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Preface

We present a unified approach to various sharp pointwise inequalities for ana-
lytic functions in a disk with the real part of the function on the circumference
as the right-hand side. We refer to these inequalities as “real-part theorems”
in reference to the first assertion of such a kind, the celebrated Hadamard’s
real-part theorem (1892). The inequalities in question are frequently used in
the theory of entire functions and in the analytic number theory.

We hope that collecting these inequalities in one place, as well as generaliz-
ing and refining them, may prove useful for various applications. In particular,
one can anticipate rich opportunities to extend these inequalities to analytic
functions of several complex variables and solutions of partial differential equa-
tions.

The text contains revisions and extensions of recent publications of the
authors [56]-[58] and some new material as well. The research of G. Kresin
was supported by the KAMEA program of the Ministry of Absorption, State of
Israel, and by the College of Judea and Samaria, Ariel. The work of V. Maz'ya
was supported by the Liverpool University and the Ohio State University. The
authors record their thanks to these institutions.

We are most grateful to Lev Aizenberg and Dmitry Khavinson for inter-
esting comments and enhancing our knowledge of the history of the topic.

Ariel, Israel Gershon Kresin
Columbus, USA Viadimir Maz ya

May, 2006



Introduction

Estimates for analytic functions and their derivatives play an important role
in complex analysis and its applications. Among these estimates which enjoy
a great variety, there are the following two closely related classes having a
wide range of applications.

The estimates of the first class contain only modulus of the analytic
function in the majorant part of an inequality. In particular, they em-
brace Cauchy’s inequalities, maximum modulus principle, Schwarz lemma.
Hadamard three circles theorem (see, for example, Titchmarsh [87], Ch. 2.
5), Bohr's theorem [18], estimates for derivatives due to Landau, Lindelof, F.
Wiener (see Jensen [51]), Makintyre and Rogosinski [69], Rajagopal [79. 80].
Szdsz [86]. In addition to that, the first class embraces estimates of Schwarz-
Pick type for derivatives of arbitrary order obtained by Anderson and Rovnyak
[11], Avkhadiev and Wirths [12], Bénéteau, Dahlner and Khavinson [13], Mac-
Cluer, Stroethoff and Zhao [66, 67]. Ruscheweyh [83]. Among other known
estimates of the same nature are generalizations to analytic operator-valued
functions of a Schwarz-Pick type inequality for derivatives of arbitrary order
by Anderson and Rovnyak [11] and Carathéodory’s inequality for the first
derivative by Yang [90, 91].

During last years the so called Bohr's inequality attracted a lot of atten-
tion. A refined form of Bohr’s result [18], as stated by M. Riesz, I. Schur, F.
Wiener (see Landau [62], K. I, § 4), claims that any function

.f(:):Z('n:”- (1)

n=>0

analytic and bounded in the disk Dp = {z € C : |z] < R}. obeys the inequality

oo
> ke

n=>0

sup | f(C)]. (2)

[CI<R

IA

where |z| < R/3. Moreover, the value I?/3 of the radius cannot be improved.
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Multi-dimensional analogues and other generalizations of Bohr's theorem
are treated in the papers by Aizenberg [1, 2, 9], Aizenberg, Aytuna and Djakov
[3, 4], Aizenberg and Tarkhanov [5], Aizenberg, Liflyand and Vidras [7], Aizen-
berg and Vidras [8], Boas and Khavinson [15], Boas [16], Defant, Garcia and
Maestre [30], Dineen and Timoney [32, 33|, Djakov and Ramanujan [35],
Kaptanoglu [52].

Various interesting recent results related to Bohr’s inequalities were
obtained by Aizenberg, Grossman and Korobeinik [6], Bénéteau and Koren-
blum [14], Bénéteau, Dahlner and Khavinson [13], Bombieri and Bourgain
[20], Guadarrama [43], Defant and Frerick [31].

Certain problems of functional analysis connected with Bohr's theorem
are examined by Defant, Garcia and Maestre [29], Dixon [34], Glazman and
Ljubic [40], Nikolski [72], Paulsen, Popescu and Singh [73], Paulsen and Singh
[74].

In estimates of the second class the majorant involves the real part of
the analytic function. Among these inequalities are the Hadamard-Borel-
Carathéodory inequality for analytic functions in Dy with Rf bounded from
above

17(2) — F(0)] < Rz’ sup RLF(C) — F(0)), (3)

—TK<Rr
frequently called the Borel-Carathéodory inequality, and the Carathéodory-

Plemelj inequality for analytic functions in Dy with bounded R f

¢ ] 'y
370~ 97001 < Zog (757 ) I{7 - 50} (1)

(see, for example, Burckel [23], Ch. 5, 6 and references there), where |z| = r <
R. The same class includes Carathéodory’s inequality for derivatives at the
center of a disk [24], M. Riesz’ theorem on conjugate harmonic functions [81]
and many other estimates (see, for example, Jensen [51], Koebe [53], Lindelof
[64], Rajagopal [78], Ruscheweyh [82], Yamashita [89]). The sharp constant in
M. Riesz inequality for analytic functions in the half-plane was obtained by
Gohberg and Krupnik [41], Pichorides [75] and Cole (see Gamelin [37]). Note
that sharp constants in parametric M. Riesz inequalities for analytic functions
in the half-plane and in the disk were found in the paper of Hollenbeck,
Kalton and Verbitsky [48], where a wide range of questions relating Fourier
and Hilbert transforms was treated.

We note that different sources give different formulations of inequalities
containing the real part as a majorant. In fact, Cartwright ([27], Ch. 1),
Holland ([47], Ch. 3), Levin ([63], Lect. 2), Titchmarsh ([87], Ch. 5) formulate
the Hadamard-Borel-Carathéodory inequality for functions which are analytic
in Dy. Unlike them, in the books by Burckel ([23], Ch. 6), Ingham ([50], Ch.
3), Littlewood ([65], Ch. 1) and Polya and Szegt ([76], 111, Ch. 6) the same
estimate is derived for functions which are analytic in Dy and have the real
part bounded from above.
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The Hadamard-Borel-Carathéodory inequality is used in an essential fash-
ion in the theory of entire functions (see, e.g. the books Boas [17], Ch. 1 and
Holland [47], Ch. 4). In particular, this inequality and its variants are applied
for factorization of entire functions (see Hadamard [44]), in the proof of the
Little Picard theorem (see Borel [21], Zaleman [92]) and in approximation of
entire functions (see Elkins [36]).

The Hadamard-Borel-Carathéodory inequality is of use also in the analytic
number theory (see Ingham [50], Ch. 3) and in mathematical physics (see
Maharana [68]).

During the last years. generalizations of the Hadamard real-part theorem
(the first form of the Hadamard-Borel-Carathéodory inequality) for holomor-
phic functions in domains on a complex manifold (see Aizenberg. Avtuna
and Djakov [3]). the Carathéodory inequality for derivatives (see Aizenberg
[9]) in several complex variables, and an extension of the Hadamard-Borel-
Carathéodory inequality for analytic multifunctions (see Chen [28]) appeared.

The estimates in one of the classes mentioned above have their analogues
in the other class. For example, this relates Bohr's theorem as well as its
analogues containing the real part (see Aizenberg, Aytuna and Djakov [3].
Paulsen, Popescu and Singh [73], Sidon [85], Tomi¢ [88]).

Sharp pointwise estimates, being a classical object of analysis, occupy a
special place in analytic function theory. In a way, they provide the best
description of the pointwise behaviour of analytic functions from a given space.

The subject matter of this book is sharp pointwise estimates for analytic
functions and their derivatives in a disk in terms of the real part of the function
on the boundary circle. We consider various inequalities of this type from one
point of view which reveals their intimate relations.

All inequalities with sharp constants to be obtained result from the analy-
sis of Schwarz integral representation
1 ' q+

= RC)|dC]

N
=i+ g |

where |z| < R. The sharp estimates for the increment of an analytic function
are written in a parametric form, where the role of the parameter is played
by an arbitrary real valued function a(z) in Dp.

The book contains seven chapters.

In Chapter 1 we obtain sharp estimate for analytic functions in Dy with
Rf bounded from above

2r(R — rcosa(z))

R{C)(f(z) = fo)) < TN Gup R{SQ - SO} (5)
]l)" —r- [C|<R
where r = |z| < R, and « is a real valued function on Dpg. This estimate

implies various forms of the Hadamard-Borel-Carathéodory inequality and
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some other similar inequalities. The sharpness of inequality (5) is proved with
the help of a parameter dependent family of test functions, each of them being
analytic in Dp.

Chapter 2 deals with a sharp estimate of [R{c'**)(f(z) — £(0))}| by the
L,-norm of Rf —Rf(0) on the circle [(| = R. where |z| < R.1 < p < 0. and
a is a real valued function on Dg. In particular. we give explicit formulas for
sharp constants in inequalities for |[R{e'™Z)(f(z) — f(0))}] with p = 1.2. .
We find also the sharp constant in the upper estimate of |3 f(z) — S f(0)| by
[|Rf —Rf(0)]], for 1 <p < oo which generalizes the classical Carathéodory-
Plemelj estimate (4) with p = oo. The evaluation of sharp constants is reduced
to finding the minimum value of integrals depending on a real parameter
entering the integrand.

In Chapter 3 we give sharp estimates of |[R{c***)(f(2) — f(0))}| by the
Ly-norm of Rf — ¢ on the circle |(| = R, where |2| < R, 1 < p < o0, and « is
a real valued function on Dp. Here ¢ is a real constant. More specifically, we
obtain similar sharp estimates formulated in terms of the best approximation
of Rf by a real constant on the circle |(| = R. As corollaries, we give explicit
formulas for sharp constants in inequalities for [R{e'“Z)(f(z) — f(0))}| with
p = 1,2,50. In particular, an estimate containing ||'Rf — ¢[|; in the right-hand

side implies

2'.(R+:.'<'nin(l)|) sup R{/(g) = f(())}
R? — 2 [l<R

[R{e"*(2)(f(z) = FO)} <
which contains Hadamard-Borel-Carathéodory inequality (3) and similar esti-
mates for the real and imaginary parts.

Other corollaries of the main results in Chapters 2 and 3 are estimates for
Ilog If(:)H |z| < R, by the L,-norm of log|f| on the circle |(| = R, where f
is an analytic zero-free function in Dg. The results of Chapters 1-3 also imply
sharp inequalities for |f’(z)| with various characteristics of the real part of f

on the disk in the right-hand side.

Using previous results, in Chapter 4 we obtain sharp estimates for direc-
tional derivatives (in particular, for the modulus of the gradient) of a harmonic
function in and outside the disk Dpg, and in the half-plane. Here the majo-
rants contain either characteristics of a harmonic function (interior estimates
for derivatives), or characteristics of its directional derivative. In the last case
we differ between estimates with a fixed and with a varying direction. In
particular, using an estimate for |f’(z)| inside of the disk Dpg, obtained in
Chapter 3, we derive a refined inequality (see, for comparison, Protter and
Weinberger, [77], Ch. 2, Sect. 13) for the gradient of a harmonic function
inside of the bounded domain.

In Chapter 5 we find estimates with the best constants of |f(")(z)| for
n > 1 by the Ly-norm of R{f — P,,} on the circle |(| = R, where P, is a
polynomial of degree m < n — 1, |z] < R,1 < p < ~. For 2z = 0 explicit sharp
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constants are found for all p € [1, >|. In particular, from the above mentioned
sharp estimates for |f(")(2)| with p = 1, we derive inequalities analogous to
the Hadamard real-part theorem, as well as to the Carathéodory and Landau
inequalities. Sharp inequality for [f("(z)| similar to Hadamard’s real-part
theorem is known (see, for example, Ingham [50], Ch. 3 and Rajagopal [78]).
Unlike the approach used in these works, the method developed in Chapter
5 vields sharp estimates for the modulus of derivative formulated in terms of
L,-characteristics of the real part. The last section contains sharp parametric
inequalities for |f")(z)].

In Chapter 6 we show that given a function (1) with Rf in the Hardy
space hi(Dpg) of harmonic functions on Dpg, the inequality

X l/(] , -
c :'l q < . \R i
,§,| n I - 77]?'71(]?(] _ ,.q)l/q || ,HI
holds with the sharp constant, where r = |z] < R, m > 1, ¢ € (0,]. This

estimate implies sharp inequalities for the [,-norm (quasi-norm for 0 < ¢ <
1) of the Taylor series remainder for bounded analytic functions, analytic
functions with bounded R f, analytic functions with R f bounded from above,
as well as for analytic functions with R f > 0. Each of these estimates, specified
for ¢ = 1 and m = 1. improves a certain sharp Hadamard-Borel-Carathéodory
type inequality. As corollaries, we obtain some sharp Bohr's type modulus
and real part inequalities. Besides, we derive sharp Bohr's type estimates and
theorems for non-concentric circles.

Chapter 7 is devoted to sharp estimates of | (") (z) — f0)(0)| for n > 0 by
the Ly-norm of R{f — P,,} on the circle || = R, where P, is a polynomial
of degree m < n, |z|] < R,1 < p < 0. In particular, from the estimate
for | (") (z) — f(0)| by the value [|[R{f — P,.}||; in the right-hand side we
obtain sharp estimates for the increment of derivatives of the type similar to
Hadamard-Borel-Carathéodory, Carathé¢odory and Landau inequalities.

The sharpness of estimates for derivatives, similar to the Hadamard-Borel-
Carathéodory, the Carathéodory and the Landau inequalities is proved in
Chapters 5 and 7 using a family of test functions, analytic in D . Besides, in
these chapters, sharp pointwise estimates for the modulus of the derivatives
and their increments are formulated in terms of the best approximation of the
real part of f by the real part of polynomials P,, in the norm of L,(0Dg). In
particular, for p = 2 the best constants are given in an explicit form.

The index and list of symbols are given at the end of the book.

The reader we have in mind should be familiar with the basics in complex
function theory. The references are limited to works mentioned in the text.
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1

Estimates for analytic functions bounded
with respect to their real part

1.1 Introduction

Hadamard's real-part theorem is the following inequality

'

7
(2)] < max R f(¢ (1.1.1)
1(z) =~ R—rC=R )
where |z| = < R and f is an analytic function on the closure Dy of the disk
Dp = {z:|z| < R} and vanishing at = = 0. This inequality was first obtained

by Hadamard with (' = 4 in 1892 [44]‘

A more general estimate for |f(z)| with f(0) # 0 was obtained by Borel
[21] and applied in his proof of Picard’s theorem independent of modular
functions. The inequality

R+
)] < ISFO)] + - RFO)] 4

o max R f(¢)
— T [(I=R
was found by Carathéodory (see Landau [60], pp. 275-277. [61], pp. 191-194).
A detailed historic survey on these and other fundamental inequalities for
analytic functions can be found in the paper by Jensen [51].

The following generalization of the re nl part theorem with ' = 2 resulting

from (1.1.1) after replacing f(z) by f(z) — f(0).
o
F(2) = FO) < = max R{SC) — f(O)} (1.1.2)
— 7 |I{|=R

and its corollary

max Rf(CQ), (1.1.3)

CC=R

R
If(z)] < 21!

are often called the Borel-Carathéodory inequalities.



2 1. Estimates for analytic functions bounded with respect to their real part
Sometimes, (1.1.2) and (1.1.3). as well as the related inequality for R f

RI(:) < ot RIO) +

av PBF .
R+r lder BRI, (1.1.4)

are called Hadamard-Borel-Carathéodory inequalities (see, e.g.. Burckel [23].
Ch. 6 and references there).

In this chapter we obtain sharp estimates for

R{e" ) (f(z) — f(0)))}

by the upper (or lower) bound of Rf on the disk Dp. where a is an arbitrary
real valued function on Dp.

In Section 1.2 we give three known proofs of the real-part theorem: based
on a conformal representation and the Schwarz lemma, on the Schwarz integral
representation, and on a series expansion.

Section 1.3 is auxiliary. Using a lemma proved in Section 1.3, in Section
1.4 we derive the following sharp pointwise estimate

on bl 1 ) 2r(R — rcosa(z)) P ) .
R (f(2) = SO} < g T mas RO~ FO)). (115)

where f is analytic in Dy and |z| = r < R.

The lower estimate for the constant in (1.1.5) is obtained with the help of
a family of test functions which are analytic in Dy. As a corollary of (1.1.5)
we obtain the inequality with the same sharp constant for analytic functions
[ in Dr with Rf bounded from above

2r(R —rcosa(z)) NI ;
R0 s R{f(¢) - f(0)}. (1.1.6)

R{e ) (f(2) - f(0))} <

Sections 1.5-1.7 contain various corollaries of estimate (1.1.6). Among
them, there are Hadamard-Borel-Carathéodory inequalities for the modulus
as well as for the real and imaginary part of an analytic function, Harnack
inequalities, and analogues of (1.1.6) for R{c'*Z)(f(z) — f(£))} in the case of
a disk and the half-plane.

1.2 Different proofs of the real-part theorem

Proofs of (1.1.1) with €' = 2 or (1.1.3) are given in Borel [22], Burckel ([23].
Ch. 6), Cartwright ([27], Ch. 1), Holland [47]. Ingham ([50], Ch. 3). Jensen
[51], Levin ([63], L. 11), Lindelof [64], Littlewood ([65], Ch. 1), Maz'va and
Shaposhnikova ([70], Ch. 9), Polya and Szego ([76], I, Ch. 6), Rajagopal [78],
Titchmarsh ([87]. Ch. 5). Zaleman [92].
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In this section we provide three different proofs of the real-part theorem
with the constant (' = 2. In all these proofs we assume that f = u +iv is an
analytic function in Dy with f(0) = 0. We introduce the notation

Ar(R) = sup Rf(z) (1.2.1)

|z]<R

to be used henceforth.
We recall that according to the Schwarz lemma. every analytic function f
in D with [f(2)] < M and f(0) = 0 satisfies

Ilf(z)| < MR7'|z| for |z| <R

(see, for example, Littlewood [65], p. 112).

A combination of conformal mappings and the Schwarz lemma form the
basis of the so called subordination principle. used. in particular, in the proof
of the Hadamard-Borel-Carathéodory inequality and similar estimates (see
Burckel [23], Ch.6. § 5, Polya and Szego [76], III, Ch.6, § 2). The following
proof is of the same nature.

Proof based on a conformal mapping and the Schwarz lemma
(see Littlewood [65], pp. 113-114, Titchmarsh [87], p. 174-175). When proving
the inequality

21
)< 5

max R f(C). (1.2.2)
=— T [C|=R

we may assume that f # 0. Then, by the maximum principle for harmonic
functions, As(R) > u(0) = 0. The function

performs the conformal mapping of the disk [¢| < 1 onto the half-plane R <
A (R) so that, ©2(0) = 0. Using the inverse mapping

ol = w
P = T A (R
consider the function

wiz) = ooy =28 <R (123)

f(z) = 2A4(R)

According to the conformal representation theory, the function w is analytic
in D and |w(z)] < 1. These properties of w can be also justified by other
arguments. The function w is analytic in Dp, since the denominator in the
right-hand side of (1.2.3) does not vanish. Furthermore, since

—2A¢(R) +u(z) <u(z) <245(R) — u(z2).



