

SPECIAL ENGLISH

COMPUTER
PROGRAMMING

Grateful acknowledgement for permission to use the photographs and
diagrams reproduced in this book is made to the following
(numbers refer to the pages on which the pictures appear):

British Overseas Airways Corporation (45); IBM (UK) Limited
(viii, 10, 40, 51, 57, 67); Internationa! Computers Limited (iii, 2, 7, 13,
18, 20, 33, 35, 38, 39, 41, 52, 60, 64, 69, 72).

Cover photograph: International Computers Limited

The pattern an the title page was produced by a computer.

Cassell Ltd.
10 Gre_ycoat Place, London SW1P 1SB

Copyright © Collier-Macmillan Publishers, 1972
* © Cassell Ltd, 1982 -

All rights reserved. No part of this publication may be reproduced,

stored in a retrieval system, or transmitted, in any form or by any

means, electronic, mechanical, photocopying, recording or otherwise,
without the prior permission in writing of the publishers.

First printing 1972
Second printing 1979
Third printing 1981
Fourth printing 1982

ISBN 0 304 30412 3

Printed and bound in Great Britain at
The Camelot Press Ltd, Southampton

SPECIAL ENGLISH

COMPUTER PROGRAMMING

Other titles in this series:
Accounting

Advertising

Air Travel

British Banking

British Banking Overseas
Computers

Computer Applications
Import/Export

Insurance

The Jet Engine

Legal Problems

The Motor Car, Books 1 & 2
Nursing

Office Practice, Books 1,2 & 3
Seafaring

PREFACE

This Special Eng\nsh series introduces titles on a wid€ range of technijcal
subjects that will be of interest to students of English as a second
language. Each volume illustrates the special English of a particular
trade or profession in both its.spoken and written forms. It is not
possible, of course, for books of this size to cover the subject matter
exhaustively, so the authors have concentrated on those topics and
activities that should have the widest appeal. The conversations which
are the basis of each chapter or unit are deliberately written in the
colloquial and idiomatic speech used by technicians and specialists as
they go about their everyday activities.

It must be emphasized that these books are nor intended to teach
the subject matter itself, although the technical content is accurate in
every respect. Nor are they intended to teach the introductory stages of
English. It is assumed that the reader is already familiar in his own
language with the subject matter of the book, and has a good grounding

" .in the basic grammatical patterns and vocabulary of English. He will

use these books to improve his knowledge of English within the frame-
work of a technical vocabulary that is of interest to him either privately
or professionally. _

The authors in this series each have their individual approach, but all
the volumes are organized in the same general way. Typically, each book
.. is based on a series of situational dialogues, followed by narrative
" passages for reading comprehension. Exercises give the student practice
in handling some of the useful and more difficult patterns, as well as
lexical items, that occur in each unit. Tape recordings, of the dialogues
and selected exercises, may be used either in the language Iaboratory
or for private study. Each volume is provided with a glossary of

technical terms, with i.p.a. equivalents as used in the Daniel Jones
Pronouncing Dictionary.

PETER STREVENS
General Editor

vi

INTRODUCTION

This book is a sequel to Special English: Computers, which discussed the
concepts involved in both hardware and software, as well as the work of
a variety of computer personnel.

Computer Programming concentrates on the work of a key figure in
the new world of computers, the Programmer. It explains what he does,
the techniques he uses, and the different fields in which he may special-
ize. But like the other books in the series it is primarily designed to
teach English in the context of a particular occupation. Each unit
includes a Dialogue, in which programmers talk to each other using the
register of their profession; a Reading and Comprehension passage;
and Exercises, for structural practice and comprehension.

At the end of the book there are Keys to the Exercises, and a Glossary
of technical terms (which are asterisked on their first occurrence in the
text). The International Phonetic Alphabet is used as a gulde to pro-
nunciation. Colloquml expressions are footnoted.

The book is not a substitute for a course in computer programming,
but it will énable-a student whose mother tongue is not English to take
such a course with confidence.

The tape recording that accompanies the book may be used by the
teacher in the classroom or the language laboratory. For the student
working alone, it will provide a model for pronunciation as well as a
means of taking dictation for practice in spelling. The exercises have
pauses for student response, but there are no pauses in the dialogue.
This has been done on purpose to provide the maximum amount of
recorded material, Most tape recorders are now equipped with a pause
button which enables the listener to stop the tape after each sentence
and repeat it aloud before proceeding to the next one. If pauses are
required for language laboratory work, a copy may be made and the
pauses inserted of a length to suit the requirements of the students.

vii

A weather chart produced by a computer

CONTENTS

Preface
Introduction

1 The Job of the Computer Programmer
2 The Programmer’s Tools
3 Programming Techniques: lteration
4 Programming Techniques: Subroutines
b Segmentation, Overlays and Paging
6 Masking and Shifting
7 File Processing
8 File Types
9 Tables and Trees
10 Report-Writing and Arithmetic
11 Debugging
12 Documentation
13 ASsembIers, Compilers and Interpreters
14 Advanced Programming

Key to Exercises
Glossary

UNIT 1

THE JOB OF THE COMPUTER PROGRAMMER

Dialogue

‘Peter Bracknell is joining a computer manufacturer as a junior

programmer.

Manager: Glad to have you with us, Peter. Have you done any
programming before?

Peter: I'm afraid not. In fact I don’t really know what program-
ming involves. I took the aptitude test, of course, but all
that told me was that you wanted to find out if I was any
good at solving logical and semantic problems.

Manager: Well, evidently you are, so that’s half the battle.?

A computer programmer is first and foremost? an inter-
preter. He’s given a problem described in a natural language
such as English, and he has to break it down into logical
steps and then translate the steps into a language understood
by the computer.

Peter: What sort of problems do programmers have to deal with?

Manager: Basically, three types. Firstly, scientific: things like weather
forecasting, statistical analysis, integration—anything
related to sciences such as physics, biology, mathematics,
astronomy, or the technologies used in industry.

Mauy scientific programmers work in universities or
research establishments. Some of them are scientists or
technologists first and programmers second. They only
want to know enough programming to solve their own
particular problems.

1 half the battle: half the problem has been dealt with successfully
2 first and foremost: mainly, predominantly

Peter:

Manager:

Peter:

Manager:

Peter:

Manager:

But it’s different with commercial programmers, isn’t it? I
mean, they often go straight into programming from univer-
sity, rather than working as accountants or bank clerks
first.
A lot of them do. They may write programs to handle
invoicing, or share registration, or stock control, but they
only learn about these things as they go along. The *speci-
fications of their problems are written by *systems analysts.
Which type of work shall I be doing?
Neither! We’re working for a computer manufacturér, not a
user, so we're called *systems programmers. We write
*software that acts as a *buffer between scientific and
commercial programs, and the machine. Things like
*compilers and *assemblers, *executives and *operating
systems—not to mention *utility routines to do such things
as sorting and printing out the contents of magnetic tapes
and *discs.
Because every user has to sort his files ‘and print out his
magnetic *media, so there’s no point in each one writing
his own program to do them?
That’s right. And when we sell a computer we supply all
this systems software as part of the package deal—though
nowadays some manufacturers are selling the software
separately. ¢

But whatever type of programs they write; sc:entxﬁc,
commercial, or systems software, alt programmers have
three main objectives.

They must write-programs that work. They must write
them on timé: And they must leave them fully *documented
so that they can be easily taken over, maintained and

“amended by other programmers.

uniT 1 3

EXERCISE 1: STRUCTURAL PRACTICE

Notice this structure from the conversation:
(No), We're working for a computer manufacturer, not a user.
Use this structure to respond to the following questions:
Example: Are we working for a user?

Prompt: computer manufacturer
Response: No, we’re working for a computer manufacturer, not a

User.

Now you do it.

1. Are we working for a user? computer manufacturer
2. Are we iesting specifications ? programs

3. Are we writing assemblers? compilers

4. Are we solving scientific problems? commercial problems
5. Are we selling the hardware ? software

6. Are we running the installation? marketing side

7. Are we concerned with programming? systems analysis

8. Are we printing out magnetic tapes ? discs

EXERCISE 2: PROGRESSIVE SUBSTITUTION DRILL

Statement: What sort of problems do programmers have to deal
with? :

Prompt: solve

Response: What sort of problems do programmers have to solve?

Now you do it.

Statement: What sort of problems do programmers have to deal

with?
Prompts:
1. solve 5. jobs
2. type 6. operators
3. managers 7. technigues
4. handle 8. learn

4 COMPUTER PROGRAMMING
EXERCISE 3: FURTHER STRUCTURAL PRACTICE

Change the following statements into questions:

The specifications are written by systems analysts.
Every user has to sort his files.

We supply all this systems software.

We’re working for a computer manufacturer.

He has to break it down into logical stages.

Some of them are scientists and technologists.

They go straight into programming from university.
They can be easily taken over by other programmers.

XN AW~

Reading and Comprehension

A program is a sequence of instructions that must be obeyed to achieve
a given result. A knitting pattern or a carpet design is a program, and so
are the directions one is given to arrive at some destination: *“Take the
second turning on the left, bear right at the post office, continue to the
first roundabout and then take the third exit . . .”” If your car won’t start,
the series of tests you make is a program, and a mathematical formula
such as x =(a?+b?)/2ab is another type, instructing you to perform
certain operations on the variables a and b to arrive at a value for x.

A computer program is analogous to all these, and differs from them
only in being written in an artificial language, sometimes similar to
algebra or a natural language such as English, but restricted to the types
of operation that a computer can perform. A computer programmer has
to l¢arn such languages. He need not be a mathematician, but he has to
have the ability to think logically, and he will need training in special
programming techniques. .

EXERCISE 4: QUESTIONS ON THE DIALOGUE AND
READING PASSAGE

What is a computer programmer, first and foremost ?
What are the three different types of program?
Name some examples of systems software.

Is a knitting pattern a program?

Ll S

UNIT 1 5

5. Give an example of a natural language.

6. Must a programmer be a mathematician?

7. What sort of tasks are performed by utility routines?
8. Name sonie examples of commercial programs.
EXERCISE 5

Completc ihe following sentences, using the appropriate words from the
list below:

a
b
c.
d.
e
f.
g
h

PRNAND LN -

commercial

. carpet

specifications
main

. logical

separately

. sort
. establishments

He has to break it down into ——— steps.
Many scientific programmers work in research
It’s different with programmers, isn’t it?

The of their problems are written by systems analysts.
Every user has to his files. .

Some manufacturers are selling the software
All programmers have three objectives.
A design is a program.

UNIT 2

THE PROGRAMMER'S TOOLS

Dialogue

Peter chats with his section leader, Geoff.

Peter:

Geoff:

Peter:
Geoff:

Peter:
Geoff:

Peter:
Geoff:

I've just been round the machine room and seen all the *hard-
ware—the *central processor and *input-output units. Thought
I'd better get to know the tools we use—though they’re a bit
more expensive than hammers and chisels!

Yes, but the hardware is chiefly used by the operators and
engineers. We seldom go near it. What you’ve got to learn to

‘use are our software tools.

You mean program specifications and *flowcharts?

And more specialized things like computer languages. There’s a
whole spectrum of them, ranging from “high-level” to “low-
level”, each designed for a special purpose. Languages such as
*COBOL, *FORTRAN, *ALGOL, *JOSS, *APT, *BASIC,
*PL/1 and dozens of others. But don't get alarmed; you don’t
have to learn all of them. And their vocabularies only contain a-
hundred or so words. Not like English, with nearly-half a
million!

What do you mean by “high-level” and “low-level”?

“High level” languages are- *probfem-oriented, similar to
natural languages or algebra. ‘‘Low-level” - are- machine-
oriented, closer to the language which the machine understands.

The lowest level being *machine code?

Yes. As you know, the *central processor contains thousands of
tiny circuits, each of which tan be in one of two states, either
“on” or “off” like a switch..Now;, if you combine these circuits,
in groups of, say, six, you can get sixty-four possible combina-
tions of switch settings for each group. Each combination can
activate a different function of the machine.

8

uNiT 2 7

Peter: 1 see. You mean, one might start up the card reader?

Geoff: Yes, and another might add the contents of a *store location
into a fast *register. In other words, each combination is an
instruction to the machine, and'it’s perfectly possible to feed
them directly into the machine from a *console, just as you set
the switches on a control panel.

In any machiné code—there’s a different set for each different
computer—there are usually about fifty to a hundred and fifty
different instructions.

Peter: But you said there could only be sixty-four different com-
binations. 5

Geoff: That’s if you combine the circuits in groups of six. Buf'you can
also combine them in groups of eight, for example.

Peter: So to tell the machine to read a magnetic tape you’d have to
type in a binary pattern—101011, say—at the console?

Geoff: That's what programmers did in the beginning. But nowadays
they can *punch a sequence of instructions on cards, and then
type an instruction to the machirfe to read the cards and obey
the instructions on them.

Peter: It must be a bit tedious, though, to have to remember the binary
patterns for all the possible instructions.

Geoff: It is. That’s why *assembly languages were devised. Instead of
punching 101011, you simply punch RD, the *mnemonic for
“Read”.

COBAL program sheets

AT ((scmare 3
Scaerey r.ul = PRosaay TheK (1) . mosean Vi)

i
:"‘1‘ PECATION Prvsnsem,

PRO®RAM-2p. v rp
et P mipi

SURATE O gpc ———,
¥ 0 ™
-eomsurne N

8 COMPUTER PROGRAMMING

Peter:
Geoff:

Peter:
Geoff:

Peter:

Geoff:

But how can the machine understand these mnemonics ?

It can’t. You have to have a special *assembler program to
translate the mnemonics into machine code. That’s an example
of the sort of programs we write, a program that translates
another program from source form into machine code.

Is an assembly language “high-level”, then?

Sorry, no. It’s still low-level because it’s one-for-one: one
mnemonic such as LDX is translated into one machine code
instruction meaning “Load into Accumulator” An instruction
in a high-level language, on the other hand, often translates into
several machine code instructions, sometimes as many as forty.
So T'll be learning some high-level and low-level languages on
my course? '

Yes, but since your course doesn’t start for some weeks you’ll
be learning some basic programming techniques to start with—
techniques you'll use whatever language you’re writing in.

EXERCISE 1: STRUCTURAL PRACTICE

Notice this structure from the conversation:

(No,) the hardware is used by the operators.

Use this structure to respond to the following questions:

Example: Do we use the hardware?
Prompt: the operators
Response: No, the hardware is used by the operators.

Now you do it.

1. Do we use the hardware ? the operators

2. Do we write the specifications? systems analysts

3. Do we punch the cards? DP staff

4, Do we make those decisions? - committees

5. Do we invent the instructions? language designers
6. Do we design the software? senior programmers
7. Do we learn these languages? commercial users

8. Do we maintain the peripherals? the engineers

UNIT 2 9

EXERCISE 2: PROGRESSIVE SUBSTITUTION DRILL

Statement: You don’t have to learn all of them.
Prompt: We
Response: We don’t have to learn all of them.

Now you do it.

Statement: You don’t have to learn all of them.
Prompts:

We

the languages
know

the peripherals
use

Don’t we
operate
machines

PN P W

EXERCISE 3: FURTHER STRUCTURAL PRACTICE

Change the following sentences into the passive.

Example: You combine the circuits in groups of six.
Response: The circuits are combined in groups of six.

Now you do it.

1. You combine the circuits in groups of six.
2. You'd have to type in a binary pattern.
3. They can punch a sequence of instructions on cards.
4. That’s what programmers did in the beginning.
5. How can the machine understand these mnemonies ?
6. What do “high-level’ and “low-level” mean?
7. The central processor contains thousands of tiny clgcmts.
8. One instructign m:ght start up the card reader
= M Py

