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Preface

Most animals and plants are naturally occurring composites, and the
relationships among the various components of these composites have
been investigated for centuries. In contrast, most synthetic polymers, such
as fibers, uncompounded elastomers, and unfilled plastics, are not
composites. Their utility depends, to a large extent, on entanglement of
the polymer chains and intermolecular attractions among these chains.

It is interesting to note that celluloid, the first man-made plastic, was
a composite consisting of intractable cellulose nitrate and camphor, which
served as a flexiblizer or plasticizer. Likewise, Bakelite, the first truly
synthetic plastic, was a composite consisting of a phenolic polymer rein-
forced by a wood flour filler.

Since early developments in plastic technology were empirical and
general-purpose thermoplastics such as polystyrene, polymethyl methacry-
late, polyethylene, and polypropylene (commercialized in the 1930s and
1950s) were less dependent than celluloid and Bakelite on additives,
composite science was neglected until a few decades ago.

Polyvinyl chloride, also a pioneer general-purpose plastic, had limited
use until it was flexibilized by the addition of phthalic acid ester plasti-
cizers. The plasticized PVC (Koroseal) served well as a flexible plastic,
but the utility of PVC was increased dramatically when heat stabilizers
were added in the 1940s. Likewise, because it was brittle, the use of
polystyrene was somewhat restricted until it was toughened by the addi-
tion of an elastomer, such as styrene-butadiene rubber.

Despite their wide use, most general-purpose plastics could not func-
tion as components of aircrafts, boats, automobiles, or recreational equip-
ment. Fortunately, advances in composite science have resulted in the
production of plastic composites, which extend the usefulness of plastic
far beyond that of the general-purpose thermoplastics. Fortunately, we are
now living in the Age of Composites, in which the performance of both
thermosets and thermoplastics is enhanced by compounding with properly
selected additives.
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viii Reinforced Plastics: Properties & Applications

The present state of the art of compounding of plastics is described
throughout this book. Since it was written primarily for designers and
engineers, the emphasis is on useful combinations of plastics and appro-
priate additives. Some essential theories are discussed and references to
more complex theories are provided.

A large number of engineers are now employed in the composites
field; this number should double in the next few decades as the annual
use of composites increases from a few million tons to more than 20
million tons. It is hoped that this book will help continue the growth of
plastic composites. The Composites Age will be a golden age for knowl-
edgeable engineers.

Raymond B. Seymour
Hattiesburg, MS
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CHAPTER 1

The Genesis of
Plastic Composites

INTRODUCTION

Engineers, scientists, and technologists educated prior to World War
II learned about early developments in their field by enrolling in a course
on the history of science or technology. Unfortunately, most of these
courses have been abandoned and replaced by more modern courses such
as computer science. Nevertheless, as Goethe stated, "The history of
science is science itself." It should not be ignored or overlooked.

The evolution of a new science is not a "Big Bang" event. Instead,
developments generally occur at irregular intervals over a period of years,
and continue into the future. A brief history of plastic composites will be
outlined here to show the steps and missteps in their development. The
compounding of materials has gradually evolved from a "black art" to at
least a pseudoscience.

HISTORY OF POLYMERS
PLUS FUNCTIONAL ADDITIVES

Some functional additives, such as curing agents and stabilizers, occur
naturally in hevea rubber and thus may be the pioneer additives for poly-
mers. Proteins found in rubber latex contain sulfur, which acts as a cross-
linking or curing agent when heated, and quebrachetol, which serves as
a stabilizer. The concentrations of these functional additives plus that of
the phenolic stabilizers formed in the smoke of burning wood, used for
coagulation, were acceptable for making tlachtli balls (the predecessors
of modern basketballs). However, these concentrations are insufficient for
other applications, such as waterproofing of textiles and modern radial
tires.
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White lead (2PbCO; - Pb(OH),, the first man-made pigment, served
as a curing agent (drier) when it was used as a pigment in linseed oil
coatings many centuries ago. The dream of the alchemist who developed
the Dutch process, which was based on the corrosion of lead by vinegar
and carbon dioxide, would be a nightmare for a modern chemical engi-
neer. The utility of this metal salt as a drier or siccative was improved by
the Egyptians, who made lime soap over 34 centuries ago. Heavy metal
salts of organic acids continue to be used as driers, but their most
important use as additives is as heat stabilizers in polyvinyl chloride.

Another ancient additive was tannin, used to tan hides. Nowadays,
tannic acid has been displaced, to a large extent, by other crosslinking
agents, such as chromium sulfate, and selected polymers are used in place
of leather in shoes and many other applications.

Hayward’s solarization process developed in 1838 for curing rubber
with sulfur was improved by Goodyear, who substituted thermal energy
for solar energy in 1939. This slow vulcanization (crosslinking) process
was accelerated in the early 1900s when Oenslager added solid aniline
derivatives, such as thiocarbanilide, to the mixture of sulfur and rubber.
The principal accelerators used today are derivatives of 2-mercaptobenzo-
thiazole (Captax). Ostromislensky cured natural rubber by the addition of
benzoyl peroxide.

Prior to 2000 B.C., the Egyptians knew that crushed fruit, when stored
in a warm place, produced an intoxicating drink, and the making of beer
and wine was practiced before 1500 B.C. The carbon dioxide by-product
of yeast fermentation (leaven) was used in the making of leavened bread.
Leavening was also accomplished several centuries ago by the use of
soda ash (Na,CO,), which was extracted from plant ashes.

The Solvay process, developed in 1865, produced sodium bicarbonate
(NaHCO,), which could be mixed with solid acid salts to produce baking
powder. Carbon dioxide from both fermentation and baking powder has
been used to produce cellular polymeric products. Schridowitz patented
this foam-making process in 1914. Other physical blowing agents (PBA),
such as Freon, and chemical blowing agents (CBA), such as azobiscar-
bonamide, are also used as propellants for polymeric foam production.
However, the use of Freon and other chlorine-containing propellants is
being discontinued because of their adverse effect on the ozone layer in
the outer atmosphere. Fortunately, the cellular plastics industry in devel-



