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ABSTRACT
Let HOO(G) denote the algebra of bounded analytic functions on a bounded region G.

Let m:H™(G)—B(X) be a continuous algebra homomorphism with m(1)=1 and such that
S=m(z) is a subnormal operator. If S is pure, then 7 is weak-star, weak—star continuous
and unique. Under various hypotheses we describe the spectrum and essential spectrum of
m(f) for f in H™(G).

Let G be the open unit disc and let S be multiplication by z on Lg(m) where m 1s

Lebesgue measure on the unit circle. In the setting of the paragraph above we may assume

that the range of m is contained in L>(m). Our basic structure theorem establishes a

one—to—one correspondence between such #’s and certain measures on the maximal ideal
space of H*. The mapping = can be onto. It is an isometry if and only if it is

one—to-one and has closed range if and only if = (f)=f for each { in H*. The mapping w
ppmng

is one—to—one if and only if there exists a measurable set E with positive measure such
that (ﬂf)lE = flp for each f in H”. Theorems for more general regions are also

obtained.
In the last chapter these results are generalized to the following setting: let Y and Z
be compact spaces. Let p be a probability measure on Z and p a continuous map of Y

onto Z. We obtain a structure theorem similar to the one mentioned above for those

representations 7 of C(Y) into L™(u) such that = (hop)=h for all h € C(Z).

AMS (MOS) subject classifications (1980). Primary 47B20, 46J15; Secondary 47A67, 30E25,
47C99.

Key words and phraseéA Subnormal operator, representation, weak-star topology, maximal

ideal space, H”, Banach algebra, Gelfand transform.

v



TABLE OF CONTENTS

CHAPTER

IL

III.

Iv.

VIL

VIIL

INTRODUCTION
UNIQUENESS OF REPRESENTATIONS
CONTINUITY PROPERTIES OF UNITAL REPRESENTATIONS

SPECTRAL MAPPING THEOREMS
REPRESENTATIONS OF H®(G) INTO L*®(u)

REPRESENTATIONS OF H™(G) INTO L®(4) THAT ARE ISOMETRIES
PARTIALLY SUBORDINATE REPRESENTATIONS

A GENERALIZATION (OF THE RESULTS IN CHAPTER V)

iii

Page

18

23

42

62
90

108



Subnormal Operators
and
Representations of Algebras
of Bounded Analytic Functions

and other Uniform Algebras

Thomas L. Miller 1 ,

Robert F. Olin?

and

James E. Thomson2

CHAPTER 1

INTRODUCTION

Let G be a bounded domain in the plane € and let H™(G) denote the Banach algebra
of bounded analytic functions on G. Let x denote the function whose value at X\ is X

for every XMeC. This paper is concerned with the theory of the continuous algebra

homomorphisms from H™(G) into B(¥) that send 1 to 1 and x to S where S is a
subnormal operator acting on a separable Hilbert space X. The Banach algebra B(¥)

consists of the bounded operators on X.

Received by the editors February 28, 1986.

1Some of the results in Sections 2 and 3 appear in the first author’s Ph.D thesis

written under the supervision of Robert Olin.

2The last two authors were partially supported by a grant from the National Science

Foundation during the preparation of this paper.



2 MILLER, OLIN AND THOMSON
Even the reader whose interest does not reside in the structure of subnormal
operators may still find some interesting results in this work (in particular, Chapters 5, 6

and 7). For example, suppose p is a probability measure whose support, denoted spt pu,

is contained in dG, the boundary of G. Let S be the normal operator on L2(y) given by

multiplication by x; ie., S=MX where

fo = xf

for all IeLz(u). If = is a continuous algebra homomorphism of H™(G) into B(L2(;1))

with w(1)=1 and 1r(x)=Mx, then the range of =, ran =, is contained in the
commutant of MX’ denoted {MX}’. Since this last algebra equals {Mg: geL®(u)} and,
for each chw(p), one has ||Mg||=||g||, we may view m as a representation into

L%(u). (For geL™(u) the definition of the operator Mg on L2(/1) is the obvious

one; ie.,

for all feL2(y).) Question: Given any such measure p, are there any representations

. H®(G)-»L™(u) that send x to x? The answer is yes. There are many. What
are they? That is, describe how they arise. We will give a classification theorem that
answers this last question (consult Theorem 59).

In the last chapter we show how the problems mentioned 'in the last paragraph are
special cases of the following problem. Let Y and Z be compact spaces. Suppose p is a

probability measure on Z and p is a continuous map of Y onto Z. Describe those

representations m of C(Y) into L*(u) such w(hop) = h for all heC(Z). Our answer to
this problem describes a very natural one-to-one correspondence between the extreme
points of the set of measures v on Y such that p(v)=p and the set of representations
mentioned. (We would like to thank C. Foias for suggesting that our methods in Chapter
Five might be general enough to carry out this latter description. Those readers who like

abstraction first and examples second should read Chapter Eight before they read Chapter
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F’i;'e.)

From now on, we shall refer to a continuous algebra homomorphism 7 from H°°(G)
into B(X) that sends 1 to 1 and x to S (where S is a subnormal operator) as a unital
representation.

Some remarks seem in order as to why the theory of unital representations has some
importance to that of subnormal operators. One of the tools that has been used

successfully to discover the structure of the lattice of invariant subspaces of a subnormal

operator S is the algebra homomorphism from P®(u) to A(S), described in [11]. If S acts on
the Hilbert space ¥ and its minimal normal extension N is defined on K, then the scalar

spectral measure for N is denoted by u. (An excellent account for the general theory of
subnormal operators is contained in [10]) Define P®(u) as the weak-star closure of the

polynomials in L*°(u) (the dual of Ll(u)), and A(S) as the weak-star closure of the
polynomials (in the variable S) in B(¥). Recall that B(X) is the dual of the trace class
operators.) It turns out that A(S) is weakly closed and the weak operator topology and

the weak—star topology agree on this algebra [33].
If P®(u) is antisymmetric; ie., every real-valued function in it is constant, then

P®(p) is isometrically isomorphic and weak-star homeomorphic to the algebra H*(G) for

a suitably chosen domain G. (The regions G that arise in this fashion are characterized in
[32].) The space H®(G), for any region G, is the dual of a separable Banach space [36]; a
sequence {fn} in H®(G) converges weak-star if and only if it is bounded and converges

pointwise everywhere on G. Therefore, the algebra homomorphism referred to earlier is an
example of a unital representation that is an isometry and a weak-star homeomorphism.
Looking at the other techniques used in [5,33] to study subnormal operators (or those

techniques used in [2,6,8] to study other classes of operators), one realizes the existence of

a unital representation m in the P®(u) case) implies some important information about the
lattice of invariant subspaces for S. (For a specific result, consult Theorem 3.2 in [8].)

One is naturally led into a vast array of problems; this paper should be viewed as an
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iixitial assault on this mound. We have taken the liberty of asking many questions which we
were unable to resolve. They are scattered throughout this work. There are many
questions left that we did not ask that are begging to be answered.

Our probing has been directed in two ways. On one hand, we have let the problems
of existence and uniqueness dictate the course of investigation. On the other hand, we have
let the problems related to the functional calculus and continuity steer our inquiries. An

example of our journey along the first course has already been sketched in the second

paragraph. If 7 is a unital representation of H®(G) into B(¥), then in a natural way, =
describes a functional calculus. Our objective in this light (the second course) has been
twofold; describe the spectral mapping theorems associated with , and discuss the
weak—star continuity of m (does it hold?).

Clearly the latter investigation is motivated from the results in [11], as we mentioned
earlier. There is another motivating source for this inquiry.

Example 1. Let G be a bounded domain in € and let g be planar Lebesgue measure
restricted to G. Let ¥ be the space of analytic functions on G that belong to L2(;1).
It follows from [27] that X is a closed subspace of Lz(p) and that MX is a bounded

subnormal operator on X. Furthermore, {S}, where S=MXI)(’ consists of those

multiplication operators M¢, where ¢ eXNL”(u) = H™(G). Clearly then, the map defined

by

m(f) = My on X

is a unital representation. In [3,4] the spectral mapping theorems associated with this

particular unital representation are the focal points.

Recall that a point XedG is inessential if there is a 6>0 such that every
feH®(G) extends analytically to the open disc A(X,6). The remaining points on JG are
called essential boundary points. If m is a unital representation defined on H™(G) and X

is an inessential boundary point, then 7 can be extended to H*(GuA(\,6)) via the

formula
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7(h) = m(hlg)

for all heH*(GuA). Thus, there is no loss in generality in assuming, as we will do in
the rest of the paper without comment, that every point on 9G is essential.

The paper is organized in the following fashion. In Chapter 2, we show that if = is

a unital representation with domain H°°(G), then = is unique provided that either S is a
pure subnormal operator, or p(8G)=0. (A pure subnormal operator is one that has no
nontrivial invariant subspace on which it is normal.)

In Chapter 3 we establish as a corollary to a more general result that any unital
representation 7 is weak-star, weak-star continuous, provided that S=m(x) is pure. In
Chapter 4 we describe some spectral mapping theorems for a given unital representation.
Our results describe (under various hypotheses) the spectrum of m(f), denoted o(w(f)),

and the essential spectrum of =(f), denoted ae(w(f)).

We have already discussed the outline of Chapter 5. This section illustrates how
important the hypothesis of purity in the theorems of Chapters 2 and 3 are. As a

corollary to our principal theorem, we show there are many unital representations 7 from

H*(D) into L™(m). Throughout the paper D will denote the open unit disc and m will

denote normalized Lebesgue measure on dD. Given a Blaschke product b whose zeros

accumulate everywhere on 9D and a function feL™(m) with [[fl|<1, we shall show there
exists a unital representation m such that m(b)=f (consult Example 40). This last fact

then answers a uniqueness question found in [8]. The authors of this latter work ask: "If

B is a polynomially bounded operator such that Bk—>0 in the weak operator topology, can
there exist two different norm-continuous representations each of which sends 1 to 1 and x
to B?" The answer is yes. If B is the bilateral shift (a normal operator), then there are
many such representations. (On the other hand, if B is the unilateral shift (a pure
subnormal operator), then there is only one unital representation.)

In Chapter 6 we investigate the question of whether, for a given region G, there is a

probability measure pu on 8G and a unital representation of H™(G) into L™(u) that is
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an isometry? The problem is completely solved for simply connected domains. A region of
this last type supports an isometric unital representation if and only if it is nicely
connected. The representations that are isometries are classified. ~What happens for an
arbitrary domain? We do not know.

In Chapter 7 we define the notion of when two unital representations are partially
subordinate and relate this concept to some issues of the earlier sections. In particular, we
investigate the lattice structure of a representation and answer the question of when a
representation is one—to—one. The material in the last chapter has already been discussed.

We have tried to keep the material in the last four chapters as self-contained as
possible.  (There are, however, times when we need to draw on some of the results in
Chapters 2 and 3). Our primary reason for doing this, as indicated earlier, is that the
problems addressed in these sections are (can be viewed as) purely function—theoretic ones;
we hope that readers, who may not have an interest in the theory of subnormal operators,
will still find some value in this material.

We close this chapter by asking a question that deals with an issue not addressed in
this paper.

Question 2. If S is a pure subnormal operator acting on the Hilbert space ¥ and =

is an algebra homomorphism from H™(G) into B(¥) with m(1)=1 and =(x)=S, then is =

norm continuous?

If S has a cyclic vector, then S is unitarily equivalent to MX on H2(p) for some

compactly supported measure in the plane. (The Hilbert space Hz(y) consists of the

closure of the polynomials in L2(p).) A result of Yoshino [41] states that {S} =

{M¢:¢6H2(u)ﬂL°°(u)} if S has a cyclic vector. Hence, every operator belonging to

{S} is subnormal.
If we assume S has a cyclic vector in Question 2, then the answer is yes. Recall the
theorem that says any algebra homomorphism from one Banach algebra into a semi-simple

commutative Banach algebra is continuous [12, Prop.4.2]. So to prove the fact, it suffices to
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show the only quasinilpotent operator in {S} is zero. If weHQ(u)ﬂLw(u) and M1/J is
quasinilpotent, then U(MU’) = {0}. Hence, we see that Mw = 0 if we recall the fact

that subnormal operators have the property that their spectral radius is equal to their
norm. (Yes, the last argument did not use the assumption of purity.)
CHAPTER 11
UNIQUENESS OF REPRESENTATIONS
Let S be a subnormal operator on ¥ and let N be its minimal normal extension on K.

The spectral measure for N will be denoted by E. Suppose m, and 7w, are two unital

1 2
representations from H(G) into B(X) such that m(x)=S for i=1,2. Note that in the next

three lemmas and the corollary, we do not assume S is a pure operator (in particular, the
case S=N is allowed).

Lemma 3. (Assume the notation in the preceding paragraph.) Let W be a bounded

region containing G and let geH™(W). Let X\eW and let A(r) = A(Ar) be the open disc

centered at A\ with radius r. Then

lim ”E(A(r))(ﬂl(g)—ﬂ'g(g))“ — 0

r—0 2
r

Proof. Fix geH™(W) and X e¢W and choose r>0 such that A(r)cW. Let h>\(z) be the
first three terms of the Taylor series expansion of g about X; ie,

" 2
hy(2) = (A) + g(3) (z-3) + EALLE=A]T

Then g-hy, = (x->\)3q>\ where the supremum norm of q, on W, denoted I|q>\||, is

bounded by M, where M depends only on some universal constants, ||lg|l and the distance of
X to OW. (To see this estimate on M use the Cauchy estimates on the derivatives of g at

X and the inequality
=3
lay | <(lgl + Ihxl)(lx—kl) )

We then have

IE(A) [ ,(8)-7 (8]l



8 MILLER, OLIN AND THOMSON

<IIE(A) [7,(g)-h, (S)]Il + IE(A)h, (S)-m (&)l

= IE)(S-2) r (ay)ll + IE(@)(S-)) ry(ay)ll

< NE@)S-2)N[llmj(ay)ll + lrg(ay)l]
< IN-X)2E(@) 1 M(lIm 1l + limy )

< IN-2)2E@)1 M(llx Il + llmgll)

< M (lln Il + limgll). =

Lemma 4. With the same notation and assumptions as in Lemma 3, we have

IEW) (r,(8)-74@)ll = 0

for every geH™(W).

Proof. If not, then by the regularity of E there exists a compact set KCW such that

n = IIE(K)(7,(g)-7,(g)ll >0.
Let d be the diameter of K. Construct a square that has sides of length d and that
contains K. Partition the square into four congruent squares each of which has sides of

length d/2. One of these four squares, say Tl’ has the property that
IE(T, NK)(7  (8)-m4(g)) 1= n/4.
Continuing this process by induction, we construct a sequence {Tn} of squares with the
following properties:
Tn+1 < Tn;
the sides of Tn have length d/2";
and
IE(T,NK)(r, (8)-mo(@)I = n/4".
Let A\ be such that {\} = nTn. Since K is compact and TnnK is nonempty for

every n, it follows that X\ eK.

-1
Let rn=d/2n . Then T CA(\,r ) and
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IE(A(r ) (8)-7 5 ()

I\

IE(T, NK)(r (8)-75(&)) I

> q/4n.

Thus,
IO r)(r (g)-mo (@)l 2 nr?/4d®,

Letting n—co, we see that the conclusion of Lemma 3 is contradicted. m

In a way, the result of Lemma 4 is unsatisfactory. The lemma implies that

E(\/V)nl(g) and E(W)7r2(g) are equal; but, intuition tells one (based on many examples)

that m(g) should be multiplication by g on the space E(W)¥ for geH™(W). (We continue
to use the setting of Lemmas 3 and 4.) Note, however, E(W)¥ may not be contained in X
and, therefore, vectors in the subspace E(W)¥ are not necessarily in the domain of w(g).
However, by an appropriate orthogonal decomposition of the space K, we can place our
beliefs on solid ground.

Let u be a scalar-valued spectral measure for N. Then [10, Chapter 2, Section 9]

there exists a sequence (possibly finite) of measures {”i} such that B=pg, By <<By

for all i and N is (unitarily equivalent to) the operator @ MX on the space QL2(pi).
i i

Assume that m is a unital representation defined on H™(G) and N is the minimal normal
extension of w(x).
It follows easily from the fact that m is a homomorphism that G D a(S). Recalling

the facts that o(S) D o(N), that d¢(S) € 90(N) and that o(N) = spt p, we see spt

H; C G for all i

Lemma 5. Let 7 be a unital representation of H™(G) into B(X) where m(x)=S.
Let W be a region containing G. Using a unitary operator, if necessary, we assume the

minimal normal extension N of m(x) is

2
? MX on ? L (pi).
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(’i‘his decomposition is that described in the above.) Let t = o Y be a vector in X and
i

let feH®(W). Choose ¢ieL2(pi) for each i so that

1

()t = @ ¢.
i

Then, for each i, we have

$; = 1y

almost everywhere By
Hw

The measure B is the restriction of By to W. Clearly Lemma 5 implies Lemma
w

4. The proof of Lemma 5 relies on the following fact whose proof is left to the reader.
(One way of proving this fact is to use the technique of the proof of Lemma 4.)

Fact 6. If u is a positive compactly supported measure in the plane, then the set

{weC: J.—QL(L)E< oo}

| z-wl
has pg-measure zero.

Proof of Lemma 5. Suppose to the contrary that there exist an i0 and € > 0 such that

l¢. =ft. | 2 €
o o

on a compact subset ECW with u. (E) > 0. We may assume, without loss of generality,
'o

I't, 1 < M on E for some positive constant M Fix a point wgeE such that
0

piO(EnU) > 0 for each neighborhood U of w,

By the continuity of f and the boundedness of tio, there exists a neighborhood U of
Vo U € W such that

I f(w)-f(wg) | Iciol < €/2
for all weU. Observe that, for each weU,

(w(f-f(W))t = ? (¢;-1(w)t,).

For each weU, we define a function hweHm(VV) via
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f(z)-f(w) g {w}

Z-W

h (z) = £ (w) 1=w.
We compute:

m(f-f(w)) = m((x-w)h,)

~ (S-w)n(h,)

= (N-w)m(h)

- (M,)-w)n(h,).

Hence, for each weU, the function

o (2i-T(W)ti) _ xtu )t

; w
1 X-W

belongs to @Lz(pi). But, everywhere on ENU, we have
i

Lo —f(w)t; | 2 1, —ft, | = If-f(w)llt; |
0 0 0 0 0
2 € - €/2
= €/2.
Hence, it follows that L o L2(

— B | ) for every weU. Applying Fact 6, we get that
X 0 UNE

#; (UNE)=0; a clear contradiction to the fact u; (UNE)>0. =
0 0

A uniqueness theorem for unital representations now follows for a wide variety of

examples.

Corollary 7. Let S be a subnormal operator and let N be its minimal normal
extension. If m, for i=1,2 are two unital representations defined on H%(G) with
m(x)=S, then m =m, provided that E(dG) = 0 where E is the spectral measure for

N.
We see, from this corollary, that the representation defined in Example 1 is unique.
As mentioned in the introduction (see Chapter 5) this uniqueness can fail if E(8G)»0. But

not if m(x) is pure. Before we prove this last statement, we present two results from



