Herwig Unger
Thomas Bohme
Armin Mikler (Eds.)

Innovative Internet
Computing Systems

Second International Workshop, 11CS 2002
Kiihlungsborn, Germany, June 2002
Proceedings

LNCS 2346

€) Springer




Herwig Unger Thomas Bohme
Armin Mikler (Eds.)

Innovative Internet
Computing Systems

Second International Workshop, IICS 2002
Kiihlungsborn, Germany, June 20-22, 2002
Proceedings

) Springer




Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Herwig Unger

Universitit Rostock, FB Informatik

18051 Rostock, Germany

E-mail: hunger @informatik.uni-rostock.de

Thomas Bohme

TU Illmenau, Institut fiir Mathematik
Postfach 10 05 65, 98684 Ilmenau, Germany
E-mail: tboehme @theoinfo.tu-ilmenau.de

Armin Mikler

University of North Texas

College of Art and Sciences, Department of Computer Science
76203 Denton, TX, USA

E-mail: mikler@cs.unt.edu

Cataloging-in-Publication Data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Innovative internet computing systems : second international workshop ;
proceedings / IICS 2002, Kiihlungsborn, Germany, June 20 - 22, 2002. Herwig
Unger ... (ed.). - Berlin ; Heidelberg ; New York ; Barcelona ; Hong Kong ;
London ; Milan ; Paris ; Tokyo : Springer, 2002

(Lecture notes in computer science ; Vol. 2346)

ISBN 3-540-43790-8

CR Subject Classification (1998): C.2, D.2, F.3,H.3-4,1.2.11, K.4.3-4

ISSN 0302-9743
ISBN 3-540-43790-8 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concemned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are

liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2002
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Christian Grosche, Hamburg
Printed on acid-free paper SPIN 10869985 06/3142 543210



Preface

I2CS 2002 was the second workshop on Innovative Internet Computing Systems,
a series of international workshops on system and information management for
the Next Generation Internet (NGI). The workshop series commenced with I?CS
2001, which was held at the Technical University of Ilmenau. It brought to-
gether scientists whose research addressed different aspects of Internet-based
and network-centric computing. This year’s workshop was held in the inspiring
atmosphere of the old Baltic Sea resort of Kiithlungborn near Rostock (Germany).

The unprecedented pervasiveness of network access and the associated emer-
gence of large distributed computing infrastructures have presented researchers
with new challenges in Information and Web technology. The management and
retrieval of web-based information, the classification of contents, and the man-
agement of web-based communities are some of the key areas addressed by some
of this year’s contributions. Other papers focus on the structure and retrieval
of information from large distributed data bases as well as the representation of
the distributed nature of information by the means of graph-theoretical models.

Like I2CS 2001, this year’s workshop was organized by the Gesellschaft fiir
Informatik (GI) in Germany to support the exchange of experiences, results,
and technology in the field. The 21 papers (2 invited, 19 regular contributions)
presented at the conference and in the present volume were selected from more
than 30 submissions. Every submission was carefully reviewed by three members
of the program committee.

We would like to thank all those who contributed to this book for their excel-
lent work and their great cooperation. Roswitha Fengler and Katrin Erdmann
deserve special gratitude for their great efforts and perfect work concerning all
administrative matters of the workshop. We wish to acknowledge the substantial
help provided by our sponsors: the University of Rostock and the TKK Techniker
Krankenkasse Rostock.

We hope all participants enjoyed a successful workshop, made a lot of new
contacts, held fruitful discussions helping to solve the actual research problems,
and had a pleasant stay on the coast of the Baltic Sea. Last but not least we
hope to see you again at the third 72CS conference in 2003, which will be held
in the Leipzig area in the heart of Germany.

June 2002 Herwig Unger (Chair)
Thomas Béhme (Co-chair)
Armin R. Mikler



Organization

I2CS was organized by the Gesellschaft fir Informatik (GI) in Germany.

Executive Committee

Roswitha Fengler
Katrin Erdmann

Steering Committee
Herwig Unger (Chair)

Thomas Bohme (Co-chair)
Armin R. Mikler

Program Committee

A. Brandstadt G. Hipper

J. Brooke N. Kalyaniwalla
M. Bui K. Kleese

N. Deo N. Krier

M. Dietzfelbinger P. Kropf

W. Fengler M. Kunde

T. Haupt R. Liskowsky
G. Heyer S. Lukosch

Sponsoring Institutions

University of Rostock
TKK Techniker Krankenkasse

A. Pears
M.A.R. Dantas
D. Reschke

A. Ryjov

M. Sommer

D. Tavangarian
D. Tutsch

T. Ungerer



Table of Contents

Workshop Innovative Internet Computing Systems

Living Hypertext - Web Retrieval Techniques for Traditional
Database-Centric Information ............ ... .. ... ... 1
Ralf-Dieter Schimkat, Wolfgang Kiichlin (Universitat Tibingen),

Frank Nestel (INA-Schaeffler KG)

Automatic Analysis of Large Text Corpora - A Contribution to
Structuring WEB Communities . .. ...ttt 15
Gerhard Heyer, Uwe Quasthoff, Christian Wolff (Universitat Leipzig)

A Data Mining Architecture for Distributed Environments ............. 27
Mafruz Zaman Ashrafi, David Taniar, Kate Smith (Monash University)

Collaborative Highlighting for Real-Time Group Editors ............... 39
Haifeng Shen, Chengzheng Sun (Griffith University)

Extending the Modeling Efficiency of the UML Activity Diagram for

the Design of Distributed Systems. ................c..ciiiiiio.... 51
Olga Fengler, Wolfgang Fengler, Veselka Duridanova

(Technical University Ilmenau)

An XML Knowledge Base System for Scheduling Problems ............. 63
Leonilde Rocha Varela (University of Minho), Joaquim Nunes Aparicio
(New University of Lisbon), Silvio Carmo Silva (University of Minho)

Compressibility as a Measure of Local Coherence in Web Graphs........ 75
Jeannette C.M. Janssen, Nauzer Kalyaniwalla (Dalhousie University)

On the Spectrum and Structure of Internet Topology Graphs........... 83
Danica Vukadinovié, Polly Huang, Thomas Erlebach (ETH Zurich)

Characterizing the Citation Graph as a Self-Organizing Networked
Information SDAGE . s:ws sms amsms sosamemasds $45.5 5855 8tnmnnmsmmemas 97
Yuan An, Jeannette C.M. Janssen, Evangelos E. Milios

(Dalhousie University)

Characterization and Management of Dynamical Behavior in a System

with Mobile Components .................. .. ... ..., 109
Christian Erfurth, Wilhelm Rossak

(Friedrich Schiller Universitat Jena)



VIII Table of Contents

Ergotracer: An Internet User Behaviour Tracer ........................ 121
Carlos Gregorio Rodriguez (Universidad Complutense de Madrid),
Pedro Palao Gostanza (Bankinter)

A Friendly Peer-to-Peer File Sharing System with Profit but without
Copy Protection :«: s :suisssassaivisassnsmisaissssasSssms soasa e 133
Ridiger Grimm, Jirgen Nitzel (TU Ilmenau,)

A Decentral Library for Scientific Articles ............................ 143
Markus Wulff (University of Rostock)

Optimisation of Distributed Communities Using Cooperative Strategies .. 153
Satho Yuen, Peter Kropf (Université de Montréal),
Gilbert Babin (HEC Montréal)

Proven IP Network Services: From End-User to Router and vice versa ... 169
Gerald Eichler, Ralf Widera (T-Systems Nova),
Anne Thomas (TU Dresden)

Mobility Support for Replicated Real-Time Applications ............... 181
Jorg Roth (University of Hagen)

Empirical Study of VBR Traffic Smoothing in Wireless Environment . ... 193
Youjip Won, Bowie Shim (Hanyang University)

Compiling Rule-Based Agents for Distributed Databases ............... 205
K. W. Ko, I.T. Kim, S.B. Yoo, K.C. Kim, S.D. Kim, J.S. Kim (Inha
University), Y.S. Lee (Yonsei University)

A Formal Framework for E-Barter Based on Microeconomic Theory

and Process Algebras .. ... ...t 217
Natalia Lopez, Manuel Ninez, Ismael Rodriguez, Fernando Rubio
(Universidad Complutense de Madrid)

Invited Talk

Peer-to-Peer beyond File Sharing ................................... 229
Ulrike Lechner (University of Bremen)

Author Index ........... . 251



Living Hypertext — Web Retrieval Techniques

Ralf-Dieter Schimkat!, Wolfgang Kiichlin', and Frank Nestel?

! Wilhelm-Schickard Institute for Computer Science
http://wuw-sr.informatik.uni-tuebingen.de
Sand 13, 72074 Tiibingen, Germany
{schimkat,kuechlin}@informatik.uni-tuebingen.de
2 INA-Schaeffler KG
Industriestrasse 1-3, 91074 Herzogenaurach, Germany
Frank.Nestel@de.ina.com

Abstract. In this paper, we present a document metaphor called Living
Documents for accessing and searching for digital documents in modern
distributed information systems. Our approach is based upon a fine-
grained document concept which glues computational services, data and
meta data together. Viewing documents as micro servers is particularly
well suited in environments where the document’s content is changing
continuously and frequently. Based on a case study of an existing state-
of-the-art Web application, we show how to transform database-centric
information systems into a hypertext of inter-linked Living Documents.
We also discuss how to effectively use traditional as well as Web infor-
mation retrieval techniques, namely topic distillation, in such hypertext
environment. In particular, an extended version of Kleinberg’s [11] algo-
rithm is presented.

1 Introduction

It is generally agreed upon that the major task in information retrieval is to
find relevant documents for a given query [9]. A document is a collection of
digital information ranging from plain text files, data-related meta attributes
to multi-media documents. Clearly a conceptual model of information retrieval
dealing with text or multi-media documents should integrate different views on
documents. Agosti et al. [1] point out that one of several differences in traditional
information retrieval and information retrieval on the Web is the different kind of
management of the collection of documents. In fact the web is a virtual collection
since a real collection stored at one particular location such as one single database
would be unmanageable.

In contrast to the Web, traditional information system design is about doc-
uments which are made persistent in a digital document archive, but their at-
tributes (meta data) are kept in databases. Even virtual documents missing any
digital content can be seen as an aggregation of their attributes. This leads to
several potential drawbacks in classically designed information systems: (i) the
specification of document attributes is bound to the database schema and is a
priori determined at the time the database schema is set up. (ii) Furthermore,

H. Unger, T. Bohme, and A. Mikler (Eds.): [2CS 2002. LNCS 2346, pp. 1 14. 2002.
© Springer-Verlag Berlin Heidelberg 2002



2 Ralf-Dieter Schimkat et al.

the static specification restricts a document’s life cycle. For example, in most
cases it is hard to add new kinds of meta data to the document’s collection at
run time.

Our goal is to provide a document metaphor and an implementation respec-
tively which can be used in traditional as well as in Web information systems.
Our approach is characterized by transforming documents into active containers
managing their content and meta data in an uniform and extensible manner.

The main contributions of this paper are: (i) Introduction to a new document
metaphor called Living Documents. (ii) Description of a complete implementa-
tion path of Living Documents based on a case study of a contemporary web
information system. We centered our implementation around the concepts of
mobile agents and general data description languages based on XML. (iii) We
show how to deploy three different kinds of information retrieval techniques in
Living Documents. In particular, we describe how to use state-of-the-art web
information retrieval techniques as topic distillation within a web of inter-linked
Living Documents. Finally, we present an extension of a well-known algorithm
for the analysis of connectivity graphs in hypertext environments.

2 Living Documents

First, we give an introduction to the concept of Living Documents® from an
abstract point of view neglecting any implementation details. In the next section
we show an implementation path for Living Documents.

Living Document |Living Document

Code g e Database Schoma * Living Documents * Living Hypertext
vin i X
d o Comeviatonal Servicws: | Digital Documents 9 e

+

Tk

I BN e Computatonai Seces ~
Semi-Structured . > T

+ =
RawData @obs) | | moes L T H

Jova ByleCode, . ) -

A) Living Dcument B) Transformation

Fig. 1. A) Components of a Living Document. A Living Document is divided into three
sections: Raw Data carries the document to manage, Semi-Structured Data contains
all meta data about the managed documents, and the Code section keeps the com-
putational services for accessing a LD and processing incoming requests (i.e. queries).
B) Digital Documents are turned into Living Documents. Living Documents form a
hypertext by keeping links similar to hypertext links to each other

® Home page of Living Documents at http://www.living-documents.org.



Living Hypertext — Web Retrieval Techniques 3

2.1 Towards a Micro Server Architecture

A Living Document (LD) is a logical and physical unit consisting of three parts,
as depicted in Figure 1A:

1. code
2. semi-structured knowledge repository
3. raw data

CompServices are essentially code fragments which provide several facilities,
such as access and query capabilities or general application services. The code
fragments determine the degree of activities of a LD ranging from passive doc-
uments which are enriched with some arbitrary application logic to proactive
documents. A proactive LD initiates complex tasks, discovers new services for
instance and is more than just a reactive component. By deploying LDs the
distinction between documents and applications blurs, because documents can
contain application logic.

The knowledge repository of a LD provides facilities to store and retrieve
information related to the document (raw data section) or to the whole LD itself.
Each document has its own knowledge repository. Each knowledge repository is
accessed through the code part. Basically a knowledge repository contains a set
of meta data about the document itself. Each meta data is referred to as a
document state information. A set of document state information builds a so-
called document state report (DSR) which contains history-related information
about who has accessed the document or when the document’s attributes have
been modified. In addition, it contains helpful links to other LDs which have
some kind of relationship. Basically, a knowledge repository serves as an uniform
access point for searching any kind of document-related meta data.

Each DSR is encoded as a semi-structured XML document according to the
SpectoML [16]. Following an XML-based [21] implementation, the generation
of a DSR is accomplished in an uniform way which favors neither a particular
data format nor the use of special programming or scripting languages. The use
of XML as the primary data format for document state information enables a
DSR with query capabilities, such as the execution of structured queries to each
document state information. Therefore, a DSR builds an XML-based knowledge
repository which holds all relevant information about the entire document life
cycle.

The raw data part can contain any information encoded as a digital document
such as a word processing document, a music file or even serialized application
code. Note that according to the definition given above, a LD does not need to
have a real-world document contained in the raw data part. Thus, a LD solely
consisting of computational logic and a knowledge repository is a well-defined
LD.

Why is a LD called living? A LD is alive with respect to two key properties:
First, implementing LDs as mobile agents they can move among nodes of a
computer network, such as the Internet. That perfectly fits the notion of an
autonomous and mobile entity pursuing its dedicated goals. Secondly, the ability



4 Ralf-Dieter Schimkat et al.

to store and remove arbitrary artifacts into the knowledge repository changes the
documents content naturally. It increases and decreases over time depending on
the application domain and the environmental context the respective LD resides
in. Even the raw data may evolve if reflected appropriately in the knowledge
repository.

3 Case Study: Information Retrieval Using Living
Documents

3.1 Case Study

The web-enabled n-tier client-server information system Paperbase serves as our
motivating example. Its n-tier client-server architecture is typical for contem-
porary Web-enabled digital library and information systems. Paperbase? allows
the creation of individual information workspaces using the Web. Users can eas-
ily create and manage their own workspace containing various media such as
HTML, PDF, ASCII, or Office documents. The rationale behind Paperbase is
to provide personal workspaces for users independent of their current physical
location. Furthermore, they can easily share sub sets of their workspace among
each other and collaborate.

A) Paperbase B) Paperbase based on Living Documents

Fig. 2. A) Overview of the n-tier client-server architecture of Paperbase. B) Architec-
tural overview of PaperbaseLD based on Living Documents

As depicted in Figure 2A, users issue requests over the Web which are for-
warded to the application server Respondeo introduced in [17]. Respondeo’s
message bus mediates incoming user requests to the requested back end tier. In
the case of Paperbase the back end tier solely consists of one database which
stores all information about the documents’ attributes based on a relational

4 Paperbase is developed at the department of the University

of Tiibingen. It currently contains about 1500 documents. See
http://www-sr.informatik.uni-tuebingen.de/"schimkat/pb for further in-
formation about Paperbase.



Living Hypertext — Web Retrieval Techniques 5

database schema. Note, that the document’s content itself is stored separately
in a so-called digital document archive. Only a link to the archive is kept in the
relational database.

3.2 Implementing Living Documents

Based on the n-tier client-server Web information system Paperbase described in
Section 3.1, we designed and implemented Paperbase differently (PaperbaseLD)
using the concept of Living Documents which act as micro servers for documents,
as described in Section 2.

Computational Services. As defined in Section 2.1 each LD contains a set
of computational services. Within PaperbaseLD an agent is the key abstraction
for managing various computational services for a LD. It provides services for

accessing the LD’s knowledge repository and raw data part

querying the LD’s knowledge repository

viewing the content of knowledge repository encoded as an XML document
viewing the content LD’s raw data part.

We enriched LDs with mobility capabilities to take their location actively into
account as argued in [19]. Therefore, we integrated LDs into the mobile agent
framework Okeanos [15,16]. LDs communicate and interact by exchanging mes-
sages in KQML (Knowledge Query Manipulation Language) [8]. In PaperbaseLD
each ”agentified” LD can dynamically reconfigure its computational services and
add new services at run time. Each service and LD, respectively, is implemented
in Java.

Knowledge Repository. As stated in Section 2.1, a knowledge repository
contains a set of meta data or document state information which builds a DSR.
In PaperbaseLD we encoded each DSR as a semi-structured XML document.
Following an XML-based implementation, the generation of DSR is accomplished
in an uniform way which neither does favor a particular data format nor the use
of special programming or scripting languages.

Generally, each document state information belongs to a particular type of
document descriptions. Within PaperbaseLD the meaning of a type is encoded
as XML as well and kept separately from the document state information itself.
Thus, a document state information contained in the LD’s knowledge repository
is an instance of a particular type of a document description. The design ratio-
nale behind the separation of the actual document state information (syntax)
and its meaning (semantic) is similar to the managing of semantically enriched
XML documents in the semantic Web research community. However, from an im-
plementation point of view we currently use a much simpler XML-based scheme
to describe the meaning of document state information than the one proposed
by the semantic web community - Resource Description Framework (RDF) [20]



6 Ralf-Dieter Schimkat et al.

In PaperbaseLD we currently defined several types of document state in-
formation, such as (i) access-related information about who is accessing the
document. with respect to time and location of the requesting document; (ii)
history-related information about current and old locations of the mobile LD;
(iii) the mapping of the relational database schema to document state informa-
tion entries in the knowledge repository. This mapping is necessary due to the
goal to provide at least similar retrieval facilities in PaperbaseLD as in Paper-
base. We simply map each attribute in the relational schema which is directly
related to the LD to a triple

DatabaseProperty = (type, name,value) ,

where type is an unique schema descriptor for PaperbaseLD, name is a string
built from the table and column name of the relational database of Paperbase,
and wvalue is the value as contained in the relational database system of Paper-
base.

Raw Data Part. As specified in Section 2.1 the LD’s raw data part (Blob) can
contain any information encoded as a digital document. From an implementation
point of view, we use in PaperbaseLD various kinds of documents such as Office
documents, HTML pages, PDF documents, and several other data formats.

3.3 Distributed Information Retrieval Using Living Documents

Figure 2B gives an architectural overview of PaperbaseLD using LDs. The main
application components of PaperbaseLD are the application server Respondeo,
a notification system called Siena®, and several distributed so-called Okeanos
Lounges. Note that PaperbaseLD does not have any database system at the back
end tier in contrast to the architecture of Paperbase. The relational schema is
stored together with its instances in the LDs’ knowledge repository, as described
in Section 3.2. Within PaperbaseLD Respondeo neither holds any application
logic nor manages any documents. It solely serves as a gateway for interfacing
to the Web and users respectively. Siena is used as a global notification middle-
ware system where each LD publishes information and subscribes for document-
related notifications. Siena uses the publish/subscribe communication paradigm
as opposed to the rigid client-server request/response style. By deploying pub-
lish /subscribe, sender and receiver of notifications are decoupled from each other
which leads in the case of PaperbaseLD to a loosely coupled coordination of all
LDs. Finally, a Lounge is the abstraction used in the Okeanos framework for
an agent environment hosting several mobile agents. Inter-connected Lounges in
Okeanos allow agents to move to remote destinations directly.

Each document formerly stored in the document archive is — within Pa-
perbaseLD — transformed into a LD which manages its knowledge repository

® For design and implementation details see the Siena home page at
http://wuw.cs.colorado.edu/"carzanig/siena/index.html.



Living Hypertext — Web Retrieval Techniques 7

and raw data part. For illustration purposes in Figure 2B there are only three
Lounges hosting 9 LDs altogether. If a user is requesting or searching for some
LDs through the Web, it is up to each LD to respond to the request adequately.

In order to use Living Documents in a Web-like environment, each LD is able
to generate dynamically an HTML view of its knowledge repository and docu-
ment content. By this, we turned LDs into ordinary HTML pages. Furthermore,
the generated HTML view depends on the actual content of and the query sent
to the knowledge repository. Thus arbitrary HTML views of the same LD can be
generated. By turning ordinary documents into LDs which are inter-linked with
each other, a so-called Living Hypertext is established, as illustrated in Figure
1B. Generally, a Living Hypertezt is a hypertext which consists of LDs.

Within PaperbaseLD each incoming request or notification is mediated
through the computational services of a LD. Usually the handling of requests
involves two different kinds of interactions between the services at the code part
and the rest of a LD: First, the knowledge repository is contacted to determine
if incoming requests can and should be handled. In addition, some accounting
information is requested from the knowledge repository. Then, depending on the
type of incoming request the services contact the raw data part for further and
up-to-date information about the actual content of the document. For example,
in order to perform a full-text search it is necessary not only to search for par-
ticular document state information stored in the knowledge repository, but also
to search the content of the document itself.

In PaperbaseLD a request or search can be performed in two ways:

LD Compliant Searching. An incoming search request is forwarded by the
message bus of Respondeo to a designated Lounge which serves as an entry point
into the network of LDs, as shown in Figure 2 (Lounge at host3). Basically any
Lounge can play this kind of role. Then the request is turned into a LD, a so-
called LDSearch. A LDSearch is a special kind of LD which only contains some
processing logic and document state information about the type and content
of the search request including the query itself. Then LDSearch interacts with
its environment and dynamically determines available Lounges and their hosted
LDs respectively. Generally, a LDSearch is a mobile LD which moves among
the network of LDs and interacts with them locally. After the search process is
completed, the results are returned to Respondeo and the user. After the search
results have been returned, a LDSearch turns into an ordinary LD which just
behaves as a regular LD. The hit list of documents retrieved by the original
LDSearch are now part of the transformed LD’s raw data part. The uniform
handling of search requests and ordinary LDs opens up several interesting possi-
bilities in the area of information retrieval. Using LDSearch as a cached version
of document hit lists can contribute to an improved distributed search perfor-
mance within PaperbaseLD. Additionally, users or other LDs can make use of
the knowledge about the search process contained in a LDSearch’s knowledge
repository and document hit list. For performance reasons a search request can
either be accomplished by a single LDSearch traveling around the network of



8 Ralf-Dieter Schimkat et al.

LDs or by creating a number of LDSearch clones to build a swarm to interact
with remote LDs faster.

Cooperative Searching. By using the cooperative searching approach each
micro server (LD) publishes information about its managed document to the
notification system Siena. Each micro server also subscribes for notifications
which are related to its managed document. As far as there is related informa-
tion in Siena available, the interested micro servers are notified asynchronously
according to the publish/subscribe communication paradigm used in Siena.

LDs publish primarily subsets of their document state information contained
in the knowledge repository. For example, information about the type and de-
scription of the managed document is published to the notification system. In-
coming user requests are handled by Respondeo which simply publishes user
requests into Siena.

The cooperative search approach in PaperbaseLD only loosely couples LDs.
Thus the content-based routing of notifications in Siena provides a coopera-
tion mechanism which takes the independent and self-sufficient nature of micro
servers adequately into account.

4 Topic Distillation with Living Documents

According to [13] ”end users want to achieve their goals with a minimum of
cognitive load and a maximum of enjoyment”. Generally, searching for infor-
mation which is stored in databases assumes that the user is familiar with and
knows about the semantics of the respective database schema: What kinds of
attributes exist? What are the relationships and dependencies between them
? The two search approaches described in Section 3.3 follow this kind of tra-
ditional, database-centered information retrieval approach. Note that even the
cooperative search approach to Living Documents assumes knowledge about the
underlying meta data scheme. In this section, we describe a third information
retrieval approach to Living Documents which is used in the Web research com-
munity to search for relevant information on the Web - topic distillation. Topic
distillation is the process of finding quality documents on a query topic [2]. It
addresses the problem to distill a small number of high-quality documents that
are most representative to a given broad topic. The goal in topic distillation is
not to index, search or classify all the documents that are possibly relevant to
a topic, but only the most authoritative information on the requested subject.
In hypertext environments such as the web, a topic of a query can be found not
only by analyzing the keywords of the query and the content of the retrieved
documents, but also by taking the hypertext link structure into account.
Another key observation in large and dynamically changing hypertext envi-
ronments is that (i) the preprocessing of documents including its content and
link structure is not feasible because the number of documents might be too
high. (ii) Furthermore, the hypertext structure might change continuously.



Living Hypertext - Web Retrieval Techniques 9

Within PaperbaseLD we created a hypertext of inter-linked Living Docu-
ments. Generally, there are two types of links contained in a Living Document:
(i) A link in the raw data part is a so-called original link. For example, an or-
dinary web page which is turned into a Living Document keeps all its web links
in its original HTML source. In addition (ii) there are so-called meta links be-
tween Living Documents which are stored as an entry in the Living Document’s
knowledge repository. For example, each Living Document publishes its database
mapping scheme (see Section 3.2) into Siena. Then all related Living Documents
which share the same database attributes keep a meta link to each other in their
knowledge repositories. Each link type is an additional source of information
which can improve the retrieval process to find high-quality documents.

In the following we describe how to deploy topic distillation in a dynamic
environment such as a hypertext of inter-linked Living Documents to find high-
quality documents. Note, by turning digital documents into Living Documents
the conceptual border between traditional database-centric information systems
and the Web vanishes: A Living Document can play several roles depending on
its current environment and context. In a Web-like environment it provides a
dynamically generated HTML representation of its managed digital documents
which makes it possible to deploy all the Web infrastructure such as search
engines (e.g. Google, AltaVista). However, in a traditional environmental setting,
as described in Section 3.1, it provides the same retrieval facilities as ordinary
Client-Server systems.

The search engine Smider [14] was originally derived for topic distillation
on the internet. It has been inspired mainly by three different ideas: First, it
explores hypertext link structures to identify topic-related communities on the
internet which is inspired by Kleinberg’s work [11]. Second, the idea of selective
spidering to answer a specific query [5]. Third, Smider incorporated the concept
of focused crawling [4]: crawling the ”best” web pages first. The focused approach
is currently most prominently used by Google.

Goggle Alta\{lsta . PaperBase

Yahoo
s . « __« Search Engine
. Search engines
Keywords | Key Links !
e e |
B s = v
| Adaption / . Create list of
| Selective Spidering » | interesting pages
| Focused Crawiing B | o
1 s I
Results « Evaluation B e ‘ Download
Hypertext Link Structure
Document content

Fig. 3. Overview of Smider’s evaluation mechanism



10 Ralf-Dieter Schimkat et al.

4.1 Smider - The Principal Procedure

Smider is implemented in Java and is based on a multithreaded system archi-
tecture. While Smider is running it maintains a single priority queue of pages
to be visited. The principal procedure of Smider to search for interesting docu-
ments related to given keywords, as depicted in Figure 3, is centered around an
iterative evaluation process:

— Smider starts by queuing up few search engines as entry points to its search.
This start set of documents contains either ordinary Web pages or Living
Documents depending on the kind of search engine which has been con-
tacted®. However, in our experiments we always used the Paperbase search
engine as the primary search engine for Living Documents.

— Then it starts by spawning several spidering threads. From now on every
spidering thread performs the following actions repeatedly: Get the most
interesting page from the queue, retrieve it and feed links which have been
found to Smider’s evaluation mechanism.

— After a certain number of documents (pages) have been retrieved, another
thread starts which continuously evaluates all pages according to an algo-
rithm which is an extension to Kleinbergs algorithm [11]. Our evaluation
algorithm is described in detail in Section 4.2.

The concurrency of the evaluation and the spidering causes massive feedback
within Smider: The actual priority of pages to be spidered is derived from their
(preliminary) evaluation and of course the actual retrieval of pages changes the
link structure which is known and changes the outcome of the next iteration
of the evaluation process. This makes Smider fairly flexible, all kinds of search
engine pages (e.g. ask Altavista for links, ask Google for next 10 links), normal
web pages and link resources (e.g. Altavista link : u searches) are all held within
that one queue and compete for getting retrieved next. There is no fixed schedule
and the search for different topics might retrieve pages of above three types in
fairly different percentage and order.

4.2 An Extension of Kleinberg’s Idea

It follows from the above that the evaluation method is very important for
Smider. It does not only determine the final result but also the priorization of
pages during search and therefore actually decides which pages are visited in
which order.

The basic principle of Kleinberg’s [11] algorithm is based on the matrix rep-
resentation H of the vertices of the hypertext connection graph. Essentially one
performs iterations for large eigenvalues of HH” and HT H to identify two spe-
cial eigenvectors a and h of those matrices. Kleinberg demonstrates that the
relative value of the entries of those eigenvectors yield good evaluation of the

® To be more precise, Smider uses the dynamically generated HTML representation
of a Living Document.



