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PREFACE

Over the past forty years the field of Biomaterials Science and
Engineering has grown from a small research area of no more than twenty
researchers worldwide, to a robust discipline that has become a cornerstone
of the field of Biomedical Engineering. During this time period, the field of
biomaterials has found a welcome home in academic chemical engineering
departments and in companies working with artificial organs, medical
devices, and pharmaceutical formulations. The contributions of chemical
engineers to the definition and the growth of the field have been important
and at times seminal. It was therefore only natural for us to edit a volume
that would highlight some of the major contributions of the chemical
engineering world to biomaterials science and engineering.

In the mid 1960s biomaterials science was still at its infancy. The
development of biomaterials was an evolving process. As Robert Langer of
MIT and I indicated in a recent article (AIChE Journal, 49, 2990 (2003)),
many biomaterials in clinical use were not originally designed as such but
were off-the-shelf materials that clinicians found useful in solving a
problem. Thus, dialysis tubing was originally made of cellulose acetate, a
commodity plastic. The polymers initially used in vascular grafts, such as
Dacron, were derived from textiles. The materials used for artificial hearts
were originally based on commercial-grade polyurethanes. These materials
allowed serious medical problems to be addressed. Yet, they also
introduced complications. Dialysis tubing would activate platelets and
the complement system. Dacron-based vascular grafts could only be used
if their diameter exceeded about 6 mm. Otherwise occlusion could occur
because of biological reactions at the blood-material and tissue-material
interfaces. Blood—materials interactions could also lead to clot formation in
an artificial heart, with the subsequent possibility of stroke and other
complications.

In the last few years, novel synthetic techniques have been used to impart
desirable chemical, physical, and biological properties to biomaterials.
Materials have been synthesized either directly, so that desirable chain
segments or functional groups are built into the material, or indirectly, by
chemical modification of existing structures to add desirable segments or
functional groups. It is possible to produce polymers containing specific
hydrophilic or hydrophobic entities, biodegradable repeating units, or
multifunctional structures that can become points for three-dimensional
expansion of networks. Another synthetic approach involves genetic

X1
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engineering for the preparation of artificial proteins of uniform structure.
This enables the synthesis of periodic polypeptides that form well-defined
lamellar crystals, polypeptides containing non-natural amino acids, and
monodisperse helical rods. Important issues to be addressed include
immunogenicity and purification from contaminants during large-scale
production. If techniques were developed to produce polymers with the
use of non-amide backbones, the versatility of this approach would be
extended.

In this volume, we have collected a series of important critical articles on
the present and future of biomaterials science as viewed by some of the
leading chemical engineers of the field. It was not our intention to cover all
aspects of biomaterials science but rather to unify certain synthetic,
structural, and biological topics, and to point out the significant contri-
butions of chemical engineers to the field. It is not a coincidence that this
book is part of the well-known series of Advances in Chemical Engineering.

As I was commissioning the various chapters included in this volume, I
wanted to highlight the main directions of this field: (i) novel methods of
synthesis; (ii) advanced design; (iii) advanced characterization methods;
(iv) better understanding of biomaterials/tissue interactions; and (v) a wealth
of applications. Concerning this last point, it must be noted that just
25 years ago, the term biomaterials referred to materials in contact with
the body but was restricted to materials for artificial organs and extra-
corporeal devices. The “explosion” of the fields of drug delivery and tissue
engineering has led to new function and applications of biomaterials. The
use of biomaterials in nanoscale technology requires added appreciation
for the importance of chemical engineering principles in biomaterials
science and engineering.

After a masterful introduction of the field and its new directions
by Michael Sefton of the University of Toronto, Kristi Anseth of the
University of Colorado offers a critical analysis of cell-materials interaction
problems with emphasis on the nature of cell adhesions, adhesion ligands,
and surface chemistry.

Surya Mallapragada of Iowa State University addresses questions
related to the use of biomaterials in tissue engineering and nerve
regeneration, while Anthony Lowman of Drexel University offers a detailed
structural analysis of biological hydrogels used in biomaterials and drug
delivery applications. Antonios Mikos of Rice University offers a critical
review of biomaterials for gene therapy, whereas Balaji Narasimhan of
Iowa State University pursues the question of biodegradability in materials,
especially those used as drug delivery carriers.

As you read this book, I hope you will appreciate the infinite
possibilities of biomaterials science in solving important medical problems.
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If this book can influence young engineers and scientists to pursue a career
in biomaterials science and engineering, it will have made a lasting impact.
I want to thank Michael Sefton for coming to this project with an open
mind and adding his advice as a co-editor and author of the first chapter.
And I am indebted to the two early chemical engineering giants of the field,
Edward Merrill of MIT and Alan Hoffman of the University of
Washington, for having taken the first giant leaps in the tortuous road
that is “‘biomaterials’.

NiICHOLAS A. PEPPAS
AUSTIN, TExas, USA
March 2004
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I. What Happened to Inert Biomaterials? 1
II. Biocompatibility of Modern Biomaterials
References 5

. What Happened to Inert Biomaterials?

In the beginning, there were metals and materials scientists. Plastics,
polymers, and soft materials came later and then came the chemical
engineers. The artificial heart program had a few (Artificial Heart Program
Conference, 1969) but it was the artificial kidney program and the interest
in new membranes that really started things off. Merrill at Massachusetts
Institute of Technology (Merrill ef al., 1966) was a pioneer as was Leonard
and Gregor (Friedman ef al., 1970) at Columbia and Hoffman at the
University of Washington. Now almost every chemical engineering
department has someone working on biomaterials or there is a
bioengineering department nearby with chemical engineers on faculty.
Several illustrations of this activity are apparent in this volume.

In the beginning the emphasis was on biocompatibility. Inertness was
the key. We had our lists of no’s (Table I) and the paradigm was focused
on finding, synthesizing or surface modifying materials to make them fit
these negative commandments. Interestingly, a large part of the early involve-
ment of chemical engineers was to make materials that were not inert.
Heparin immobilization was a hot topic in the late sixties and early seventies
and the whole purpose was to make a surface that would actively interact
with blood and prevent clotting. ““Anti-thrombogenicity”” was the keyword.

Advances in Chemical Engineering, vol. 29 Copyright © 2004 by Elsevier Inc.
ISSN 0065 2377 All rights reserved
DOI 10.1016/S0065-2377(03)29001-3



2 MICHAEL V. SEFTON

TABLE I

Commandments for inert biomaterials

No toxicity

No hemolysis

No pyrogens (endotoxin)

No protein or cell consumption

No thrombosis (and no emboli)

No inflammation

No infection

No immune response

No complement activation

No carcinogenicity and mutagenicity

Now with tissue engineering, regenerative medicine and combination prod-
ucts, active materials are the topic of interest of biomaterials specialists.

Some active materials are carriers for drugs (drug delivery systems),
some have immobilized peptides to enable cell adhesion or migration, some
are degradable by hydrolysis or by specific enzyme action. Some contain
bioactive agents (e.g., heparin, thrombomodulin) to prevent coagulation or
platelet activation while others incorporate bioactive groups to enhance osteo-
conduction. Many include polyethylene oxide to retard protein adsorption
and this is perhaps the closest we have come to a kind of inertness.

The advent of these materials has challenged the regulatory authorities
since the materials are no longer being used simply for medical devices. Some
include drugs and some include cells or biologicals. It was once sufficient to
show that the material had no effect (i.e., it was inert) and then to get the
blessing of the regulatory authorities. Now, it is the presence of an effect
and a significant one at that, that needs to be regulated. The FDA has
established an Office of Combination Products (http://www.fda.gov/oc/
combination/) to deal with these products and every indication suggests
that it is not long before these products are the norm. It is now not so simple
to argue that the next generation of medical devices “does not achieve any
of its primary intended purposes through chemical action within or on the
body of man™ as it is given in part of the FDA definition of a medical device.

Il. Biocompatibility of Modern Biomaterials

When biomaterials were inert it was simple to think of biomaterials in
terms of the absence of inflammation or the absence of thrombi. Now, with
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these newer combination materials we think of biocompatibility in more
complex and subtle terms. The “appropriate host response’ associated
with the definition of biocompatibility has much more subtlety and
complexity than we had hitherto considered. Blood compatibility may
require some limited platelet adhesion and activation to passivate a
material rather than the complete absence of adherent platelet deposits,
especially if we want to limit embolization. What we now really mean
by blood compatibility has been described in more detail elsewhere
(Sefton et al., 2000).

We now recognize that blood compatibility is more complex than it was
because we have to consider more than just platelets and coagulation
factors and we have to consider the interactions among all the components
of blood, including neutrophils, monocytes, and complement. This has led to
the conclusion that thrombogenicity is really a special case of inflammation.
That modern hematologists disregard Factor XII and the intrinsic coagula-
tion system and focus on tissue factor (Jesty ef al., 1995) and that tissue
factor is expressed on activated monocytes (Gorbet ef al., 2001) highlights
further this linking of thrombogenicity and inflammation.

More fundamentally though the performance of these new biomaterials
is challenging the entire concept of biocompatibility. A scaffold that
promotes cell invasion may contain many of the attributes that in another
context would lead to inflammation. Some constructs rely on a limited
degree of inflammation to generate the enzymes that will cause the desired
remodeling of the construct. Other uses of a biomaterial (e.g., as a vaccine
adjuvant) is based on generating a local inflammatory response in order to
boost the immune response, while immune responses to tissue constructs is
an important, yet largely overlooked, element of the host response
(Babensee et al., 1998). Some new angiogenic biomaterials (Gorbet et al.,
2003) are designed to control the functional diversity of the monocyte
(Riches, 1995), enabling a pro-angiogenic phenotype to emerge as
the dominant functional form of these cells. The result is monocyte
activation, but “‘good” activation: producing the blood vessels associated
with granulation tissue but without the undesirable cytokines and
other inflammatory mediators and proliferating fibroblasts. These new
biomaterials are leading us to ask whether inflammation is bad or whether
a little bit of inflammation can be a good thing?

Biomaterials are solid drugs. Rather than thinking of biomaterials as an
inert contributor, my laboratory has taken to thinking about biomaterials
as agonists of a biological response, much like drugs. However,
biomaterials are solids and interact with cells and tissues through an
interface, making the study of biomaterials more difficult than that of
drugs, which are one-dimensional compared to the three-dimensional
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biomaterial. The biological responses we are interested in range from
protein adsorption and platelet activation but extend to angiogenesis,
matrix metalloproteinase secretion, immune recognition, and a wide
variety of other biological phenomena. We can make use of the wealth
of information, reagents, and assays that are available on these
phenomena, but it is necessary to adapt them for the complexities of the
interfaces and the differences between drugs and biologically active
materials (Table II).

The differences in Table II are intended as broad generalities and readers
can easily come up with exceptions or questions about what is meant by a
biologically active material. For example, is the action of a drug delivery
device always “local” or is a nanoparticle “large” and a DNA drug
“small.” Thus these characteristics must be interpreted and ringed with
qualifiers to be strictly correct.

TABLE 11

Biologically active materials

Drugs

Large, 3D objects
Immobile
Action is local

Subject to foreign body reaction,
coagulation, complement
activation, etc.

Interact across a cell membrane
although endocytosis may occur

Limited surface area and ligand
density

Action is often nonspecific

Protein adsorption influences cell
response through altered ligand
or receptor presentation or
changes to microenvironment

Metabolism rarely relevant

Effect is chronic

Effect is generally permanent—
pharmacokinetics and
bioavailability are not
normally considered

Can be engineered to be
degradable and eliminated
but many are not

Small, 1D molecules

Diffusible

Action may be systemic, with side-effects
a critical concern

Inflammation rarely a consideration

Act through a cell surface receptor or intracellularly

Even at nanomolar levels, there are many,
many ligands (excess ligands?)

Specificity is key element

No equivalent concept, although cell
microenvironment affects drug action

Metabolized after an effect or to actually
generate the effect

Effect is generally short-lived
(half-life is a critical parameter)

Effect is generally not permanent—pharmacokinetics
and bioavailability are important

Drug elimination is critical element of design
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One of the more troubling characteristics is that of ‘specificity.”
Certainly a material that contains an immobilized growth factor or enzyme,
contains much of the specificity of the immobilized agent. However, here
I am thinking more about the biomaterial that has bioactivity (e.g.,
angiogenesis or osteoconduction), but without the obvious therapeutic
agent within it. Here, the effect appears to be more nonspecific than that
seen with drugs. This has been controversial, especially when presented in
the form that many materials act the same (with occasional and important
exceptions) resulting in questioning the importance of surface chemistry
differences among materials (Sefton ez al., 2001a). The implications of this
with respect to hemocompatibility testing has also been discussed in
reference Sefton er al., (2001b). The absence of substantive differences in
platelet and leukocyte activation among many materials (Sefton et al.,
2001a) suggests that the mechanism of these responses is fundamentally
nonspecific in character.

The host response central to biocompatibility is to a 3D object, the
chemistry of which does not appear to be terribly important. One way of
thinking about this is that the biology does not really care if one changes
the chemistry of a surface from one kind of nonspecific surface to another.
Only when specificity is introduced through some sort of deliberate design
can the biology “appreciate” what is happening. Hence it is little surprising
that biomaterials specialists in 2003 speak of understanding the mechanism
of biological response as much as they may tout a novel biomaterial. There
is an extensive biological literature that we have only started to appreciate
and exploit. The prospects for further basic research in biomaterials is
correspondingly strong.
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I. Introduction

The nature of cell adhesion to substrate materials has a tremendous
effect on cell function and tissue development. Signaling cascades initiated
by cell adhesion have the ability to regulate a variety of events, including
embryogenesis, tissue differentiation, and cell migration (Koenig and
Grainger, 2002; Longhurst and Jennings, 1998). Signaling via receptor—
ligand interactions provides the cell with vital information about its
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