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Preface

This volume constitutes the proceedings of the 18th International Conference
on Theorem Proving in Higher Order Logics (TPHOLs 2005), which was held
during 22-25 August 2005 in Oxford, UK. TPHOLS covers all aspects of theorem
proving in higher order logics as well as related topics in theorem proving and
verification.

There were 49 papers submitted to TPHOLs 2005 in the full research cat-
egory, each of which was refereed by at least three reviewers selected by the
program committee. Of these submissions, 20 research papers and 4 proof pearls
were accepted for presentation at the conference and publication in this volume.
In keeping with longstanding tradition, TPHOLs 2005 also offered a venue for
the presentation of work in progress, where researchers invited discussion by
means of a brief introductory talk and then discussed their work at a poster
session. A supplementary proceedings volume was published as a 2005 technical
report of the Oxford University Computing Laboratory.

The organizers are grateful to Wolfgang Paul and Andrew Pitts for agreeing
to give invited talks at TPHOLs 2005.

The TPHOLSs conference traditionally changes continents each year to max-
imize the chances that researchers from around the world can attend. Starting
in 1993, the proceedings of TPHOLSs and its predecessor workshops have been
published in the Springer Lecture Notes in Computer Science series:

1993 (Canada)  Vol. 780 2000 (USA) Vol. 1869
1994 (Malta)  Vol. 859 2001 (UK)  Vol. 2152
1995 (USA) Vol. 971 2002 (USA) Vol. 2410
1996 (Finland)  Vol. 1125 2003 (Italy) Vol. 2758
1997 (USA) Vol. 1275 2004 (USA) Vol. 3223
1998 (Australia) Vol. 1479 2005 (UK)  Vol. 3603

1999 (France) Vol. 1690

We would like to thank our local organizers Ed Smith and Ashish Darbari
for their help in many aspects of planning and running TPHOLs.

Finally, we thank our sponsors: Intel Corporation and the EPSRC UK Net-
work in Computer Algebra.

June 2005 Joe Hurd and Tom Melham
TPHOLSs 2005 Chairs
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On the Correctness of Operating System Kernels

Mauro Gargano*, Mark Hillebrand*, Dirk Leinenbach*>**, and Wolfgang Paul

Saarland University, Computer Science Dept., 66123 Saarbriicken, Germany
{gargano, mah, dirkl, wjp}@wjpserver.cs.uni-sb.de

Abstract. The Verisoft project aims at the pervasive formal verification of entire
computer systems. In particular, the seamless verification of the academic system
is attempted. This system consists of hardware (processor and devices) on top of
which runs a microkernel, an operating system, and applications. In this paper we
define the computation model CVM (communicating virtual machines) in which
concurrent user processes interact with a generic microkernel written in C. We
outline the correctness proof for concrete kernels, which implement this model.
This result represents a crucial step towards the verification of a kernel, e.g. that
in the academic system. We report on the current status of the formal verification.

1 Introduction

There is no need to argue about the importance of computer security [1] and operating
system security is in the center of computer security. Making operating systems com-
fortable and at the same time utmost reliable is extremely hard. However, some small
and highly reliable operating system kernels, e.g. [2,3,4], have been developed. A reli-
able kernel opens the way to uncouple the safety-critical applications running under an
operating system from the non-critical ones. One runs two operating systems under a
trusted kernel, a small trusted one for the safety-critical applications and a conventional
one for all others. This minimizes the total size of the trusted components. For example,
[5] describes a small operating system and Linux running under the L4 microkernel [6].

For critical applications one wishes of course to estimate, how much trust one
should put into a system. For this purpose the common criteria for information tech-
nology security evaluation [7] define a hierarchy of evaluation assurance levels EAL-1
to EAL-7. These are disciplines for reviewing, testing / verifying, and documenting sys-
tems during and after development. Even the highest assurance level, EAL-7, does not
require formal verification of the system implementation. Clearly, the common criteria,
in the current revision, stay behind the state of the art available at that time: already
nine years before Bevier [8] reported on the full formal verification of KIT, a small
multitasking operating system kernel written in machine language. KIT implements a
fixed number of processes, each occupying a fixed portion of the processor’s memory.
It provides the following verified services: process scheduling, error handling, message
passing, and an interface to asynchronous devices. In terms of complexity, KIT is near
to small real-time operating systems like e.g. OSEKTime [9].

* Work partially funded by the German Federal Ministry of Education and Research (BMBF) in
the framework of the Verisoft project under grant 01 IS C38.
** Work supported by DFG Graduiertenkolleg “Leistungsgarantien fiir Rechnersysteme”.

J. Hurd and T.F. Melham (Eds.): TPHOLs 2005, LNCS 3603, pp. 1-16, 2005.
© Springer-Verlag Berlin Heidelberg 2005



2 M. Gargano et al.

In this paper we outline an approach to the pervasive verification of a considerably
more powerful kernel, supporting virtual memory, memory management, system calls,
user defined interrupts, etc. We outline substantial parts of its correctness proof. We
report on the current status of the formal verification. The results presented in this paper
were obtained in and are of crucial importance to the Verisoft project [10], funded by
the German Federal Government. Verisoft has the mission to provide the technology for
the formal pervasive verification of entire computer systems of industrial complexity.

2 Overview

To handle the design complexity, computer systems are organized in layers some of
which are modeled by well established formal models. Examples are (i) the hardware
layer that is modeled by switching circuits and memory components, (ii) the machine
language layer that is modeled by random access machines [11] with an appropriate
instruction set, and (iii) the programming language layer, e.g. for C, is, for operational
semantics, modeled by abstract interpreters, also called abstract C machines. Correct-
ness theorems for components of computer systems are often simulation theorems be-
tween adjacent layers. Processor correctness concerns a simulation between Layers (i)
and (i1). Compiler correctness concerns a simulation between Layers (ii) and (iii).
Aiming at formulating and proving a correctness theorem for an operating system
kernel we take a similar approach. We introduce an abstract parallel model of compu-
tation called communicating virtual machines (CVM) that formalizes concurrent user
processes interacting with an operating system kernel. In this model user processes are
virtual machines, i.e. processors with virtual memory. The so-called abstract kernel is
represented as an abstract C machine. Beyond the usual C functions the abstract kernel
can call a few special functions, called the CVM primitives, that alter the configura-
tion of user processes. For instance, there are CVM primitives to increase / decrease the
memory size of a user process or to copy data between user processes (and I/O devices).
By linking abstract kernels with a program implementing the CVM functionality
we obtain the concrete kernel. In particular, the concrete kernel contains the implemen-
tation of the CVM primitives and the implementation of handlers for page faults (not
visible in the abstract model). A crucial observation is that the concrete kernel necessar-
ily contains assembler code because neither processor registers nor user processes are
visible in the variables of a C program. Thus the correctness theorem for the concrete
kernel will establish a simulation between CVM and Layer (ii) instead of Layer (iii).
Since reasoning on assembler level is tedious we minimize its use in the concrete kernel.
The remainder of this paper is structured as follows. In Sect. 3 we define virtual ma-
chines and summarize results from [12] on the simulation of virtual machines by physi-
cal machines, processors with physical and swap memory. In Sect. 4 we define abstract
C0 machines and summarize the compiler correctness proof from [13]. In Sect. 5 we
define the CVM model using virtual machines to model computation of the user and
abstract C'O machines to model computation of an abstract kernel. Section 6 sketches
the construction of the concrete kernel containing the CVM implementation. We state
the correctness proof for the concrete kernel and outline its proof. In Sect. 7 we report
on the status of the formal verification. In Sect. 8 we conclude and sketch further work.
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3 Virtual Memory Simulation

Let us introduce some notation. We denote bitvectors by a € {0, 1}". Bit j of bitvector
a is denoted by a[j], the sub bitvector consisting of bits j to k (with k < j) is denoted
by a[j: k]. The concatenation of two bitvectors a € {0,1}" and b € {0, 1} is denoted
by a o b € {0,1}"*™. Occasionally we will abuse notation and identify bitvectors a
with their value (a) = Y, a[i] - 2* and vice versa. Arithmetic is modulo 2". We model
memories 7 as mappings from addresses a € {0, 1}3? to byte values m(a) € {0,1}%.
For natural numbers d we denote by mg(a) the content of d consecutive memory cells
starting at address a, so m4(a) = m(a+d—1)o---om(a).
In the following sub sections we summarize results from [12].

3.1 Virtual Machines

Virtual machines consist of a processor operating on a (uniform) virtual memory. Con-
figurations cy of virtual machines have the following components:

- cv.R € {0,1}32 for a variety of processor registers R. We consider here pipelined
DLX machines [14] with a delayed branch mechanism that is implemented by two
program counters, called delayed program counter cy.DPC € {0,1}%? and pro-
gram counter cy.PC € {0, 1}32. For details see [15].

— The size cy.V of the virtual memory measured in pages of 4K bytes. It defines the
set of accessible virtual addresses VA(cy) = {a € {0,1}3? | a < cv.V - 4K}. We
split virtual addresses va = va[31:0] into page index va.pz = va([31:12] and byte
index va.bz = va[11:0].

— A byte addressable virtual memory cy.vm : VA(ev) — {0, 1}%.

— A write protection function cy.p : VA(ev) — {0, 1} that only depends on the page
index of virtual addresses. A virtual address va is write protected if cy.p(va) = 1.

Computation of the virtual machine is modeled by the function dv that computes for
a given configuration cy its successor configuration cy,. The virtual machine accesses
the memory in the following situations: it reads the memory to fetch instructions and to
execute load instructions, it writes the memory to execute store instructions.

However, any access to a virtual address va ¢ VA(cv) or a write access to va with
cv.p(va) = 1 is illegal and leads to an exception. For the CVM model (cf. Sect. 5) we
do not consider write protected pages and assume cy.p(va) = 0 for all va € VA(ev).

Note that the effects of exceptions are not defined in a virtual machine model alone
but in an extended context of a virtual machine running under a certain operating system
(kernel). Also, the size of the virtual memory cy.V cannot be changed by the virtual
machine itself. This is described in more detail in Sect. 5.

3.2 Physical Machines and Address Translation

Physical machines consist of a processor operating on physical memory and swap mem-
ory. Configurations cp of physical machines have components cp. R for processor regis-
ters R, cp.pm for the physical memory, and cp.sm for the swap memory. The physical
machine has several special purpose registers not present in virtual machines, e.g. the



4 M. Gargano et al.

31 12 11 10 9 0

I ppz[19 : 0] | v I p l ‘l

Fig. 1. Page Table Entry

mode register mode, the page table origin pto, and the page table length ptl. Computa-
tion of the physical machine is modeled by the next state function 8p.

In system mode, i.e. if cp.mode = 0, the physical machine operates almost like a
virtual machine with extra registers. In user mode, i.e. cp.mode = 1, memory accesses
are subject to address translation: they either cause a page fault or are redirected to
the translated physical memory address pma(cp, va). The result of address translation
depends on the contents of the page table, a region of the physical memory starting at
address cp.pto - 4K with (cp.ptl + 1) entries of four bytes width.

The page table entry address for virtual address va is defined as ptea(cp, va) =
cp.pto - 4K + 4 - va.pz and the page table entry of va is defined as pte(cp, va) =
cp.pmy(ptea(cp, va)). As shown in Fig. 1, a page table entry consists of three com-
ponents, the physical page index ppz(cp,va) = pte(cp,va)[31 : 12], the valid bit
v(cp, va) = pte(cp, va)[11], and the write protection bit p(cp, va) = pte(cp, va)[10].

On user mode memory access to address va, a page fault is signaling if the page
index exceeds the page table length, va.pz > cp.ptl, if the page table entry is not valid,
v(cp, va) = 0, or if for a write access the write protection is active, p(cp,va) = 1. On
page fault the page fault handler, an interrupt service, is invoked.

Without a page fault, the access is performed on the (translated) physical memory
address pma(cp, va) defined as the concatenation of the physical page index and the
byte index, pma(cp, va) = ppz(cp, va) o va.bz.

For example, the instruction I (cp ) fetched in configuration cp is defined as follows.
If cp.mode = 0 we define I(cp) = cp.pm4(cp.DPC), otherwise, provided that there
is no page fault, we define I(cp) = cp.pmy(pma(cp, cp.DPC)).

3.3 Virtual Memory Simulation

A physical machine with appropriate page fault handlers can simulate virtual machines.
For a simple page fault handler, virtual memory is stored on the swap memory of the
physical machine and the physical memory acts as a write back cache. In addition to the
architecturally defined physical memory address pma(cp, va), the page fault handler
maintains a swap memory address function sma(cp, va).

We use a simulation relation B(cy, cp) to indicate that a (user mode) physical ma-
chine configuration cp encodes virtual machine configuration cy . Essentially, B(cy,cp)
is the conjunction of the following three conditions:

— For every page of virtual memory there is a page table entry in the physical ma-
chine, cy.V = cp.ptl + 1.

— The write protection function of the virtual machine is encoded in the page ta-
ble, cv.p(va) = p(cp, va). As noted earlier in this paper we assume p(cp,va) =
cv.p(va) = 0.

— The virtual memory is stored in physical and swap memory: if v(cp, va) then
cv.vm(va) = cp.pm(pma(cp, va)), else cy.vm(va) = cp.sm(sma(cp, va)).
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The simulation theorem for a single virtual machine has the following form:

Theorem 1. For all computations (c%,cy, . . . ) of the virtual machine there is a compu-
tation (3, ¢p, . . . ) of the physical machine and there are step numbers (s(0),s(1),. . .)
such that for all i and S = s(i) we have B(c%;, c§).

Thus step ¢ of the virtual machine is simulated after step s(z) of the physical ma-
chine. Even for a simple handlers, the proof is not completely obvious since a single
user mode instruction can cause two page faults. To avoid deadlock and guarantee for-
ward progress, the page fault handler must not swap out the page that was swapped in
during the last execution of the page fault handler.

3.4 Synchronization Conditions

If the hardware implementation of a physical machine is pipelined, then an instruction
I(c}) that is in the memory stage may modify / affect a later instruction I(c}) for j > i
after it has been fetched. It may (i) overwrite the instruction itself, (ii) overwrite its page
table entry, or (iii) change the mode. In such situations instruction fetch (in particular
translated fetch implemented by a memory management unit) would not work correctly.
Of course it is possible to detect such data dependencies in hardware and to roll back
the computation if necessary. Alternatively, the software to be run on the processor
must adhere to certain software synchronization conventions. Let iaddr(c}) denote the
address of instruction I(cf, ), possibly translated. If I(c%) writes to address iaddr(cb),
then an intermediate instruction I(cf) for i < k < j must drain the pipe. The same
must hold if ¢}, is in user mode and I(cb) writes to ptea(ch, cf;.DPC). Finally, mode
can only be changed to user mode by an r fe (return from exception) instruction (and
the hardware guarantees that r fe instructions drain the pipe).

Conditions of this nature are hypotheses of the hardware correctness proof in [12].
It will be easy to show that they hold for the kernels constructed in Sect. 6.

4 Compilation

We sketch the formal semantics of C0, a subset of C, and state the correctness theo-
rem of a CO compiler, summarizing result from [13]. In Section 4.3 we extend the C0
semantics to inline assembler code.

4.1 CO0 Semantics

Eventually we want to consider several programs running under an operating system.
The computations of these programs then are interleaved. Therefore our compiler cor-
rectness statement is based on a small steps / structured operational semantics [16,17].

In CO types are elementary (bool, int, .. .), pointer types, or composite (array or
struct). A type is called simple if it is an elementary type or a pointer type. We define
the (abstract) size of types for simple types t by size(t) = 1, for arrays by size(t[n]) =
n- size(t), and for structures by size(struct{ny:t1,...,ns:ts}) = 3, size(t;). Values
of variables with simple type are called simple values. Variables with composite types
have composite values that are represented flat as a sequence of simple values.
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Configuration. An C0 machine configuration cco has the following components:

1. The program rest cco.pr. This is a sequence of CO statements which still needs to
be executed. In [16] the program rest is called code component of the configuration.

2. The type table cco.tt collects information about types used in the program.

3. The function table cco.ft contains information about the functions of a program. It
maps function names f to pairs cco.ft(f) = (cco.ft(f).ty, cco.ft(f).body) where
cco-ft(f).ty specifies the types of the arguments, the local variables, and the result
of the function, whereas cco.ft(f).body specifies the function body.

4. The recursion depth cco.rd.

5. The local memory stack cco.lms. It maps numbers i < cco.rd to memory frames
(defined below). The global memory is cco.lms(0). We denote the top local mem-
ory frame of a configuration cco by top(cco) = cco.lms(cco.rd).

6. A heap memory cco.hm. This is also a memory frame.

Memory Frames. We use a relatively explicit, low level memory model in the style
of [18]. Memory frames m have the following components: (i) the number m.n of
variables in m (for local memory frames this also includes the parameters of the cor-
responding function definition), (i) a function m.name mapping variable numbers
i € [0: m.n — 1] to their names (not used for variables on the heap), (iii) a func-
tion m.ty mapping variable numbers to their type. This permits to define the size of a
memory frame size(m) as the number of simple values stored in it, namely: size(m) =
S 7271 size(m. ty(i)). (iv) a content function m. ct mapping indices 0 < i < size(m)
to simple values.

A variable of configuration cco is a pair v = (m, 1) where m is a memory frame
of cco and ¢ < m.n is the number of the variable in the frame. The type of a variable
(m, ) is defined by ty((m, 1)) = m.ty(s).

Sub variables S = (m, i)s are formed from variables (m, i) by appending a selector
s = (s1,...,5¢), where each component of a selector has the form s; = [7] for selecting
array element number j or the form s; = .n for selecting the struct component with
name 7. If the selector s is consistent with the type of (m, 1), then S = (m, i)s is a sub
variable of (m, i). Selectors are allowed to be empty. In C0, pointers p may point to sub
variables (m, i)s in the global memory or on the heap. The value of such pointers simply
has the form (m, 7)s. Component m. ct stores the current values va(cco, (m,4)s) of the
simple sub variables (m, i)s in the canonical order. Values of composite variables z are
represented in m.ct in the obvious way by sequences of simple values starting from the
abstract base address ba(z) of variable .

With the help of visibility rules and bindings we easily extend the definition of va,
ty, and ba from variables and sub variables to expressions e.

Computation. For space restrictions we cannot give the definitions of the (small-step)
transition function 6co mapping C0 configurations ccg to their successor configura-
tion ¢y = dco(cco). As an example we give a partial definition of the function call
semantics.

Assume the program rest in configuration cco begins with a call of function f with
parameters ey, .. ., e, assigning the function’s result to variable v, formally cco.pr =



