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Introduction

Who Should
Read This Book?

This book is for people who would like to know more about the Java lan-
guage. If you have an interest in networking, user interfaces, native methods,
the Virtual Machine, and the like, this is the book for you.

In general, this book is intended for people with some previous computer
experience. If you've ever written a macro in Microsoft Word or Lotus 1-2-3,
you should be able to follow most of the material in this book. If you have
any doubts, try this simple algorithm:

1. Pick a chapter in the book that sounds interesting to you.

2. Start reading.

3. If you can’t understand what you're reading, pick a point halfway
between where you are and the beginning of the book and go back to
step 2.

4. If you end up back at this paragraph, put this book down and find
another.

If you are unfamiliar with object-oriented programming (OOP) concepts,
start with Chapters 2 and 3. These chapters should teach you how to set up
your Java environment and the basics of OOP in short order, and then you
can move on to the specifics of Java language. Then you should be prepared
to tackle the rest of the book.

Some of the other chapters include the following:

Chapter 4: Simple Java Applications and the java.lang Package. This chapter
focuses on the core of the Java class library. These are the classes you'll end
up using on a daily basis.

Chapter 5: Applets. This chapter discusses the specifics of applet program-
ming and introduces graphics and fonts.
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Introduction

Chapter 6: Inside AWT. In this chapter you'll learn about the Abstract Window Toolkit,
Layout Managers (including how to write your own), Components and Containers, events,
and event handling.

Chapter 7: A Tangled Web: Java Multithreading. This chapter covers threads and multi-
threading in Java. Special attention is paid to critical sections and thread synchronization.

Chapter 8: The Java I/O Package. This chapter covers Java I/O and the java.lang.io pack-
age, including general stream and file I/0.

Chapter 9: Java Networking. This chapter shows how to make your programs “networ-
thy” and how to use network connections and Remote Method Invocation. As a bonus, you
will learn how to steal processor cycles from everyone browsing your Web page and use
them to factor large numbers.

Chapter 10: Native Methods. First you will learn how to call Native methods from Java
and pass data to them. Then you’ll learn how to call back from a native method into Java.
Finally, we’ll look at the deep voodoo of the Virtual Machine.

Chapter 11: Internet Capitalism: Shopping Carts and Databases. In this chapter we exam-
ine two commercial applications for Java: virtual shopping and database access
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About The Web Site

You can download the source code for any of the applets/applications in this book
through our World Wide Web site. The URL is www.wiley.com/compbooks. The
Source listings are all contained in one zipped file. This site also contains examples of
some of the applets at work, plus some links to various Java resources on the Web.
Enjoy!

Welcome to the home page! This page looks best when
Aewed with (just kidding). Try out some of the lets from the book or just
Don't forget to check out the cool links!

If you have comments or ¢ 3, email me at 2,
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Politics and
the Java Language

Zen and the Art of
Software Maintenance

Java had its start in 1991 when James Gosling and a team of Sun engineers
were developing software and operating systems for consumer electronics.
They started out using C++, but found it lacking in several critical respects.
The Sun team decided to take a leap of faith and create a new language from
scratch to support the features they needed. At this point there was no
thought of Web pages or applets or taking over the world from their desk-
tops—ijust a desire to get the job at hand done in the best possible way. From
this primordial, nutrient-rich ooze sprang Java, and in the few years since,
Java’s growth has been nothing short of phenomenal, though, ironically, the
consumer electronics market is one of the few areas where Java has not yet
caught on.

A recent search of the World Wide Web and Usenet using the Altavista
search engine revealed 1,574,406 occurrences of the word Java. Still, peer
pressure alone is no reason to switch from what you are using now. After all,
if all your friends started using Pascal, would you do it too? When I'm asked
for one good reason programmers should use Java, I respond, “For the Zen-
like feeling of inner calm.” Sun describes Java as a “simple, object-oriented,
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distributed, interpreted, robust, secure, architecture-neutral, portable, high-performance,
multithreaded, and dynamic language,” and I can’t think of a better description of the sound

of one hand clapping.

Simple

The basic philosophy the Java team used when designing the language is KISS. As you may
know, KISS stands for “Knights In Satan’s Service,” and it indicates their commitment to the
worship of Our Dark Lord and all his minions. Just kidding! KISS stands for “keep it simple,
stupid.” Some indication of this dedication to simplicity is the quote from Antoine de Saint-
Exupery included in the Java White Paper: “You know you've achieved perfection in design,
not when you have nothing more to add, but when you have nothing more to take away.”

Because of this approach to design, Java is very easy to learn. One must realize that much
of the initial difficulty in learning object-oriented languages is actually caused by the basic
concepts of object-oriented programming, not the basic syntax of the language itself. There-
fore C++ programmers should be able to learn the Java language in short order, and Java
programmers shouldn’t have too much trouble picking up C++. In fact, Java may be the
ideal off ramp for those wishing to learn C++, and there isn’t much excuse for not learning
both. However, a sudden shift from one environment to the other should be undertaken
with caution—though Java has much in common with C++, it /ooks more like C++ than it
actually 7s.

Interpreted, Portable, Architecture Neutral

Three more adjectives that describe Java—interpreted, portable, and architecture neutral—
boil down to the same thing. Instead of compiling to the native instruction set of any given
computer, Java compiles to a set of bytecodes that are meant to be interpreted by a virtual
machine. This method has two advantages. The more obvious advantage is the fact that your
“compiled” Java programs will run on any platform which has an implementation of the
Virtual Machine. The second, not-so-obvious, advantage of this scheme is that productivity is
increased over that of the traditional “edit-compile-link-load-test-crash-debug” cycle. The
bytecode is type-checked and everything-else-checked at compile time, something which is
impossible with a true compiled language.

Object Oriented

Java is not a pure object-oriented language. The basic (known as primitive, which isn’t
exactly politically correct) data types are not objects, and that fact has kept away some of
the OO purists. One of the favorite pastimes of many language proponents is playing the
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more-object-oriented-than-thou game. Who cares? I believe it was cybernetics pioneer

E Gump who said “Object is as Object does.” or was it “Life is like a box of Objects.” The
most important thing is not how fully “object oriented” a language is, but how well the
object-oriented features in it work to your advantage. Java seems to be a winner in this case.

Distributed

Java has the ability to treat objects located across the network as if they were local. Using a
standard called RMI (remote method invocation), you can make a method call to an object
in Outer Mongolia (almost) as easily as you can to one in the box sitting on your desk. Also,
classes may be loaded from a remote machine as necessary.

Robust

I can tell you that Java is robust, but there is no guarantee you'll believe me. Java does
extensive checking at both compile time and run time to eliminate type mismatches and
other potential problems. Most of the features that could get a program into trouble (e.g.,
pointers!) have been locked away out of reach, and the global memory heap is automati-
cally garbage collected to eliminate memory leaks.

High Performance

High performance is obviously a relative term, but for an interpreted language Java is rela-
tively fast. For an architecture-neutral interpreted language that also keeps you from shoot-
ing yourself in the foot, it’s astoundingly fast. Benchmarks time in at about 1/10 the speed
of compiled C. As long as you're not using your code for Patriot missile guidance systems—
oh, I forgot, those didn’t work—and are writing the most common kinds of applications,
those that are interactive or do a lot of I/O or network operations, the difference in speed is
not very important. And it’s faster than Perl.

Dynamic

No, we’re not talking about the personality of the language, but rather about the fact that
Java is dynamically linked. New classes are loaded only when needed, and that class loading
can take place across the network, if necessary. Throw out your old, outdated linkers!

Secure

In these uncertain times, we all need to feel a sense of security, and a malicious attack on
one’s desktop can send one falling into a nihilistic downward spiral. Therefore, it’s no
surprise that security in network environments is one of Java’s most seductive attributes.
Much of this cyberdomestic tranquillity comes from some of the features already
mentioned, such as the fact that Java has no pointers (hallelujah!), as well as the lack of



