Joe Hurd -
Tom Melham (Eds.)

Theorem Proving
“in Higher Order Logics

18th International Conference, TPHOLs 2005
Oxford, UK, August 2005
Proceedings

LNCS 3603

@ Springer

-~/ Joe Hurd Tom Melham (Eds.)

Theorem Proving
in Higher Order Logics

18th International Conference, TPHOLs 2005
Oxford, UK, August 22-25, 2005
Proceedings

LI

%\ Springer 7902090

Volume Editors

Joe Hurd

Oxford University Computing Laboratory

Wolfson Building, Parks Road, Oxford, OX1 3QD, UK
E-mail: joe.hurd@comlab.ox.ac.uk

Tom Melham

Oxford University Computing Laboratory

Wolfson Building, Parks Road Oxford, OX1 3QD, UK
E-mail: Tom.Melham @comlab.ox.ac.uk

Library of Congress Control Number: 2005930490

CR Subject Classification (1998): F4.1,1.2.3, F3.1,D.2.4,B.6.3

ISSN 0302-9743
ISBN-10 3-540-28372-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28372-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11541868 06/3142 543210

Lecture Notes in Computer Science 3603

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA ¥
Moshe Y. Vardi

Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Lecture Notes in Computer Science

For information about Vols. 1-3522

please contact your-bookseller or Springer

Vol. 3654: S. Jajodia, D. Wijesekera (Eds.), Data and Ap-
plications Security XIX. X, 353 pages. 2005.

Vol. 3639: P. Godefroid (Ed.), Model Checking Software.
X1, 289 pages. 2005.

Vol. 3638: A. Butz, B. Fisher, A. Kriiger, P. Olivier (Eds.),
Smart Graphics. X1, 269 pages. 2005.

Vol. 3634: L. Ong (Ed.), Computer Science Logic. XI, 567
pages. 2005.

Vol. 3633: C. Bauzer Medeiros, M. Egenhofer, E. Bertino
(Eds.), Advances in Spatial and Temporal Databases. XIII,
433 pages. 2005.

Vol. 3632: R. Nieuwenhuis (Ed.), Automated Deduction
— CADE-20. XIII, 459 pages. 2005. (Subseries LNAT).

Vol. 3627: C. Jacob, M.L. Pilat, P.J. Bentley, J. Timmis
(Eds.), Artificial Immune Systems. XII, 500 pages. 2005.

Vol. 3626: B. Ganter, G. Stumme, R. Wille (Eds.), Formal
Concept Analysis. X, 349 pages. 2005. (Subseries LNAI).

Vol. 3625: S. Kramer, B. Pfahringer (Eds.), Inductive
Logic Programming. XIII, 427 pages. 2005. (Subseries
LNAI).

Vol. 3623: M. Liskiewicz, R. Reischuk (Eds.), Fundamen-
tals of Computation Theory. XV, 576 pages. 2005.

Vol. 3621: V. Shoup (Ed.), Advances in Cryptology —
CRYPTO 2005. X1, 568 pages. 2005.

Vol. 3620: H. Muiioz-Avila, F. Ricci (Eds.), Case-Based
Reasoning Research and Development. XV, 654 pages.
2005. (Subseries LNAI).

Vol. 3619: X. Lu, W. Zhao (Eds.), Networking and Mobile
Computing. XXIV, 1299 pages. 2005.

Vol. 3615: B. Ludischer, L. Raschid (Eds.), Data Integra-
tion in the Life Sciences. X1I, 344 pages. 2005. (Subseries
LNBI).

Vol. 3608: F. Dehne, A. L6pez-Ortiz, J.-R. Sack (Eds.),
Algorithms and Data Structures. XIV, 446 pages. 2005.

Vol. 3607: J.-D. Zucker, L. Saitta (Eds.), Abstraction, Re-
formulation and Approximation. XII, 376 pages. 2005.
(Subseries LNAI).

Vol. 3606: V. Malyshkin (Ed.), Parallel Computing Tech-
nologies. XII, 470 pages. 2005.

Vol. 3603: J. Hurd, T. Melham (Eds.), Theorem Proving
in Higher Order Logics. IX, 409 pages. 2005.

Vol. 3602: R. Eigenmann, Z. Li, S.P. Midkiff (Eds.), Lan-
guages and Compilers for High Performance Computing.
IX, 486 pages. 2005.

Vol. 3598: H. Murakami, H. Nakashima, H. Tokuda,
M. Yasumura, Ubiquitous Computing Systems. XIII, 275
pages. 2005.

Vol. 3597: S. Shimojo, S. Ichii, TW. Ling, K.-H.
Song (Eds.), Web and Communication Technologies and
Internet-Related Social Issues - HSI 2005. XIX, 368
pages. 2005.

Vol. 3596: F. Dau, M.-L. Mugnier, G. Stumme (Eds.),
Conceptual Structures: Common Semantics for Sharing
Knowledge. XI, 467 pages. 2005. (Subseries LNAI).

Vol. 3595: L. Wang (Ed.), Computing and Combinatorics.
XVI, 995 pages. 2005.

Vol. 3594: J.C. Setubal, S. Verjovski-Almeida (Eds.), Ad-
vances in Bioinformatics and Computational Biology.
X1V, 258 pages. 2005. (Subseries LNBI).

Vol. 3592: S. Katsikas, J. Lopez, G. Pernul (Eds.), Trust
and Privacy in Digital Business. XII, 332 pages. 2005.

Vol. 3587: P. Perner, A. Imiya (Eds.), Machine Learning
and Data Mining in Pattern Recognition. X VII, 695 pages.
2005. (Subseries LNAI).

Vol. 3586: A.P. Black (Ed.), ECOOP 2005 - Object-
Oriented Programming. XVII, 631 pages. 2005.

Vol. 3584: X. Li, S. Wang, Z.Y. Dong (Eds.), Advanced
Data Mining and Applications. XIX, 835 pages. 2005.
(Subseries LNAI).

Vol. 3583: R.W. H. Lau, Q. Li, R. Cheung, W. Liu (Eds.),
Advances in Web-Based Learning - ICWL 2005. XIV, 420
pages. 2005.

Vol. 3582: J. Fitzgerald, I.J. Hayes, A. Tarlecki (Eds.), FM
2005: Formal Methods. XIV, 558 pages. 2005.

Vol. 3581: S. Miksch, J. Hunter, E. Keravnou (Eds.), Ar-
tificial Intelligence in Medicine. XVII, 547 pages. 2005.
(Subseries LNAI).

Vol. 3580: L. Caires, G.F. Italiano, L. Monteiro, C.
Palamidessi, M. Yung (Eds.), Automata, Languages and
Programming. XXV, 1477 pages. 2005.

Vol. 3579: D. Lowe, M. Gaedke (Eds.), Web Engineering.
XXII, 633 pages. 2005.

Vol. 3578: M. Gallagher, J. Hogan, F. Maire (Eds.), Intelli-
gent Data Engineering and Automated Learning - IDEAL
2005. XVI, 599 pages. 2005.

Vol. 3577: R. Falcone, S. Barber, J. Sabater-Mir, M.P.
Singh (Eds.), Trusting Agents for Trusting Electronic So-
cieties. VIII, 235 pages. 2005. (Subseries LNAI).

Vol. 3576: K. Etessami, S.K. Rajamani (Eds.), Computer
Aided Verification. XV, 564 pages. 2005.

Vol. 3575: S. Wermter, G. Palm, M. Elshaw (Eds.),
Biomimetic Neural Learning for Intelligent Robots. IX,
383 pages. 2005. (Subseries LNAI).

Vol. 3574: C. Boyd, J.M. Gonzélez Nieto (Eds.), Informa-
tion Security and Privacy. XIII, 586 pages. 2005.

Vol. 3573: S. Etalle (Ed.), Logic Based Program Synthesis
and Transformation. VIII, 279 pages. 2005.

Vol. 3572: C. De Felice, A. Restivo (Eds.), Developments
in Language Theory. XI, 409 pages. 2005.

Vol. 3571: L. Godo (Ed.), Symbolic and Quantitative
Approaches to Reasoning with Uncertainty. XVI, 1028
pages. 2005. (Subseries LNAI).

Vol. 3570: A. S. Patrick, M. Yung (Eds.), Financial Cryp-
tography and Data Security. XII, 376 pages. 2005.

Vol. 3569: F. Bacchus, T. Walsh (Eds.), Theory and Ap-
plications of Satisfiability Testing. XII, 492 pages. 2005.

Vol. 3568: W.-K. Leow, M.S. Lew, T.-S. Chua, W.-Y. Ma,
L. Chaisorn, E.M. Bakker (Eds.), Image and Video Re-
trieval. XVII, 672 pages. 2005.

Vol. 3567: M. Jackson, D. Nelson, S. Stirk (Eds.),
Database: Enterprise, Skills and Innovation. XII, 185
pages. 2005. -

Vol. 3566: J.-P. Banitre, P. Fradet, J.-L. Giavitto, O.
Michel (Eds.), Unconventional Programming Paradigms.
XI, 367 pages. 2005.

Vol. 3565: G.E. Christensen, M. Sonka (Eds.), Information
Processing in Medical Imaging. XXI, 777 pages. 2005.

Vol. 3564: N. Eisinger,.J. Matuszyniski (Eds.), Reasoning
Web. IX, 319 pages. 2005.

Vol. 3562: J. Mira, J.R. Alvarez (Eds.), Artificial Intelli-
gence and Knowledge Engineering Applications: A Bioin-
spired Approach, Part II. XXIV, 636 pages. 2005.

Vol. 3561: J. Mira, J.R. Alvarez (Eds.), Mechanisms, Sym-
bols, and Models Underlying Cognition, Part I. XX1V, 532
pages. 2005.

" Vol. 3560: V.K. Prasanna, S. Iyengar, P.G. Spirakis, M.
Welsh (Eds.), Distributed Computing in Sensor Systems.
XV, 423 pages. 2005.

Vol. 3559: P. Auer, R. Meir (Eds.), Learning Theory. XI,
692 pages. 2005. (Subseries LNAI).

Vol. 3558: V. Torra, Y. Narukawa, S. Miyamoto (Eds.),
Modeling Decisions for Artificial Intelligence. XII, 470
pages. 2005. (Subseries LNAI).

Vol. 3557: H. Gilbert, H. Handschuh (Eds.), Fast Software
Encryption. XI, 443 pages. 2005.

Vol. 3556: H. Baumeister, M. Marchesi, M. Holcombe
(Eds.), Extreme Programming and Agile Processes in
* Software Engineering. XIV, 332 pages. 2005.

Vol. 3555: T. Vardanega, A.J. Wellings (Eds.), Reliable
Software Technology — Ada-Europe 2005. XV, 273 pages.
2005.

Vol. 3554: A. Dey, B. Kokinov, D. Leake, R. Tumer (Eds.),
Modeling and Using Context. XIV, 572 pages. 2005. (Sub-
series LNAI).

Vol. 3553: T.D. Hamaldinen, A.D. Pimentel, J. Takala, S.
Vassiliadis (Eds.), Embedded Computer Systems: Archi-
tectures, Modeling, and Simulation. XV, 476 pages. 2005.

Vol. 3552: H. de Meer, N. Bhatti (Eds.), Quality of Service
—IWQoS 2005. XVIII, 400 pages. 2005.

Vol. 3551: T. Hirder, W. Lehner (Eds.), Data Management
in a Connected World. XIX, 371 pages. 2005.

Vol. 3548: K. Julisch, C. Kruegel (Eds.), Intrusion and
Malware Detection and Vulnerability Assessment. X, 241
pages. 2005.

Vol. 3547: F. Bomarius, S. Komi-Sirvié (Eds.), Product
Focused Software Process Improvement. X111, 588 pages.
2005. :

Vol. 3546: T. Kanade, A. Jain, N.K. Ratha (Eds.), Audio-
and Video-Based Biometric Person Authentication. XX,
1134 pages. 2005.

Vol. 3544: T. Higashino (Ed.), Principles of Distributed
Systems. XII, 460 pages. 2005.

Vol. 3543: L. Kutvonen, N. Alonistioti (Eds.), Distributed
Applications and Interoperable Systems. XI, 235 pages.
2005.

Vol. 3542: H.H. Hoos, D.G. Mitchell (Eds.), Theory and
Applications of Satisfiability Testing. XIII, 393 pages.
2005.

Vol. 3541: N.C. Oza, R. Polikar, J. Kittler, F. Roli (Eds.),
Multiple Classifier Systems. XII, 430 pages. 2005.

Vol. 3540: H. Kalviainen, J. Parkkinen, A. Kaarna (Eds.),
Image Analysis. XXII, 1270 pages. 2005. -

Vol. 3539: K. Morik, J.-F. Boulicaut, A. Siebes (Eds.),
Local Pattern Detection. XI, 233 pages. 2005. (Subseries
LNAI).

Vol. 3538: L. Ardissono, P. Bma, A. Mitrovic (Eds.), User
Modeling 2005. XVI, 533 pages. 2005. (Subseries LNAI).

Vol. 3537: A. Apostolico, M. Crochemore, K. Park (Eds.),
Combinatorial Pattern Matching. XI, 444 pages. 2005.

Vol. 3536: G. Ciardo, P. Darondeau (Eds.), Applications
and Theory of Petri Nets 2005. XI, 470 pages. 2005.

Vol. 3535: M. Steffen, G. Zavattaro (Eds.), Formal Meth-
ods for Open Object-Based Distributed Systems. X, 323
pages. 2005.

Vol. 3534: S. Spaccapietra, E. Ziményi (Eds.), Journal on
Data Semantics III. XI, 213 pages. 2005.

Vol. 3533: M. Ali, F. Esposito (Eds.), Innovations in Ap-
plied Artificial Intelligence. XX, 858 pages. 2005. (Sub-
series LNAI).

Vol. 3532: A. G6émez-Pérez, J. Euzenat (Eds.), The Se-
mantic Web: Research and Applications. XV, 728 pages.
2005.

Vol. 3531: J. Ioannidis, A. Keromytis, M. Yung (Eds.), Ap-
plied Cryptography and Network Security. XI, 530 pages.
2005.

Vol. 3530: A. Prinz, R. Reed, J. Reed (Eds.), SDL 2005:
Model Driven. XI, 361 pages. 2005.

Vol. 3528: P.S. Szczepaniak, J. Kacprzyk, A. Niewiadom-
ski (Eds.), Advances in Web Intelligence. X VII, 513 pages.
2005. (Subseries LNAI).

Vol. 3527: R. Morrison, F. Oquendo (Eds.), Software Ar-
chitecture. XII, 263 pages. 2005.

Vol. 3526: S. B. Cooper, B. Lowe, L. Torenvliet (Eds.),
New Computational Paradigms. XVII, 574 pages. 2005.

Vol. 3525: A.E. Abdallah, C.B. Jones, J.W. Sanders (Eds.),
Communicating Sequential Processes. XIV, 321 pages.
2005.

Vol. 3524: R. Bartdk, M. Milano (Eds.), Integration of Al
and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems. XI, 320 pages. 2005.
Vol. 3523: J.S. Marques, N. Pérez de la Blanca, P. Pina

(Eds.), Pattern Recognition and Image Analysis, Part II.
XXVI, 733 pages. 2005.

X864 2

Preface

This volume constitutes the proceedings of the 18th International Conference
on Theorem Proving in Higher Order Logics (TPHOLs 2005), which was held
during 22-25 August 2005 in Oxford, UK. TPHOLS covers all aspects of theorem
proving in higher order logics as well as related topics in theorem proving and
verification.

There were 49 papers submitted to TPHOLs 2005 in the full research cat-
egory, each of which was refereed by at least three reviewers selected by the
program committee. Of these submissions, 20 research papers and 4 proof pearls
were accepted for presentation at the conference and publication in this volume.
In keeping with longstanding tradition, TPHOLs 2005 also offered a venue for
the presentation of work in progress, where researchers invited discussion by
means of a brief introductory talk and then discussed their work at a poster
session. A supplementary proceedings volume was published as a 2005 technical
report of the Oxford University Computing Laboratory.

The organizers are grateful to Wolfgang Paul and Andrew Pitts for agreeing
to give invited talks at TPHOLs 2005.

The TPHOLSs conference traditionally changes continents each year to max-
imize the chances that researchers from around the world can attend. Starting
in 1993, the proceedings of TPHOLSs and its predecessor workshops have been
published in the Springer Lecture Notes in Computer Science series:

1993 (Canada) Vol. 780 2000 (USA) Vol. 1869
1994 (Malta) Vol. 859 2001 (UK) Vol. 2152
1995 (USA) Vol. 971 2002 (USA) Vol. 2410
1996 (Finland) Vol. 1125 2003 (Italy) Vol. 2758
1997 (USA) Vol. 1275 2004 (USA) Vol. 3223
1998 (Australia) Vol. 1479 2005 (UK) Vol. 3603

1999 (France) Vol. 1690

We would like to thank our local organizers Ed Smith and Ashish Darbari
for their help in many aspects of planning and running TPHOLs.

Finally, we thank our sponsors: Intel Corporation and the EPSRC UK Net-
work in Computer Algebra.

June 2005 Joe Hurd and Tom Melham
TPHOLSs 2005 Chairs

Organization

Program Committee

Mark Aagaard (Waterloo)

David Basin (ETH Ziirich)
Ching-Tsun Chou (Intel)

Amy Felty (Ottawa)

Jacques Fleuriot (Edinburgh)

Elsa Gunter (UIUC)

Jason Hickey (Caltech)

Joe Hurd (Oxford)

Thomas Kropf (Tiibingen & Bosch)
John Matthews (Galois)

Tobias Nipkow (Miinchen)
Christine Paulin-Mohring (Paris Sud)
Frank Pfenning (CMU)

Sofiéne Tahar (Concordia)

Additional Referees

Amr Abdel-Hamid
Behzad Akbarpour
Tamarah Arons
Sylvain Conchon
Pierre Corbineau
Peter Dillinger
Lucas Dixon
Guillaume Dufay
Marcio Gemeiro
Ganesh Gopalakrishnan
Ali Habibi

Hugo Herbelin
Doug Howe
Robert Jones

Clark Barrett (NYU)

Yves Bertot (INRIA)

Thierry Coquand (Chalmers)
Jean-Christophe Fillidtre (Paris Sud)
Jim Grundy (Intel)

John Harrison (Intel)

Peter Homeier (US DoD)

Paul Jackson (Edinburgh)

Pete Manolios (Georgia Tech)
César Mufioz (Nat. Inst. Aerospace)
Sam Owre (SRI)

Lawrence Paulson (Cambridge)
Konrad Slind (Utah)

Burkhart Wolff (ETH Ziirich)

Roope Kaivola
Felix Klaedtke
Farhad Mehta
Laura Meikle
Julien Narboux
Lee Pike

Tom Ridge
Hassen Saidi
Christelle Scharff
N. Shankar

Radu Siminiceanu
Sudarshan Srinivasan
Ashish Tiwari
Daron Vroon

Table of Contents

Invited Papers

On the Correctness of Operating System Kernels
Mauro Gargano, Mark Hillebrand, Dirk Leinenbach,
Wolfgang Paul «::ssssiwisssns sninpsmsmmensessmpsms@snens $msmess

Alpha-Structural Recursion and Induction
Anvdrew M Pitls svos sosmssmins snimesnsmmimssss@esssmssmssssmmss

Regular Papers

Shallow Lazy Proofs
Hasan Amgado

Mechanized Metatheory for the Masses: The POPLMARK Challenge
Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn,
J. Nathan Foster, Benjamin C. Pierce, Peter Sewell,
Dimitrios Vytiniotis, Geoffrey Washburn, Stephanie Weirich,
Steve Zdancewic

A Structured Set of Higher-Order Problems
Christoph E. Benzmiiller, Chad E. Browncc.couvu...

Formal Modeling of a Slicing Algorithm for Java Event Spaces
in PVS
NEStOr Catamooue ittt et

Proving Equalities in a Commutative Ring Done Right in Coq
Benjamin Grégoire, Assia Mahboubi..............................

A HOL Theory of Euclidean Space
JORN HATTiSON . « .o oot e e

A Design Structure for Higher Order Quotients
Peter V. Homeier.o et

Axiomatic Constructor Classes in Isabelle/HOLCF
Brian Huffman, John Matthews, Peter White......................

VIII Table of Contents

Meta Reasoning in ACL2
Warren A. Hunt Jr., Matt Kaufmann, Robert Bellarmine Krug,
J Strother Moore, Eric Whitman Smith c...... 163

Reasoning About Java Programs with Aliasing and Frame
Conditions
Claude Marché, Christine Paulin-Mohring 179

Real Number Calculations and Theorem Proving
César Muriioz, David Lester, 195

Verifying a Secure Information Flow Analyzer
David A INCUTVOTIY ¢ o 56 msm 05565655 5555555 510 st oo mr e om0 ioor s s 10 s fo 10 m 211

Proving Bounds for Real Linear Programs in Isabelle/HOL
Steven Obua ... 227

Essential Incompleteness of Arithmetic Verified by Coq
Russell O’Connoroouoi 245

Verification of BDD Normalization
Veronika Ortner, Norbert Schirmerccuu. o ... 261

Extensionality in the Calculus of Constructions
INGEOLAS OUTY 5 5ie 55 m5 950018 5555 556505 500 m 0 roms o 1 i 0 o cnt o 2t 0 55534 015 50 51 278

A Mechanically Verified, Sound and Complete Theorem Prover
for First Order Logic
Tom Ridge, James Margetsoncccciiiirnininnnn.. 294

A Generic Network on Chip Model
Julien Schmaltz, Dominique Borrione 310

Formal Verification of a SHA-1 Circuit Core Using ACL2
Diana Toma, Dominique BOTTIONEcccuiueuneeeennnnn. .. 326

From PSL to LTL: A Formal Validation in HOL
Thomas Tuerk, Klaus Schneider 0000 342

Proof Pearls

Proof Pearl: A Formal Proof of Higman’s Lemma in ACL2
Francisco J. Martin-Mateos, José L. Ruiz-Reina, José A. Alonso,
Maria J. Hidalgo 0 i, ... 358

Table of Contents IX

Proof Pearl: Dijkstra’s Shortest Path Algorithm Verified with ACL2
J Strother Moore, Qiang Zhangcc.cuiuueiueni... 373

Proof Pearl: Defining Functions over Finite Sets
Tobias Nipkow, Lawrence C. Paulsonccuuuueeo.... 385

Proof Pearl: Using Combinators to Manipulate let-Expressions in Proof
Michael Norrish, Konrad Slind cuiiiuiueeoo... 397

Author Index 409

On the Correctness of Operating System Kernels

Mauro Gargano*, Mark Hillebrand*, Dirk Leinenbach*>**, and Wolfgang Paul

Saarland University, Computer Science Dept., 66123 Saarbriicken, Germany
{gargano, mah, dirkl, wjp}@wjpserver.cs.uni-sb.de

Abstract. The Verisoft project aims at the pervasive formal verification of entire
computer systems. In particular, the seamless verification of the academic system
is attempted. This system consists of hardware (processor and devices) on top of
which runs a microkernel, an operating system, and applications. In this paper we
define the computation model CVM (communicating virtual machines) in which
concurrent user processes interact with a generic microkernel written in C. We
outline the correctness proof for concrete kernels, which implement this model.
This result represents a crucial step towards the verification of a kernel, e.g. that
in the academic system. We report on the current status of the formal verification.

1 Introduction

There is no need to argue about the importance of computer security [1] and operating
system security is in the center of computer security. Making operating systems com-
fortable and at the same time utmost reliable is extremely hard. However, some small
and highly reliable operating system kernels, e.g. [2,3,4], have been developed. A reli-
able kernel opens the way to uncouple the safety-critical applications running under an
operating system from the non-critical ones. One runs two operating systems under a
trusted kernel, a small trusted one for the safety-critical applications and a conventional
one for all others. This minimizes the total size of the trusted components. For example,
[5] describes a small operating system and Linux running under the L4 microkernel [6].

For critical applications one wishes of course to estimate, how much trust one
should put into a system. For this purpose the common criteria for information tech-
nology security evaluation [7] define a hierarchy of evaluation assurance levels EAL-1
to EAL-7. These are disciplines for reviewing, testing / verifying, and documenting sys-
tems during and after development. Even the highest assurance level, EAL-7, does not
require formal verification of the system implementation. Clearly, the common criteria,
in the current revision, stay behind the state of the art available at that time: already
nine years before Bevier [8] reported on the full formal verification of KIT, a small
multitasking operating system kernel written in machine language. KIT implements a
fixed number of processes, each occupying a fixed portion of the processor’s memory.
It provides the following verified services: process scheduling, error handling, message
passing, and an interface to asynchronous devices. In terms of complexity, KIT is near
to small real-time operating systems like e.g. OSEKTime [9].

* Work partially funded by the German Federal Ministry of Education and Research (BMBF) in
the framework of the Verisoft project under grant 01 IS C38.
** Work supported by DFG Graduiertenkolleg “Leistungsgarantien fiir Rechnersysteme”.

J. Hurd and T.F. Melham (Eds.): TPHOLs 2005, LNCS 3603, pp. 1-16, 2005.
© Springer-Verlag Berlin Heidelberg 2005

2 M. Gargano et al.

In this paper we outline an approach to the pervasive verification of a considerably
more powerful kernel, supporting virtual memory, memory management, system calls,
user defined interrupts, etc. We outline substantial parts of its correctness proof. We
report on the current status of the formal verification. The results presented in this paper
were obtained in and are of crucial importance to the Verisoft project [10], funded by
the German Federal Government. Verisoft has the mission to provide the technology for
the formal pervasive verification of entire computer systems of industrial complexity.

2 Overview

To handle the design complexity, computer systems are organized in layers some of
which are modeled by well established formal models. Examples are (i) the hardware
layer that is modeled by switching circuits and memory components, (ii) the machine
language layer that is modeled by random access machines [11] with an appropriate
instruction set, and (iii) the programming language layer, e.g. for C, is, for operational
semantics, modeled by abstract interpreters, also called abstract C machines. Correct-
ness theorems for components of computer systems are often simulation theorems be-
tween adjacent layers. Processor correctness concerns a simulation between Layers (i)
and (i1). Compiler correctness concerns a simulation between Layers (ii) and (iii).
Aiming at formulating and proving a correctness theorem for an operating system
kernel we take a similar approach. We introduce an abstract parallel model of compu-
tation called communicating virtual machines (CVM) that formalizes concurrent user
processes interacting with an operating system kernel. In this model user processes are
virtual machines, i.e. processors with virtual memory. The so-called abstract kernel is
represented as an abstract C machine. Beyond the usual C functions the abstract kernel
can call a few special functions, called the CVM primitives, that alter the configura-
tion of user processes. For instance, there are CVM primitives to increase / decrease the
memory size of a user process or to copy data between user processes (and I/O devices).
By linking abstract kernels with a program implementing the CVM functionality
we obtain the concrete kernel. In particular, the concrete kernel contains the implemen-
tation of the CVM primitives and the implementation of handlers for page faults (not
visible in the abstract model). A crucial observation is that the concrete kernel necessar-
ily contains assembler code because neither processor registers nor user processes are
visible in the variables of a C program. Thus the correctness theorem for the concrete
kernel will establish a simulation between CVM and Layer (ii) instead of Layer (iii).
Since reasoning on assembler level is tedious we minimize its use in the concrete kernel.
The remainder of this paper is structured as follows. In Sect. 3 we define virtual ma-
chines and summarize results from [12] on the simulation of virtual machines by physi-
cal machines, processors with physical and swap memory. In Sect. 4 we define abstract
C0 machines and summarize the compiler correctness proof from [13]. In Sect. 5 we
define the CVM model using virtual machines to model computation of the user and
abstract C'O machines to model computation of an abstract kernel. Section 6 sketches
the construction of the concrete kernel containing the CVM implementation. We state
the correctness proof for the concrete kernel and outline its proof. In Sect. 7 we report
on the status of the formal verification. In Sect. 8 we conclude and sketch further work.

On the Correctness of Operating System Kernels 3

3 Virtual Memory Simulation

Let us introduce some notation. We denote bitvectors by a € {0, 1}". Bit j of bitvector
a is denoted by a[j], the sub bitvector consisting of bits j to k (with k < j) is denoted
by a[j: k]. The concatenation of two bitvectors a € {0,1}" and b € {0, 1} is denoted
by a o b € {0,1}"*™. Occasionally we will abuse notation and identify bitvectors a
with their value (a) = Y, a[i] - 2* and vice versa. Arithmetic is modulo 2". We model
memories 7 as mappings from addresses a € {0, 1}3? to byte values m(a) € {0,1}%.
For natural numbers d we denote by mg(a) the content of d consecutive memory cells
starting at address a, so m4(a) = m(a+d—1)o---om(a).
In the following sub sections we summarize results from [12].

3.1 Virtual Machines

Virtual machines consist of a processor operating on a (uniform) virtual memory. Con-
figurations cy of virtual machines have the following components:

- cv.R € {0,1}32 for a variety of processor registers R. We consider here pipelined
DLX machines [14] with a delayed branch mechanism that is implemented by two
program counters, called delayed program counter cy.DPC € {0,1}%? and pro-
gram counter cy.PC € {0, 1}32. For details see [15].

— The size cy.V of the virtual memory measured in pages of 4K bytes. It defines the
set of accessible virtual addresses VA(cy) = {a € {0,1}3? | a < cv.V - 4K}. We
split virtual addresses va = va[31:0] into page index va.pz = va([31:12] and byte
index va.bz = va[11:0].

— A byte addressable virtual memory cy.vm : VA(ev) — {0, 1}%.

— A write protection function cy.p : VA(ev) — {0, 1} that only depends on the page
index of virtual addresses. A virtual address va is write protected if cy.p(va) = 1.

Computation of the virtual machine is modeled by the function dv that computes for
a given configuration cy its successor configuration cy,. The virtual machine accesses
the memory in the following situations: it reads the memory to fetch instructions and to
execute load instructions, it writes the memory to execute store instructions.

However, any access to a virtual address va ¢ VA(cv) or a write access to va with
cv.p(va) = 1 is illegal and leads to an exception. For the CVM model (cf. Sect. 5) we
do not consider write protected pages and assume cy.p(va) = 0 for all va € VA(ev).

Note that the effects of exceptions are not defined in a virtual machine model alone
but in an extended context of a virtual machine running under a certain operating system
(kernel). Also, the size of the virtual memory cy.V cannot be changed by the virtual
machine itself. This is described in more detail in Sect. 5.

3.2 Physical Machines and Address Translation

Physical machines consist of a processor operating on physical memory and swap mem-
ory. Configurations cp of physical machines have components cp. R for processor regis-
ters R, cp.pm for the physical memory, and cp.sm for the swap memory. The physical
machine has several special purpose registers not present in virtual machines, e.g. the

4 M. Gargano et al.

31 12 11 10 9 0

I ppz[19 : 0] | v I p l ‘l

Fig. 1. Page Table Entry

mode register mode, the page table origin pto, and the page table length ptl. Computa-
tion of the physical machine is modeled by the next state function 8p.

In system mode, i.e. if cp.mode = 0, the physical machine operates almost like a
virtual machine with extra registers. In user mode, i.e. cp.mode = 1, memory accesses
are subject to address translation: they either cause a page fault or are redirected to
the translated physical memory address pma(cp, va). The result of address translation
depends on the contents of the page table, a region of the physical memory starting at
address cp.pto - 4K with (cp.ptl + 1) entries of four bytes width.

The page table entry address for virtual address va is defined as ptea(cp, va) =
cp.pto - 4K + 4 - va.pz and the page table entry of va is defined as pte(cp, va) =
cp.pmy(ptea(cp, va)). As shown in Fig. 1, a page table entry consists of three com-
ponents, the physical page index ppz(cp,va) = pte(cp,va)[31 : 12], the valid bit
v(cp, va) = pte(cp, va)[11], and the write protection bit p(cp, va) = pte(cp, va)[10].

On user mode memory access to address va, a page fault is signaling if the page
index exceeds the page table length, va.pz > cp.ptl, if the page table entry is not valid,
v(cp, va) = 0, or if for a write access the write protection is active, p(cp,va) = 1. On
page fault the page fault handler, an interrupt service, is invoked.

Without a page fault, the access is performed on the (translated) physical memory
address pma(cp, va) defined as the concatenation of the physical page index and the
byte index, pma(cp, va) = ppz(cp, va) o va.bz.

For example, the instruction I (cp) fetched in configuration cp is defined as follows.
If cp.mode = 0 we define I(cp) = cp.pm4(cp.DPC), otherwise, provided that there
is no page fault, we define I(cp) = cp.pmy(pma(cp, cp.DPC)).

3.3 Virtual Memory Simulation

A physical machine with appropriate page fault handlers can simulate virtual machines.
For a simple page fault handler, virtual memory is stored on the swap memory of the
physical machine and the physical memory acts as a write back cache. In addition to the
architecturally defined physical memory address pma(cp, va), the page fault handler
maintains a swap memory address function sma(cp, va).

We use a simulation relation B(cy, cp) to indicate that a (user mode) physical ma-
chine configuration cp encodes virtual machine configuration cy . Essentially, B(cy,cp)
is the conjunction of the following three conditions:

— For every page of virtual memory there is a page table entry in the physical ma-
chine, cy.V = cp.ptl + 1.

— The write protection function of the virtual machine is encoded in the page ta-
ble, cv.p(va) = p(cp, va). As noted earlier in this paper we assume p(cp,va) =
cv.p(va) = 0.

— The virtual memory is stored in physical and swap memory: if v(cp, va) then
cv.vm(va) = cp.pm(pma(cp, va)), else cy.vm(va) = cp.sm(sma(cp, va)).

On the Correctness of Operating System Kernels 5

The simulation theorem for a single virtual machine has the following form:

Theorem 1. For all computations (c%,cy, . . .) of the virtual machine there is a compu-
tation (3, ¢p, . . .) of the physical machine and there are step numbers (s(0),s(1),. . .)
such that for all i and S = s(i) we have B(c%;, c§).

Thus step ¢ of the virtual machine is simulated after step s(z) of the physical ma-
chine. Even for a simple handlers, the proof is not completely obvious since a single
user mode instruction can cause two page faults. To avoid deadlock and guarantee for-
ward progress, the page fault handler must not swap out the page that was swapped in
during the last execution of the page fault handler.

3.4 Synchronization Conditions

If the hardware implementation of a physical machine is pipelined, then an instruction
I(c}) that is in the memory stage may modify / affect a later instruction I(c}) for j > i
after it has been fetched. It may (i) overwrite the instruction itself, (ii) overwrite its page
table entry, or (iii) change the mode. In such situations instruction fetch (in particular
translated fetch implemented by a memory management unit) would not work correctly.
Of course it is possible to detect such data dependencies in hardware and to roll back
the computation if necessary. Alternatively, the software to be run on the processor
must adhere to certain software synchronization conventions. Let iaddr(c}) denote the
address of instruction I(cf,), possibly translated. If I(c%) writes to address iaddr(cb),
then an intermediate instruction I(cf) for i < k < j must drain the pipe. The same
must hold if ¢}, is in user mode and I(cb) writes to ptea(ch, cf;.DPC). Finally, mode
can only be changed to user mode by an r fe (return from exception) instruction (and
the hardware guarantees that r fe instructions drain the pipe).

Conditions of this nature are hypotheses of the hardware correctness proof in [12].
It will be easy to show that they hold for the kernels constructed in Sect. 6.

4 Compilation

We sketch the formal semantics of C0, a subset of C, and state the correctness theo-
rem of a CO compiler, summarizing result from [13]. In Section 4.3 we extend the C0
semantics to inline assembler code.

4.1 CO0 Semantics

Eventually we want to consider several programs running under an operating system.
The computations of these programs then are interleaved. Therefore our compiler cor-
rectness statement is based on a small steps / structured operational semantics [16,17].

In CO types are elementary (bool, int, .. .), pointer types, or composite (array or
struct). A type is called simple if it is an elementary type or a pointer type. We define
the (abstract) size of types for simple types t by size(t) = 1, for arrays by size(t[n]) =
n- size(t), and for structures by size(struct{ny:t1,...,ns:ts}) = 3, size(t;). Values
of variables with simple type are called simple values. Variables with composite types
have composite values that are represented flat as a sequence of simple values.

6 M. Gargano et al.

Configuration. An C0 machine configuration cco has the following components:

1. The program rest cco.pr. This is a sequence of CO statements which still needs to
be executed. In [16] the program rest is called code component of the configuration.

2. The type table cco.tt collects information about types used in the program.

3. The function table cco.ft contains information about the functions of a program. It
maps function names f to pairs cco.ft(f) = (cco.ft(f).ty, cco.ft(f).body) where
cco-ft(f).ty specifies the types of the arguments, the local variables, and the result
of the function, whereas cco.ft(f).body specifies the function body.

4. The recursion depth cco.rd.

5. The local memory stack cco.lms. It maps numbers i < cco.rd to memory frames
(defined below). The global memory is cco.lms(0). We denote the top local mem-
ory frame of a configuration cco by top(cco) = cco.lms(cco.rd).

6. A heap memory cco.hm. This is also a memory frame.

Memory Frames. We use a relatively explicit, low level memory model in the style
of [18]. Memory frames m have the following components: (i) the number m.n of
variables in m (for local memory frames this also includes the parameters of the cor-
responding function definition), (i) a function m.name mapping variable numbers
i € [0: m.n — 1] to their names (not used for variables on the heap), (iii) a func-
tion m.ty mapping variable numbers to their type. This permits to define the size of a
memory frame size(m) as the number of simple values stored in it, namely: size(m) =
S 7271 size(m. ty(i)). (iv) a content function m. ct mapping indices 0 < i < size(m)
to simple values.

A variable of configuration cco is a pair v = (m, 1) where m is a memory frame
of cco and ¢ < m.n is the number of the variable in the frame. The type of a variable
(m,) is defined by ty((m, 1)) = m.ty(s).

Sub variables S = (m, i)s are formed from variables (m, i) by appending a selector
s = (s1,...,5¢), where each component of a selector has the form s; = [7] for selecting
array element number j or the form s; = .n for selecting the struct component with
name 7. If the selector s is consistent with the type of (m, 1), then S = (m, i)s is a sub
variable of (m, i). Selectors are allowed to be empty. In C0, pointers p may point to sub
variables (m, i)s in the global memory or on the heap. The value of such pointers simply
has the form (m, 7)s. Component m. ct stores the current values va(cco, (m,4)s) of the
simple sub variables (m, i)s in the canonical order. Values of composite variables z are
represented in m.ct in the obvious way by sequences of simple values starting from the
abstract base address ba(z) of variable .

With the help of visibility rules and bindings we easily extend the definition of va,
ty, and ba from variables and sub variables to expressions e.

Computation. For space restrictions we cannot give the definitions of the (small-step)
transition function 6co mapping C0 configurations ccg to their successor configura-
tion ¢y = dco(cco). As an example we give a partial definition of the function call
semantics.

Assume the program rest in configuration cco begins with a call of function f with
parameters ey, .. ., e, assigning the function’s result to variable v, formally cco.pr =

