ncludes Companion Web Site

The \/ A Developer’s
Toolkit
Techniques and Technologies for Web Programmers

® learn nexi-generation Java techniques

® |nput/output, including graphics and sound

® Java multithreading and networking

® Java interaction with RMI, OLE, ODBC,

and native methods

JOSHUA MARKETOS



The Java™ Developer’s Toolkit

Joshua Marketos

WiLey COMPUTER PUBLISHING

John Wiley & Sons, Inc.

New York * Chichester * Brisbane * Toronto ¢ Singapore * Weinheim



Designations used by companies to distinguish their products are often claimed
as trademarks. In all instances where John Wiley & Sons, Inc., is aware of a
claim, the product names appear in initial capital or ALL CAPITAL LETTERS.
Readers, however, should contact the appropriate companies for more com-
plete information regarding trademarks and registration.

This text is printed on acid-free paper.

Copyright © 1997 by Joshua Marketos
Published by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.

This publication is designed to provide accurate and authoritative information in
regard to the subject matter covered. It is sold with the understanding that the
publisher is not engaged in rendering legal, accounting, or other professional
service. If legal advice or other expert assistance is required, the services of a
competent professional person should be sought.

Reproduction or translation of any part of this work beyond that permitted by
section 107 or 108 of the 1976 United States Copyright Act without the permis-
sion of the copyright owner is unlawful. Requests for permission or further
information should be addressed to the Permissions Department, John Wiley &
Sons, Inc.

Library of Congress Cataloging-in-Publication Data:

Marketos, Joshua.

The Java Developer’s Toolkit : Techniques and Technologies for

Experienced Web Programmers / Joshua Marketos.
p. 400 cm.

Includes index.

ISBN 0-471-16519-0 (pbk. : alk. paper)

1. Java (Computer program language). 2. Computer software-
-Development. 1. Title.
QA76.73J38M35 1997
005.13'3--dc20 96-35812

CIP

Printed in the United States of America
10 9 8 7 6 5 4 3 21



Introduction

Who Should
Read This Book?

This book is for people who would like to know more about the Java lan-
guage. If you have an interest in networking, user interfaces, native methods,
the Virtual Machine, and the like, this is the book for you.

In general, this book is intended for people with some previous computer
experience. If you've ever written a macro in Microsoft Word or Lotus 1-2-3,
you should be able to follow most of the material in this book. If you have
any doubts, try this simple algorithm:

1. Pick a chapter in the book that sounds interesting to you.

2. Start reading.

3. If you can’t understand what you're reading, pick a point halfway
between where you are and the beginning of the book and go back to
step 2.

4. If you end up back at this paragraph, put this book down and find
another.

If you are unfamiliar with object-oriented programming (OOP) concepts,
start with Chapters 2 and 3. These chapters should teach you how to set up
your Java environment and the basics of OOP in short order, and then you
can move on to the specifics of Java language. Then you should be prepared
to tackle the rest of the book.

Some of the other chapters include the following:

Chapter 4: Simple Java Applications and the java.lang Package. This chapter
focuses on the core of the Java class library. These are the classes you'll end
up using on a daily basis.

Chapter 5: Applets. This chapter discusses the specifics of applet program-
ming and introduces graphics and fonts.

Xl



Introduction

Chapter 6: Inside AWT. In this chapter you'll learn about the Abstract Window Toolkit,
Layout Managers (including how to write your own), Components and Containers, events,
and event handling.

Chapter 7: A Tangled Web: Java Multithreading. This chapter covers threads and multi-
threading in Java. Special attention is paid to critical sections and thread synchronization.

Chapter 8: The Java I/O Package. This chapter covers Java I/O and the java.lang.io pack-
age, including general stream and file I/0.

Chapter 9: Java Networking. This chapter shows how to make your programs “networ-
thy” and how to use network connections and Remote Method Invocation. As a bonus, you
will learn how to steal processor cycles from everyone browsing your Web page and use
them to factor large numbers.

Chapter 10: Native Methods. First you will learn how to call Native methods from Java
and pass data to them. Then you’ll learn how to call back from a native method into Java.
Finally, we’ll look at the deep voodoo of the Virtual Machine.

Chapter 11: Internet Capitalism: Shopping Carts and Databases. In this chapter we exam-
ine two commercial applications for Java: virtual shopping and database access



About the Author

Joshua Marketos is a programmer, propagandist, and singer-songwriter from
Providence, Rhode Island. He is currently head of research and development
for SMT. Recent projects have included the Shemp mailreader, the
Shempscape WWW browser, the Shemplt and UnShemplt compression utili-
ties and the Shempcryption encryption standard. When not playing with his
avant-garde rock-n-roll band, Schwa, he can usually be found writing songs
about United Nations black helicopters and attempting to rule the world
from his desktop.

X1l



Acknowledgments

I'd like to take this opportunity to thank all the people who made this book
possible. Brian “Colonel Panic” Jepson convinced me to write this book in the
first place and so shares much of the credit and/or blame. Sean “Dr. Cretog”
O’Neill, my attorney and fellow member of the band Schwa, helped to tem-
per some of my abuses of the English language, doctored ailing code, and
was of great help in the preparation of many of the tables for this book. Scott
“Cool Mafia Nickname” Schoen was the impetus behind the Shempcryption
project and was there with the hardware when the inevitable system failures
occurred. Wayne "Sixty-Four Megabyte” Alvarez helped by lending me his
experimental computer for testing (is that chip still classified?).

The other members of Schwa, namely Motom Boutique, MC Schwa, and
Major Hemisphere, helped out by giving me something to keep my mind off
Java for a while when my brain was in danger of overloading. The members
of SMT also played a big role with their constant nagging and demands for
updates on the status of the book, especially Shawn “I am the Walrus” Wallace
and Bert “Artistic Expression” Crenca (who I am convinced to this day doesn’t
even know what Java is). Last, but by no means least, I must thank the folks
at Wiley for their patience and for putting up with the corrupted and/or
virus-infected files I sent them. It wasn’t intentional. Honest.

Joshua Marketos

Providence, Rhode Island

XV



About The Web Site

You can download the source code for any of the applets/applications in this book
through our World Wide Web site. The URL is www.wiley.com/compbooks. The
Source listings are all contained in one zipped file. This site also contains examples of
some of the applets at work, plus some links to various Java resources on the Web.
Enjoy!

Welcome to the home page! This page looks best when
Aewed with (just kidding). Try out some of the lets from the book or just
Don't forget to check out the cool links!

If you have comments or ¢ 3, email me at 2,

Beta
Q3.u




Contents

Introduction Xi
About the Author Xiii

b
<

Acknowledgments

I. Politics and the Java Language
Zen and the Art of Software Maintenance
Simple
Interpreted, Portable, Architecture Neutral
Object Oriented
Distributed
Robust
High Performance
Dynamic
Secure
Multithreaded
Bjarne Stroustrup Marked for Death
Objectivity
Strings
Fanatical Type Checking
Arrays
Garbage Collection
True and False
Language, Thought, and Reality
What You Should Tell Your Boss

2. Getting Ready to Brew
Setting Up Your System
Testing It Out
Free: The Programmer’s File Editor
Dippy Bird’s Java Documentation
JavaTools

N N Q@ Q0 Q0 Q0 1 Wt N N NN W NN e

—
=]

P
~N QNN R W W



vi

Contents

3.

4.

Teach Yourself Object-Oriented Programming Java in 21 Minutes

The World According to OOP
Objects and Classes
Data Hiding
Inheritance
Polymorphism

Java: The Non-OOP Parts
Comments
Variable Declaration
Array Declarations
Assignment
A Slew of Operators
If Statements
While Loops
Do Loops
For Loops
Breaking Out of Loops
Goto Considered Harmful

Almost All You Need
Primitive Data Types
Classes

Summary

Simple Java Applications and the java.lang Package

Applets and Oranges
A Basic Application Shell
A Package Tour: java.lang
The java.lang.Object Class
The java.lang.Class Class
The java.lang.System Class
The java.lang Runtime Class
Wrap It Up—The Wrapper Classes
Strings and Things
Math Class 101
Putting It All Together: Shemp for Victory!
Basic Data Structures
The Algorithms
Using Shempnums
Uses for Large Numbers

25
25
25
26
27
27
28
28
29
30
30
30
32
33
33
34
34
35
35
35
41
50

51
51
52
53
54
58
60
63
66
68
73
7>
87
87
88
88



5. Applets

Tag, You're It!
The Life Cycle of an Applet
A Simple Applet

Simple Graphics
Paint, Repaint, and Update
Java Animation
An Animator
Applet Audio

Stupid Applet Tricks: Communication and Navigation

A Generic Applet Template

6. Inside AWT

In Through the AWT Door
Components
Container
FlowLayout
GridLayout
CardLayout
GridBagLayout

The Goldilocks Syndrome
Rolling Your Own: FloatLayout
Happenings

A Long, Strange Trip
Why This Trip Matters

Helper Methods

Where to Handle Events

A Mystery Solved

All the Components
Button
Canvas
Checkbox and CheckboxGroup
CheckboxMenultem
Choice
Dialog
File Dialogs
Frames
Label
List

Contents

89

89

920

90

95
103
103
111
115
116
117
121
121
122
122
126
127
128
129
131
131
136
140
141
142
144
144
144
145
145
145
145
145
145
146
146
148
148



Contents

viii

Menu, MenuBar, and Menultem 148
Scrollbar 148
TextComponent, TextArea, and TextField 151
Window 151
Peers 151
java.awt.image 152
Some Examples 154
AWTside, Looking In 155

All the Components 156
7. ATangled Web: Java Multithreading 179
Introducing Threads 179
Launching Threads 180
Extending the java.lang.Thread Class 183
Using Runnable Objects 184
Naming Threads 186
The Meaning of Life 186
The Meaning of Death 187
Getting a Reference to the Current Thread 187
Thread Priority 188
Thread Scheduling 188
Thread Groups 191
Critical Sections 193
Synchronizing with Arbitrary Objects 196
Wait and Notify 197
Stop, Thief! 209
Thread Underhead 210
Thread Overhead 211
When to Thread 213
8. The Java.l/O Package 215
Java 1I/0O 215
Array Streams 217
Piped Streams 218
Filter Streams 220
Buffered Streams 221
Pushback Streams 223
Line Numbered Streams 224
Sequence Input Streams 224

PrintStreams 230



Contents ix

File I/O 231
End-of-Stream Behavior 237
9. Java Networking 241
The Internet Language? 241
Other URL Methods 242
Opening a Socket 244

On the Server Side 245
Norman (The) Mailer Applet 251
Goodson-Todman Key Exchange 254
The Network Is the (Super)Computer 256
The Chattlet Chat System 263
Using UDP 277
Remote Method Invocation 278
ORBs 282
10. Native Methods 283
First Steps 284
Unhand That Object! 289
Making It All Work 289
Other Data Types 289
Strings 290
Native Callbacks 290
Static Methods 295
When Things Go Wrong 296
When Things Go Wrong, Part 11 296
Synchronized Native Methods 297
The Virtual Machine 297
Basic Architecture 297
The Class File Format 298
The Instruction Set 302
How to Read These Tables 302
Programming: The Bare Plastic 325
I1. Internet Capitalism: Shopping Carts and Databases 327
Virtual Materialism 327
Shopping Carts 327
Basic Strategy 328
Databases 343
JDBC 344
The DriverManager 344

Just What You Need 346



X

Contents

12. The Future

Visionaries

The Java World

The Reality
Componentware
The Microsoft Solution
Java Beans

A False Dichotomy

Secure Commercial Transactions
Java Server API
Multimedia
Security
Embedded Systems
Just in Time
Java Chips
Virtual Reality

The Road Ahead

Index

359
359
360
361
361
361
362
363
363
364
364
364
364
365
365
365
366



Politics and
the Java Language

Zen and the Art of
Software Maintenance

Java had its start in 1991 when James Gosling and a team of Sun engineers
were developing software and operating systems for consumer electronics.
They started out using C++, but found it lacking in several critical respects.
The Sun team decided to take a leap of faith and create a new language from
scratch to support the features they needed. At this point there was no
thought of Web pages or applets or taking over the world from their desk-
tops—ijust a desire to get the job at hand done in the best possible way. From
this primordial, nutrient-rich ooze sprang Java, and in the few years since,
Java’s growth has been nothing short of phenomenal, though, ironically, the
consumer electronics market is one of the few areas where Java has not yet
caught on.

A recent search of the World Wide Web and Usenet using the Altavista
search engine revealed 1,574,406 occurrences of the word Java. Still, peer
pressure alone is no reason to switch from what you are using now. After all,
if all your friends started using Pascal, would you do it too? When I'm asked
for one good reason programmers should use Java, I respond, “For the Zen-
like feeling of inner calm.” Sun describes Java as a “simple, object-oriented,



2 The Java Developer’s Toolkit

distributed, interpreted, robust, secure, architecture-neutral, portable, high-performance,
multithreaded, and dynamic language,” and I can’t think of a better description of the sound

of one hand clapping.

Simple

The basic philosophy the Java team used when designing the language is KISS. As you may
know, KISS stands for “Knights In Satan’s Service,” and it indicates their commitment to the
worship of Our Dark Lord and all his minions. Just kidding! KISS stands for “keep it simple,
stupid.” Some indication of this dedication to simplicity is the quote from Antoine de Saint-
Exupery included in the Java White Paper: “You know you've achieved perfection in design,
not when you have nothing more to add, but when you have nothing more to take away.”

Because of this approach to design, Java is very easy to learn. One must realize that much
of the initial difficulty in learning object-oriented languages is actually caused by the basic
concepts of object-oriented programming, not the basic syntax of the language itself. There-
fore C++ programmers should be able to learn the Java language in short order, and Java
programmers shouldn’t have too much trouble picking up C++. In fact, Java may be the
ideal off ramp for those wishing to learn C++, and there isn’t much excuse for not learning
both. However, a sudden shift from one environment to the other should be undertaken
with caution—though Java has much in common with C++, it /ooks more like C++ than it
actually 7s.

Interpreted, Portable, Architecture Neutral

Three more adjectives that describe Java—interpreted, portable, and architecture neutral—
boil down to the same thing. Instead of compiling to the native instruction set of any given
computer, Java compiles to a set of bytecodes that are meant to be interpreted by a virtual
machine. This method has two advantages. The more obvious advantage is the fact that your
“compiled” Java programs will run on any platform which has an implementation of the
Virtual Machine. The second, not-so-obvious, advantage of this scheme is that productivity is
increased over that of the traditional “edit-compile-link-load-test-crash-debug” cycle. The
bytecode is type-checked and everything-else-checked at compile time, something which is
impossible with a true compiled language.

Object Oriented

Java is not a pure object-oriented language. The basic (known as primitive, which isn’t
exactly politically correct) data types are not objects, and that fact has kept away some of
the OO purists. One of the favorite pastimes of many language proponents is playing the



Politics and the Java Language

more-object-oriented-than-thou game. Who cares? I believe it was cybernetics pioneer

E Gump who said “Object is as Object does.” or was it “Life is like a box of Objects.” The
most important thing is not how fully “object oriented” a language is, but how well the
object-oriented features in it work to your advantage. Java seems to be a winner in this case.

Distributed

Java has the ability to treat objects located across the network as if they were local. Using a
standard called RMI (remote method invocation), you can make a method call to an object
in Outer Mongolia (almost) as easily as you can to one in the box sitting on your desk. Also,
classes may be loaded from a remote machine as necessary.

Robust

I can tell you that Java is robust, but there is no guarantee you'll believe me. Java does
extensive checking at both compile time and run time to eliminate type mismatches and
other potential problems. Most of the features that could get a program into trouble (e.g.,
pointers!) have been locked away out of reach, and the global memory heap is automati-
cally garbage collected to eliminate memory leaks.

High Performance

High performance is obviously a relative term, but for an interpreted language Java is rela-
tively fast. For an architecture-neutral interpreted language that also keeps you from shoot-
ing yourself in the foot, it’s astoundingly fast. Benchmarks time in at about 1/10 the speed
of compiled C. As long as you're not using your code for Patriot missile guidance systems—
oh, I forgot, those didn’t work—and are writing the most common kinds of applications,
those that are interactive or do a lot of I/O or network operations, the difference in speed is
not very important. And it’s faster than Perl.

Dynamic

No, we’re not talking about the personality of the language, but rather about the fact that
Java is dynamically linked. New classes are loaded only when needed, and that class loading
can take place across the network, if necessary. Throw out your old, outdated linkers!

Secure

In these uncertain times, we all need to feel a sense of security, and a malicious attack on
one’s desktop can send one falling into a nihilistic downward spiral. Therefore, it’s no
surprise that security in network environments is one of Java’s most seductive attributes.
Much of this cyberdomestic tranquillity comes from some of the features already
mentioned, such as the fact that Java has no pointers (hallelujah!), as well as the lack of



