seem to precede
formal ideas, and, if correct, are an aid to learning; but if incor-

rect, they can hinder the grasp of probabilistic concepts. Kahne-
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man and Tversky have concluded that statistical principles are
not learned from everyday experience because individuals do not
attend to the detail necessary to gain such knowledge.®

Not surprisingly, over the course of our species” history, ac-
quiring an understanding of chance has been extremely grad-
ual, paralleling the way an understanding of randomness and
probability develops in an individual (if it does). Our human
dealings with chance began in antiquity, as we will see in Chap-
ters 2 and 3. Archaeologists have found dice, or dice-like bones,
among the artifacts of many early civilizations. The practice of
drawing lots is described in the writings of ancient religions, and
priests and oracles foretold the future by “casting the bones” or
noting whether an even or odd number of pebbles, nuts, or
seeds was poured out during a ceremony. Chance mechanisms,
or randomizers, used for divination (seeking divine direction),
decision making, and games have been discovered throughout
Mesopotamia, the Indus valley, Egypt, Greece, and the Roman
Empire. Yet the beginnings of an understanding of probability
did not appear until the mid-1500s, and the subject was not
seriously discussed until almost one hundred years later. Histori-
ans have wondered why conceptual progress in this field was so
slow, given that humans have encountered chance repeatedly

from earliest times.



The key seems to be the difficulty of understanding random-
ness. Probability is based on the concept of a random event, and
statistical inference is based on the distribution of random sam-
ples. Often we assume that the concept of randomness is obvi-
ous, but in fact, even today, the experts hold distinctly different

views of it.

This book will examine randomness and several other notions
that were critical to the historical development of probabilistic
thinking—and that also play an important role in any individ-
ual’s understanding (or misunderstanding) of the laws of chance.
We will investigate a series of ideas over the course of the follow-
ing chapters: > Why, from ancient times to today, have people
resorted to chance in making decisions? >Is a decision made
by random choice a fair decision? > What role has gambling
played in our understanding of chance? »Are extremely rare
events likely in the long run? »Why do some societies and
individuals reject randomness? »Does true randomness exist?
»What contribution have computers made to modern prob-
abilistic thinking? »Why do even the experts disagree about
the many meanings of randomness? »Why is probability so
counter-intuitive?

We all have some notion about the “chances” of an event
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occurring. We come to the subject of probability with some
intuition about the topic. Yet, as the eminent eighteenth-cen-
tury mathematician Abraham De Moivre pointed out long ago,
problems having to do with chance generally appear simple and
amenable to solution with natural good sense, only to be proven
otherwise.’



Why Resort t
Chance!

Everyday randomizers are not
very sophisticated. To settle a dis-
pute over which child gets to ride
in the front seat of the car, for
example, a parent may resort to a
game called “drawing straws.”
One child holds two thin sticks or broom straws in her hand,
with the ends concealed, and the other child chooses. The child
with the shorter straw wins. Many adult entertainments—from
old-fashioned cake walks and Friday Night Bingo to school
raffles and million-dollar jackpots—are driven by simple lotter-
ies. Spinners turn up on children’s board games, among teenag-
ers playing spin-the-bottle, and in Las Vegas gambling casinos.
Dice, which are among the oldest randomizers known, are still
popular today among a range of ages and ethnic groups.
Although hand games, lots, spinners, dice, coins, and cards
are not very complicated devices, our attitudes about using them

are a great deal more complex. When primitive societies needed
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to make a selection of some sort, they often resorted to ran-
domizers for three basic reasons: to ensure fairness, to prevent
dissension, and to acquire divine direction. Modern ideas about
the use of chance in decision-making also invoke issues of fair-
ness, dispute resolution, and even supernatural intervention,
though we usually think of these concepts somewhat differently
today.

Interestingly, these three reasons are exactly the ones given by
children when asked by psychologists why they used counting-
out games, such as one potato/two potato. Ninety percent of the
time children responded that counting out gave them an equal
chance of being selected. Other reasons given were to avoid
friction and to allow some kind of magical or supernatural inter-
vention.! Clearly, the idea of fairness is an important intuitive
element in children’s notions of randomness. Of course children
eventually learn that counting-out games are not really fair: the
choosing can be manipulated by speeding up or slowing down
the verse, or by changing the starting point for counting out.
Once they figure this out, children generally move on to better
methods of randomization.

When chance determines the outcome, no amount of intelli-
gence, skill, strength, knowledge, or experience can give one
player an advantage, and “luck” emerges as an equalizing force.

Chance is a fair way to determine moves in some games and in



