I ELEMENTARY

I ASSEMBLER

| LANGUAGE

I PROGRAMMING

FLOYD E. HAUPT

ELEMENTARY
ASSEMBLER
LANGUAGE
PROGRAMMING

FLOYD E. HAUPT
Brigham Young University

CHARLES E. MERRILL PUBLISHING COMPANY
A BELL AND HOWELL COMPANY
COLUMBUS, OHIO 43216

Copyright © 1972 by Charles E. Merrill Publishing Co., Columbus,
Ohio. All rights reserved. No part of this book may be reproduced

in any form, electronic or mechanical, including photocopy, recording,
or any information storage and retrieval system without permission

in writing from the publisher.

International Standard Book Number: 0-675-09158-6
Library of Congress Catalog Card Number: 75-178676

123456789 10—80 79 78 77 76 75 74 73 72

Printed in the United States of America

ELEMENTARY
ASSEMBLER
LANGUAGE
PROGRAMMING

To my wife Marian,
and my children:

Ruth, Lois, Joyce, Carl, Robert, and Patty

Preface

This book has been written for those who want to understand some of
the basic concepts involved in programming a computer on the machine
and assembly language levels. Some people will find that understanding
such points as the difference between Real and Integer forms of data
will aid or extend their mastery of problem-oriented languages, such as
FORTRAN and BASIC. Others will discover a wonderful new world in
the field of programming, a field for which they have a natural talent.

We are also interested in students who are not science-oriented, but
we do have some prerequisites in mind. The student will receive the
greatest benefit from this book if he has had at least 214 years of high
school mathematics, including trigonometry. Students with a little less
mathematics may do quite well, but the teacher should make appropriate
adjustments in the course.

Although the book concentrates on helping students, the teachers will
find that their problems have not been ignored. The large number of
Exercises and actual computer runs in the text and the associated Work-
book make it possible to create a course as independent of computer
facilities as is desired. Neither computer “downtime” nor lack of a budget
can interfere seriously. The use of an actual computer is strongly recom-
mended, however, and Exercises have been provided for those who have
such facilities.

One good reason for the popularity of such languages as FORTRAN
and BASIC is that, to a large extent, they are machine independent. We
have adopted this advantage in teaching machine and assembly languages

vil

viii Preface

by defining a minimachine and simulating it on the widely available IBM
360. The software package is available from the publisher. Most classes
contain students who grasp the ideas quickly and then seck more ad-
vanced projects. A good assignment for such students would be to have
them write a simulator for your particular machine.

We have chosen a language with 64 instructions and a memory size
of 512 words. The small memory size allows a dump of the entire mem-
ory on a single page. Since the ideal word size seemed to be 18 bits, we
have used an octal representation of machine words. The change to hexa-
decimal is easy once the student understands how other number bases
can help him. We have included some Exercises of a hexadecimal type
to aid in the transition, if it is necessary. However, manufacturers are now
making 9-bit units, which may encourage the use of octal notation.

By stressing the ideas of sets and functions, we have given the teacher
another good way to illustrate the value of the “new math.” And, by
using elementary concepts of linguistics, we have not only introduced the
student to an important new subject but have also made the computer
concepts more understandable.

The textbook bears the name of a single author, but he must admit
that the ideas contained in it are not his alone. A large part of the credit
must be given to Bernard N. Daines, who wrote the simulator, and to
Ronald M. Davis, who had—and pushed—the original idea.

Floyd E. Haupt
Provo, Utah

Chapter 1
1

1.2
Chapter 2

2.1
2.2
2.3
2.4
2.9

Chapter 3

3.1
3.2
3.3
34
3.5
3.6

Chapter 4

4.1
4.2

Contents

The Computer World

Introduction
A Brief History of Computers

Basic Concepts of the Minicomputer

Introduction

The Computer’s Memory Unit
Arithmetic Registers

Input and Output
Programming the Minimachine

Preliminary Mathematics

Introduction

Sets

Relations, Functions, and Mappings
Number Systems

Boolean Algebra

Translation of Axes

Elements of Language

Introduction
The Eight Parts of Speech

X

13
17
19

25
25
28
37
50
55

61
62

25

61

4.2.1
4.2.2
4.2.3
4.24
4.2.5
4.2.6
4.2.7
4.2.8

4.3

Chapter 5

5.1
5.2
5.3
5.4

Chapter 6

6.1
6.2
6.3
6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.5
6.6

Chapter 7

7.1
7.2
7.3
7.4

Chapter 8

8.1
8.2

Contents

Nouns

Pronouns

Verbs

Adjectives

Adverbs

Conjunctions

Prepositions

Interjections

Sentences, Paragraphs, and Larger Units

Machine Language Programming

Introduction .

The Numeric Assembly Program (NAP)
Programming in Octal

Hardware and Software

Assembly Language Programming

Introduction

A One-to-One Assembler

The Direct Assembly Program (DAP)
The Relation Assembly Program (RAP)
The RAP, RIP, and RUP Controls
The BSS Pseudo Op

The INT Pseudo Op

Variable Word Format

The COMMENTS Field

Input and Output

Literals

Fixed and Floating Point Computations

Introduction

Fixed Point Calculations
Floating Point Calculations
Double Precision

Flowcharting

Introduction
Some Basic Principles of Flowcharting

62
62
63
64
64
64
64
65
67

71
72
80
92

97

97
116
119
121
127
129
131
132
133
139

143
143
160
178

183
183

71

97

143

183

8.3
8.3.1
8.4
8.5
8.6
8.7

Chapter 9

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

Chapter 10

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

Chapter 11

11.1
11.2
11.3
11.3.1
11.3.2
11.4

Chapter 12

12.1
12.2

Contents

Subscript Notation
Applications of Subscripting
The Transfer Instructions
Systems of Logic

The Quadratic Equation
Conclusion

Looping

Introduction

Direct Address Modification

Indexing and TXL-Controlled Loops
Nested Loops

Saving an Index Register

Counting Input Data Values

TXH Controlled Loops

Combinations and Variations of Techniques

Subroutines

Introduction

The TSX Instruction

The One-Parameter Subroutine
The Multiple-Parameter Subroutine
The TSL Instruction

Protective Measures

Generalized Input and Output
Macros

Debugging

Introduction

System Debugging Techniques
Programmer Debugging Techniques
Dynamic Register Snapshots
Selective Memory Dumps

Reading a Subroutine into Memory

Indirect Addressing

Introduction
Variable Loop Size by Indirect Addressing

187
189
195
198
201
206

209
209
215
222
224
227
230
234

237
239
243
252
261
266
269
272

273
274
277
277
283
288

295
295

Xi

209

237

273

295

xii

Contents

12.3 An Improved Normal Return for Subroutines
12.4 Multiple Use of Loops

Chapter 13 Alphameric Information

13.1 Introduction

13.2 The BCI Characters

13.3 Alphameric Messages

13.4 Numeric-to-BCI Conversions

13.5 The Sorting of Alphameric Information

Chapter 14 Compilers

14.1 Introduction
14.2 A Simple High-Level Language
14.3 A Minicompiler

Appendices

Appendix A
Appendix B

Appendix C

Appendix D
Appendix E

Appendix F
Appendix G

Appendix H

Appendix 1
Appendix J

Appendix K

Powers of 27"

Octal and Mnemonic Operation
Codes

Instruction Notation and Format
Types

Binary Coded Information (BCI)

Notation for Memory Location and
Field Content Functions

Definitions of Machine Operations

Typical Direct Assembly Program
(DAP) Verbs and Modifiers

Relation Assembly Program
(RAP) Pseudo Operations

Program Control Cards

Coded Assembly Error Messages
for the ERR Field

Input and Output (1/Q) Formats

Answers to Selected Exercises

Index

301
302

307
307
313
316
322

327
328
331

343

345

347
351

353
361

369

371
375

3717
379

307

327

343

381

397

The Computer World

1.1 Introduction

Computers are here to stay, and almost everyone is glad. This is not to
say that modern computers are trouble-free; everyone has heard stories
about futile arguments with computerized credit departments. The ap-
proach in this text, however, will be in a positive vein. Few people would
want to lose the many advantages of modern technology merely to elimi-
nate some difficulties.

1.2 A Brief History of Computers

The first operative computer probably consisted of a fistful of fingers.
This model has been so reliable that it is used even today. While toes
were no doubt of equal importance in the early days, the invention of
shoes has made the toe model obsolescent, if not obsolete. Man has never
managed to overcome this problem of obsolescence. Rather, progress has
magnified the problem to such an extent that a modern computer may
become obsolescent sometime between completion of the design and pro-
duction of an actual piece of hardware.

Some other early computers have survived progress. For example, the
Chinese abacus, which consists of beads on strings in a framework, is
used extensively today in the Orient. Skilled operators have beaten men
trained on desk calculators, and for short problems the abacus can beat

1

2 A Brief History of Computers [1.2]

an electronic computer, because even the fastest computer must rely on
human operators. In some big computer installations the local humorist
may have a glass-enclosed abacus sitting on the main console—with in-
structions to break the glass in an emergency. Obviously, the control of
reliability is another problem man has not yet completely solved in the
electronic age.

Another example of computer survival is the slide rule. The invention
of logarithms by John Napier (1550-1617) made slide rules possible,
because a slide rule is nothing but logarithms on a stick. The portability
of slide rules makes them handy for quick calculations of limited accu-
racy. Engineers will continue to use them in the forseeable future.

But the survival of old style computing devices does not mean that they
can handle all modern needs. Computational requirements during World
War II hastened the design and production of large-scale computers. Al-
though the first ones were primitive by today’s standards, they were re-
garded as marvels. Like early models of the automobile, these early
“large-scale” computers were cantankerous, unreliable, and hard to main-
tain. But they did achieve something that the Mia (M-1A) computer in
the Li’l Abner comic strip sought: they were loved. In fact, they were
used even after newer and better machines were made. (Loyalty is a great
virtue, but it can be overdone!)

The electro-mechanical memory units of the early computers quickly
gave way to improved devices of many types, which in turn have been
replaced. Magnetic cores are in common use today, although other de-
vices, such as thin films, are being introduced.

The art of telling a computer what to do is called programming. This,
too, has been vastly improved during recent decades. Originally, the data
and the program were separate entities. For example, the old IBM 602-A
computer put the data into punched cards, but the program consisted of
making electrical connections by means of wires plugged into a board. It
was not long, however, until the CPC (Card Programmed Calculator)
was introduced. In this device the program and data could be alternated
in successive punched cards. But the CPC was shortlived: improved com-
puters had the ability to store the data and program instructions in ex-
panded electro-magnetic memories. Furthermore, new input and output
devices were developed. Although some modern computers still use
punched card input, others use magnetic tapes, magnetic discs, and mag-
netic inks (see any bank check), as well as other devices. And nobody
knows with certainty what will be popular a few decades from now.

Computers of all eras may be classified as digital or analog devices.
Analog computers use physical measurements of some type. Some of
them are easy and fast to use, while others will tax the user’s skill, but all

[1.2] A Brief History of Computers 3

analog computers are quite limited in accuracy because the measuring
device is some type of scale with physical subdivisions. For instance, a
meterstick has centimeter subdivisions that are easy to see physically, but
smaller subdivisions become increasingly hard—or impossible—to read.
A digital computer, on the other hand, is essentially opposite to an analog
machine. A digital computer’s accuracy is limited only by the designer’s
decision to stop adding significant figures. For instance, a desk calculator
could be designed to have as many digits per register as desired. Since
each digit is represented by a printed numeral of the same size, there is
no problem inherent in reading all of the digits in a number. The minia-
ture computer to be described in this book is of the digital type.

Computers may also be classed as general purpose or as specific pur-
pose machines. The first modern computers tended to be for specific pur-
poses, but the many advantages of a general purpose computer became
so apparent that the use of special purpose devices is now limited to such
things as permanent machine controls. The idea of a general purpose
computer is not new. The early machines had their problems, not because
of faulty mathematical concepts, but because the technology of the day
was incapable of producing a complicated yet workable machine. Charles
Babbage, for example, worked on calculating machines from 1823 to
1842 before abandoning the project. Even the relatively simple electric
desk calculators of today are both new and old: they are new in design
but old in concept.

Exercises

1. Which of the following are analog and which are digital devices?

a. A modern desk calculator b. An abacus
c. Aslide rule d. A gas station pump
e. An automobile odometer f. An automobile speedometer

[8°]

What is the difference between obsolescent and obsolete?

3. Use at least one modern encyclopedia to write a short report on each of
the following items.
The Mark 1 computer
The EDSAC computer
The UNIVAC computer
The binary number system
Memory storage devices
Computer hardware and
software

The ENIAC computer
The BINAC computer
Herman Hollerith

Input and output devices
Computer languages
John von Neumann

g e 0o
T ag

4. Build a simple abacus and learn to calculate with it.

4

5

6.

A Brief History of Computers [1.2]

Learn to multiply and divide with a slide rule. (Hint: Collier's Encyclo-
pedia has a good description of a slide rule.)

a.

How could three ammeters (current measuring devices) and two
rheostats (current variation devices) be connected so as to record
the addition of two numbers? Assume that a constant voltage is
available. (Hint: Kirchoff’s current law says that if no electricity
accumulates at a given point in an electrical circuit, then the sum
of the currents flowing into that point will equal the sum of the
currents flowing out of the point.)

Is this an analog or a digital device?

Basic Concepts of the
Minicomputer

2.1 Introduction

There are two possible approaches to teaching the fundamentals of com-
puting with a small but versatile computer. First, an actual miniature
computer could be built. Second, a large-scale computer could be pro-
grammed so that a portion of it simulates a smaller and simpler, but actu-
ally operable, machine. This second approach has been employed here. A
special program has been written to simulate this minimachine on the
particular computer which the student has available. This assumes, of
course, that one is using a machine for which a simulator has been writ-
ten. Although the examples make use of a fictitious computer, the prin-
ciples are basically the same as those used with a real machine.

Since hands-on experience is such a valuable teaching device, it is im-
portant for the student to obtain actual programming experience as soon
as possible. A basic programming format will be introduced in this chap-
ter and explained more fully in future chapters. In the meantime, elemen-
tary variations of the basic program are possible for the beginner. The
novice should not be alarmed by the relatively little he understands about
the programming language. Ignorance should motivate the study of some
essential preliminary ideas in the next two chapters. Furthermore, even
experienced programmers must follow mathematical or other instructions
that they do not fully understand. A machine is no respecter of persons,
hence success depends on complete and exact obedience to rules. Trou-
bles will soon make apparent the truth of this statement.

5

6 The Computer’s Memory Unit [2.2]

If one does not have computer facilities available, he must depend
entirely on the Workbook which supplements this text. However, the
availability of a computer does not mean that the Workbook should be
abandoned. It will provide time-saving illustrations and drill on basic
ideas.

2.2 The Computer’s Memory Unit

The memory of a computer may be likened to the warchouse of a busi-
ness. It is a storage place for valuable items. Obviously, quick access to a
stored item is very convenient. A businessman must know the location of
items in his warehouse and keep track of how many of each item he has.
He finds a system of inventory control highly desirable. Perhaps he sim-
ply paints two marks down the length of his warehouse floor to define an
aisle and marks off adjacent rectangular areas which he numbers. Thus,
his warehouse floor would look something like Fig. 2.2—1.

Aisle

1 2 3 4 5 6 7 8
Figure 2.2-1

The aisle is kept free of stored items so as to provide easy access to
each storage area. Also, the contents of each rectangle are arranged
neatly so that the items can be counted quickly.

Suppose that Jack, the well-organized businessman, writes a large J on
each case as his trademark. He keeps track of different batches of his
product by storing them on separate rectangles. At a certain time he walks
down the aisle and observes J-labeled boxes in the arrangement of Fig.
2.2-2.

Walking down the aisle is inconvenient—especially if Jack wants a
quick answer to an inventory question—so he decides to build a box with
eight slots and to keep a slip of paper, with the current number of cases
recorded on it, in each slot. Each slot is numbered to correspond to a
storage rectangle. Thus, at the moment, his handy box looks like Fig.
2.2-3.

