APIC Studies in
Data Processing
No. 21

Introductlon

Loglc
Programming

Christopher John Hogger

ACADEMIC PRESS, INC. (Harcourt Brace Jovanovich, Publishers)

Y 8651481

INTRODUCTION
TO LOGIC
PROGRAMMING

Christopher John Hogger

Department of Computing
Imperial College of Science and Technology
London, United Kingdom

E8661481

ACADEMIC PRESS
(Harcourt Brace Jovanovich, Publishers)
London Orlando San Diego New York
Toronto Montreal Sydney Tokyo

COPYRIGHT © 1984, BY ACADEMIC PRESS INC. (LONDON) LTD.
ALL RIGHTS RESERVED.

NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR
TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC
OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY
INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT
PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS INC. (LONDON) LTD.
24-28 Oval Road,
London NW1 7DX

United States Edition published by

ACADEMIC PRESS, INC.
Orlando, Florida 32887

British Library Cataloguing in Publication Data

Hogger, Christopher John

Introduction to logic programming.—(APIC
studies in data processing)

1. Electronic digital computers—Programming
2. Logic, Symbolic and mathematical

I. Title II. Series

001.64°2°015113 QA76.6

Library of Congress Cataloging in Publication Data

Hogger, Christopher John.
Introduction to logic programming.

Bibliography: p.
Includes index.
1. Electronic digital computers—Programming. 2. Logic,
Symbolic and mathematical. 1. Title.
QA76.6.H624 1984 001.64°2 84-14533
ISBN 0-12-352090-8 (alk. paper)
ISBN 0-12-352092-4 (paperback)

PRINTED IN THE UNITED STATES OF AMERICA

84 85 86 87 987654321

INTRODUCTION TO
LOGIC PROGRAMMING

This is volume 21 in A.P.I.C. Studies in Data Processing
General Editors: Fraser Duncan and M. J. R. Shave
A complete list of titles in this series appears at the end of this volume

FOREWORD

This book is a major contribution to logic programming. It sets out for the
first time in one place a comprehensive yet accessible introduction to all
aspects of our subject. It covers a sound middle ground between the practical
introductions to PROLOG by Clocksin and Mellish and by Clark and
McCabe on the one side, and more general treatments of computational
logic like Robinson’s and mine on the other.

It covers two important aspects of logic programming which are to be
found in no other place: derivation of logic programs from logic specifica-
tions and implementation of PROLOG. The first of these is a major contribu-
tion of logic programming to classical problems of software engineering,
in which the author himself has played a significant and pioneering role.
The second is a topic of great theoretical and commercial interest, and many
devotees of PROLOG will be grateful for this accessible account of this
hitherto esoteric subject.

This beautifully written book will be a joy to both novices and experts.
It will help waken the novice to the wider world of logic programming which
lies beyond PROLOG, and it will help stir the logic programming expert to
greater understanding and further enthusiasm for our subject.

Imperial College, London ROBERT KOWALSKI
May 1984

PREFACE

It is widely expected that symbolic logic will serve as the core programming
formalism for the next generation of computer systems. The identification
of this role for logic in Japan’s Fifth Generation Project has stimulated
world-wide interest in logic programming, although even beforehand it was
becoming clear that this fascinating formalism was destined to make sub-
stantial contributions to the theory and practice of computing.

The advancement of logic programming was, until this recent growth of
interest, confined to just a few research centres, with the result that the
existing literature base describing the subject is still rather small. A few
texts are already available based upon specific implementations, and others
are expected shortly: for the most part these books are intended as tutorial
introductions to program writing. In addition, collections of advanced
research papers for computer science specialists have been published in
book form. This leaves a rather large gap between the two extremes of
expository level, and the chief purpose of this book is to close the gap a little.

In the book’s first half, logic programming is introduced at a tutorial
level but supplemented with more background and foundational material
than would normally be expected in a programmer’s guide. The level of
presentation here is consistent with a first-year undergraduate course in
computing science. The second half deals with more advanced aspects of
logic as a computational formalism. It aims to gather together, simplify
and interpret selected themes from a somewhat disunited, and often tech-
nically very difficult, research literature and to survey current developments
in theory and application. It is intended to be of use for explanatory and
reference purposes both to undergraduates taking specialized course options
in logic programming and to researchers comparatively new to the field.

MEANINGS OF PRINCIPAL SYMBOLS

SYMBOL MEANING

, (comma) and

or

not

if

if and only if

if and only if

for all

for some (there exists)

is assigned

logically implies

admits a proof of

not provable

such that

success (by contradiction)
failure

not identical to

vector sum

assert if provable (generate lemma)
belongs to (is a member of)
is a subset of

set union

empty set

TW.”'Lu{E'SI t <

¢

Qcine >@wmD

8661481

CONTENTS

FOREWORD
PREFACE

MEANINGS OF PRINCIPAL SYMBOLS

INTRODUCTION

I. REPRESENTATION AND REASONING

I1.
I.2:
I.3.
L.4.
LS.
I.6.
I.7.
I.8.
I.9.
1.10.
I.11.

I.12.

I.13.
1.14.

Individuals

Relations

Predicates, Connectives and Formulae
Variables

Sentences

Examples of Representation
Interpretation of Sentences
Logical Implication

Logical Inference

General Top-Down Resolution
Problem Solving

Answer Extraction

Summary

Background

IIl. LOGIC PROGRAMS

II.1.
I1.2.
I1.3.
I1.4.

Programs, Computations and Executions

The Procedural Interpretation
The Computation Space
The Standard Control Strategy

35
35
40
45
50

vi CONTENTS

I1.5.
I1.6.
I1.7.

Computational Behaviour
Built-In Facilities
Background

lll. PROGRAMMING STYLE

II1.1.
I11.2.
II1.3.
I11.4.
IIL.5.
I11.6.
II1.7.
II1.8.

IV. DATA

Iv.1.
1v.2.
Iv.3.
1v 4.
IV.s.

Logic and Control

Iteration and Recursion

Top-Down and Bottom-Up Behaviour
Determinism and Non-Determinism
Negation

Parameter Matching

Switches

Background

STRUCTURES

Representation and Access
Structured Term Representations
Assertional Representations
Processing Data in Assertional Form
Background

V. PROGRAM VERIFICATION

V.1.
V.2
V.3.
V4.
V.S,
V.6.
V.7.
V.8.
V..

Computed and Specified Relations
Correctness of Programs: Definitions
Correctness of Programs: Sufficient Criteria
Solvability

Correctness of Algorithms: Definitions
Correctness of Algorithms: Sufficient Criteria
An Example of Verification

Limitations on Verification

Background

VL. FORMAL PROGRAM SYNTHESIS

VIL.1. Program Correctness
VI.2. Synthesis of Logic Programs
VI.3. Synthesis Using Procedure Derivation
VI.4. An Example Using Resolution
VI.5. An Example Using Non-Resolution Inference
VI.6. Background
VII. IMPLEMENTATION

VII.1. Representing the Control State

VIL.2. Representing the Data Assignments

VII.3. Conserving Memory

VII.4. Conserving Processing Time

VIL.S. Background

35
65
68

71

72
75
77
84
91
96
97
99

102

103
106
112
118
129

130
130
134
138
142
143
149
150
156
157

161
161
162
163
165
169
178

181
182
192
202
212
219

CONTENTS vii

VIII. BROADER CONTRIBUTIONS TO COMPUTING 222
VIII.1. Computing Theory 222
VIII.2. Computing Practice 239
VIII.3. Computing Technology 252
REFERENCES 262

INDEX 273

INTRODUCTION

The subject of this book is the use of symbolic logic as a programming
language. At the time of writing, this use of logic has a history of no more
than twelve years, and is still unfamiliar in detail to much of the programming
community. This situation is likely to change rapidly owing to the recent
identification of logic programming as the key formalism for the next
generation of computers.

Logic programming differs fundamentally from conventional pro-
gramming in requiring us to describe the logical structure of problems
rather than making us prescribe how the computer is to go about solving
them. People with no previous computing experience tend to believe that
programming is, and always has been, a naturally logical business, and when
introduced to languages like BASIC are often surprised or even dismayed to
find that this is not really the case. Instead they discover that the traditional
way of writing programs pays much homage to the computer’s internal
mechanisms, which, whilst certainly having a rationale of their own, do not
seem to derive straightforwardly from the original conception of the problem.
Conversely, programmers trained only in the use of conventional languages
can experience comparable problems of adjustment when introduced to
logic programming. Instinctively anxious to control the machine efficiently,
they are subject to a vague sense of deprivation when getting used to a
language possessing no machine-oriented features; they may suffer the
programmer’s equivalent of withdrawal symptoms following a long spell of
addictive devotion to the assignment statement.

These adjustments are not always easy, as I know from my own experi-
ence. Two memories still stand out clearly: first, as a science undergraduate
in an introductory FORTRAN course, being able to accept descriptions of
the effects of individual statements upon the machine but uncertain as to
how they should be knitted together in a manner consistent with the prob-
lem’s logical structure; second, as a teacher of FORTRAN some years later,

2 INTRODUCTION

being shown my first logic programming statement and being unclear as to
how it could contribute to an algorithmic solution of a problem on a machine.
A definite effort is needed to overcome long-term conditioning to one
view of computation.

The first logic programming statement I was ever shown stated “you
are healthy if you eat porridge.”” This sentence of everyday language becomes
a sentence of symbolic logic when arranged in the more structured style

healthy(«) if eat(u, PORRIDGE)

This format exposes all the principal constituents of the language as we shall
use it for programming purposes: individual objects (PORRIDGE), vari-
ables (v) standing for any objects, propositions like healthy(x) and eat(x,
PORRIDGE) about objects, and connectives (if) relating the propositions.
This sentence might form part of an “expert system’’ program offering
advice (in this example, of questionable worth) about personal nutrition.
We can just as easily state something having a more numerical flavour such as

even-number () if divisible(u, 2)

How can logical descriptions of this sort be used to make a computer
solve a problem? Consider an analogy. You wish to undertake a car journey
having decided the origin, destination and possibly other defining features
of the route. Getting the car to traverse this route entails multifarious
decisions, many of them petty and repetitious, about vehicle-handling and
motoring protocols. It is now proposed that the Jjourney be accomplished
without your having to make any of these decisions. How is this possible? By
engaging someone else to do the driving and telling him the requirements
of the route.

The logic programmer’s ‘driver’ is the logic interpreter. This is a program
which knows how to exploit the computer in order to infer the consequences
of any set of logic sentences. The programmer’s responsibility is to ensure
that the given sentences are both correct and sufficiently informative to
make the desired consequences inferrable.

Let’s consider a more concrete example. Imagine that some piece of
equipment exhibits a three-light display monitor; each light is either ON or
OFF. Various ON/OFF combinations on this display periodically determine
whether some switch on the equipment is to be set to ON or O FF by a human
operator. Using logic we can write a collection of simple assertions

Rl : rule(ON, ON, OFF, ON)
R2: rule(OFE ON, ON, OFF)

etc.

INTRODUCTION 3

where each proposition rule(w, x, ¥, z) is read as saying that the switch is
to be set to the state w when the display’s state is x, y, z. Jointly these sen-
tences can be used as a decision table. Suppose we wish to store this table in a
computer so that the operator can interrogate it in order to find out which
state w is the appropriate response to some X, ¥, z displayed on the monitor.
Given a logic interpreter implemented on the computer, the operator need
only ask whether a particular proposition is a consequence of (implied by)
the stored sentences. For example, he can type in the logic query

?rule(w, ON, OFE ON)

which asks which value of w makes rule(w, ON, OFF ON) such a conse-
quence. According to R1 this value is ON and so the interpreter will
autonomously discover this and print out w := ON.

Many other queries are answerable on the same basis (that is, without
altering the stored sentences) by simply posing them to the interpreter.
The query ?rule(OFF, «x, ¥, z) returns all states x, ¥,z of the display
requiring the OFF response. The query ? rule(OFF, ON, ON, OFF)
merely asks for confirmation that OFF is a correct response to the display
ON, ON, OFF; the interpreter just answers “YES” (because of R2). The
query ?rule(w, x,y, z) elicits a printout of the entire decision table. The
query ?rule(wl, x,y,z), rule(w2, X,¥,z),wl # w2 instigates a table-
consistency check by asking whether any displays x, y, z have multiple
occurrences in the table with contradictory responses. If we store in the
machine two further sentences

S1: state(ON)
S2 . state(OFF)

then the query ? state(x), state(y), state(z), ~rule(w, x,y,z) instigates a
table-completeness check by asking whether any displays x, y, z have been
omitted from the table (~ means ‘not’) and, if so, tells us what they are.

In short, every possible query that is logically answerable using the stored
sentences will be answered by the interpreter using logical inference. In
virtually every other programming language each new problem to be solved
using a fixed corpus of knowledge requires the laborious construction of new
code, and the more complicated the derivation of the problem’s solution, the
more complicated that code needs to be. This inflexibility of programs in the
face of changing goals must detract significantly from programming
productivity.

Now it would be wrong to give the false impression that logic frees the
programmer from pragmatic considerations. In realistic applications it is
often necessary in the interests of acceptable execution performance to
structure the input sentences with due regard for the interpreter’s deductive

4 INTRODUCTION

strategy and for the particular query being posed. So the programmer will
normally need to think about the algorithmic quality of what he writes as
well as its descriptive quality. Nonetheless the important point is that the
program statements (i.e., the input logic sentences) will always be logical
descriptions of the problem itself and not of the execution process: the exact
assumptions made about the problem will always be directly apparent from
the program text. Throughout the book much emphasis will be placed upon
this point and the ramifications it has for programming methodology and
the wider issues of software engineering.

Logic programming has been successfully taught to young children
using informal notions of logical implication and inference. Such informality
is extremely useful for enabling naive users to assimilate the basic principles
relatively painlessly. However, a more precise treatment is necessary for a
proper appreciation of the formalism’s historical and theoretical founda-
tions. With this in mind, the first chapter aims to provide a reasonably precise
and self-contained account of logic as a language for problem solving,
explaining sentence structure, implication and inference. The second chapter
has a more computational flavour, dealing mostly with the procedural
interpretation of logic and showing how familiar algorithmic processes are
elicited from programs by the interpreter. Chapters III and IV describe
pragmatic and stylistic considerations in the structuring of programs and
data. This first half of the book is therefore chiefly concerned with how to
understand and construct logic programs.

The second half of the book is written more for the computer scientist
and is consequently more technical. Chapters V and VI discuss the specifi-
cation, verification and synthesis of programs, whilst Chapter VII outlines
the elementary features of typical logic implementations. The last chapter
surveys the main contributions of logic programming to computing gen-
erally: it covers important results in the theory of logic programming,
describes some of the work underway in knowledge-based applications and
explains the role of logic in the forthcoming fifth generation computer
systems.

I REPRESENTATION AND REASONING

A logic program consists of sentences expressing knowledge relevant to the
problem that the program is intended to solve. The formulation of this
knowledge makes use of two basic concepts: the existence of discrete objects,
referred to here as individuals ; and the existence of relations between them.
The individuals considered in the context of a particular problem jointly
constitute the domain of that problem. For example, if the problem is to
solve an algebraic equation, then the domain may consist of —or at least
include—the real numbers.

In order to be represented by a symbolic system such as logic, both
individuals and relations must be given names. Naming is just a preliminary
task in creating symbolic models representing what we know. The main task
is to construct sentences expressing various logical properties of the named
relations. Reasoning about some problem posed on the domain can be
achieved by manipulating these sentences using logical inference. In a
typical logic programming environment the programmer invents the sen-
tences forming his program and the computer then performs the necessary
inference to solve the problem. For this to be accomplished effectively the
programmer must be sufficiently skilled both in representing knowledge and
in understanding how it will be processed on the machine. In this chapter we
introduce the language of first-order logic and show how it serves as a tool for
representation and reasoning, and hence for computational problem solving.

I.1. Individuals

Individuals may be any objects at all. Examples are numbers, geometrical
figures, equations and computer programs. Very often it suffices to give

6 | REPRESENTATION AND REASONING

them simple names like
] 2 ONE TWO CIRCLE EQUATION-1 PROGRAM-2

chosen from some prescribed vocabulary. These names are indivisible (or
unstructured) and are conventionally called constants. Any number of these
may, if desired, simultaneously name a particular individual. So ONE and /
could both name the individual known as the first positive integer. The
choice of names is arbitrary, and so the first positive integer could (perversely)
be named 3 if so desired.

Sometimes it is convenient to give individuals composite (structured)
names like

TWICE(2) PLUS(, 2)

Each of these consists of an n-tuple prefixed by a functor (or function symbol).
An n-tuple is just any ordered collection of n names, so (/, 2) is an example of a
2-tuple. The enclosing parentheses serve only to clarify the start and end
of the n-tuple and can be omitted when convenient. A 2-tuple can be called,
more simply, a pair, whilst a 3-tuple can be called a triplet. Functors like
TWICE and PLUS are also chosen arbitrarily from another prescribed
vocabulary. Each one can only prefix n-tuples for a particular value of n, and
is then said to be an n-place (or n-ary) functor. So in the present context,
TWICE is a I-place (or I-ary or ‘unary’) functor whilst PLUS is a 2-place
(or 2-ary or ‘binary’) functor.

Functors enable the construction of arbitrarily elaborate names like

PLUS(TWICE(2), PLUS(I, TWICE(1)))

This name, which might be given to the seventh positive integer [because it
can be viewed as 2* 2 + (I + 2 * 1) = 7], indicates that individual’s depen-
dence upon two other individuals, respectively named TWICE(2) and
PLUS(1, TWICE(l)). The outermost PLUS essentially names that
dependence.

1.2. Relations

A symbol like TWICE has no intrinsic meaning and so does not, in its own
right, correspond to our intuitive idea of ‘twice’. Fundamentally that idea
refers to a particular set of pairs of numbers which, for simplicity’s sake, we
will restrict here to the natural numbers. One way of capturing the idea is to
choose names /, 2, 3, . . . etc. for the numbers and then collect them into pairs

