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Preface

This book contains a thorough study of symmetric algebras, covering topics
such as block theory, representation theory and Clifford theory. It can also
serve as an introduction to the Hecke algebras of complex reflection groups.
Its aim is the study of the blocks and the determination of the families of
characters of the cyclotomic Hecke algebras associated to complex reflection
groups.
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Springer Lecture Notes were, after all, his idea. I am grateful to Jean Michel
for his help with the implementation and presentation of the programming
part. I would like to thank Gunter Malle for his suggestion that I generalize
my results on Hecke algebras, which led to the notion of “essential algebras”.
I also express my thanks to Cédric Bonnafé, Meinolf Geck, Nicolas Jacon,
Raphaél Rouquier and Jacques Thévenaz for their useful comments. Finally,
I thank Thanos Tsouanas for copy-editing this manuscript.



Introduction

The finite groups of matrices with coefficients in QQ generated by reflections,
known as Weyl groups, are a fundamental building block in the classification
of semisimple complex Lie algebras and Lie groups, as well as semisimple
algebraic groups over arbitrary algebraically closed fields. They are also a
foundation for many other significant mathematical theories, including braid
groups and Hecke algebras.

The Weyl groups are particular cases of complex reflection groups, finite
groups of matrices with coefficients in a finite abelian extension of Q gen-
erated by “pseudo-reflections” (elements whose vector space of fixed points
is a hyperplane) — if the coefficients belong to R, then these are the finite
Coxeter groups.

The work of Lusztig on the irreducible characters of reductive groups over
finite fields (cf. [45]) has demonstrated the important role of the “families
of characters” of the Weyl groups concerned. However, only recently was it
realized that it would be of great interest to generalize the notion of fami-
lies of characters to the complex reflection groups, or more precisely to the
cyclotomic Hecke algebras associated to complex reflection groups.

On the one hand, the complex reflection groups and their associated cyclo-
tomic Hecke algebras appear naturally in the classification of the “cyclotomic
Harish-Chandra series” of the characters of the finite reductive groups, gen-
eralizing the role of the Weyl group and its traditional Hecke algebra in the
principal series (cf. [19,20]). Since the families of characters of the Weyl group
play an essential role in the definition of the families of unipotent characters
of the corresponding finite reductive group, we can hope that the families of
characters of the cyclotomic Hecke algebras play a key role in the organization
of families of unipotent characters more generally.

On the other hand, for some complex reflection groups (non-Coxeter) W,
some data have been gathered which seem to indicate that behind the group
W, there exists another mysterious object — the Spets (cf. [21,52]) — that
could play the role of the “series of finite reductive groups with Weyl group
W?”. In some cases, one can define the unipotent characters of the Spets,
which are controlled by the “spetsial’ Hecke algebra of W, a generalization
of the classical Hecke algebra of the Weyl groups.

vii



viii Introduction

The main obstacle for this generalization is the lack of Kazhdan-Lusztig
bases for the non-Coxeter complex reflection groups. However, more recent
results of Gyoja [41] and Rouquier [58] have made possible the definition of
a substitute for families of characters which can be applied to all complex
reflection groups. Gyoja has shown (case by case) that the partition into
“p-blocks™ of the Iwahori-Hecke algebra of a Weyl group W coincides with
the partition into families, when p is the unique bad prime number for .
Later, Rouquier proved that the families of characters of a Weyl group W
are exactly the blocks of characters of the Iwahori-Hecke algebra of 11" over
a suitable coefficient ring, the “Rouquier ring”.

Broué. Malle and Rouquier (cf. [22]) have shown that we can define the
generic Hecke algebra H(11") associated to a complex reflection group W
as a quotient of the group algebra of the braid group of W. The algebra
‘H(W) is an algebra over a Laurent polynomial ring in a set of indeterminates
v = (vi)o<i<m Whose cardinality m depends on the group W. A cyclotomic
Hecke algebra is an algebra obtained from H(W') via a specialization of the
form v; — y™, where y is an indeterminate and n; € Z for all 7 = 0,1,....m.
The blocks of a cyclotomic Hecke algebra over the Rouquier ring are the
Rouquier blocks of the cyclotomic Hecke algebra. Thus, the Rouquier blocks
generalize the notion of the families of characters to all complex reflection
groups.

In (18], Broué and Kim presented an algorithm for the determination of the
Rouquier blocks of the cyclotomic Hecke algebras of the groups G(d, 1,7) and
G(e,e,r). Later, Kim (cf. [42]) generalized this algorithm to include all the
groups of the infinite series G(de, e, ). However, it was realized recently that
their algorithm does not work in general, unless d is a power of a prime num-
ber. Moreover, the Rouquier blocks of the spetsial cyclotomic Hecke algebra
of many exceptional irreducible complex reflection groups have been calcu-
lated by Malle and Rouquier in [53]. In this book, we correct and complete
the determination of the Rouquier blocks for all cyclotomic Hecke algebras
and all complex reflection groups.

The key in our study of the Rouquier blocks has been the proof of the
fact that they have the property of “semi-continuity”™ (the name is due to
C. Bonnafé). Every complex reflection group W determines some numeri-
cal data, which in turn determine the “essential” hyperplanes for 11". To
each essential hyperplane H, we can associate a partition B(H) of the set
of irreducible characters of W into blocks. Given a cyclotomic specialization
v; — y™, the Rouquier blocks of the corresponding cyclotomic Hecke alge-
bra depend only on which essential hyperplanes the integers n; belong to. In
particular, they are unions of the blocks associated with the essential hyper-
planes to which the integers n; belong, and they are minimal with respect to
that property.

The property of semi-continuity also appears in works on Kazhdan-Lusztig
cells (cf. [9,10,40]) and on Cherednik algebras (cf. [38]). The common appear-
ance of this as yet unexplained phenomenon implies a connection between
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these structures and the Rouquier blocks. for which the reason is not yet
apparent, but promises to be fruitful when explored thoroughly. In particu-
lar, due to the known relation between Kazhdan-Lusztig cells and families of
characters for Coxeter groups, this could be an indication of the existence of
Kazhdan-Lusztig bases for the (non-Coxeter) complex reflection groups.

Another indication of this fact comes from the determination of the
Rouquier blocks of the cyclotomic Hecke algebras of all complex reflection
groups, obtained in the last chapter of this book with the use of the theory
of “essential hyperplanes”. In the case of the Weyl groups and their usual
Hecke algebra, Lusztig attaches to every irreducible character two integers,
denoted by a and A, and shows (cf. [46]. 3.3 and 3.4) that they are constant
on the families. In an analogous way. we can define integers a and A attached
to every irreducible character of a cyclotomic Hecke algebra of a complex
reflection group. Using the classification of the Rouquier blocks, it has been
proved that the integers a and A are constant on the “families of characters”
of the cyclotomic Hecke algebras of all complex reflection groups (sce end of
Chapter 4).

The first chapter of this book is dedicated to commutative algebra. The
need for the results presented in this chapter (some of them are well-known.
but others are completely new) arises form the fact that when we are working
on Hecke algebras of complex reflection groups, we work over integrally closed
rings, which are not necessarily unique factorization domains.

In the second chapter, we present some classical results of block theory
and representation theory of symmetric algebras. We see that the Schur ele-
ments associated to the irreducible characters of a symmetric algebra play a
crucial role in the determination of its blocks. Moreover, we generalize the re-
sults known as “Clifford theory”™ (cf., for example, [29]), which determine the
blocks of certain subalgebras of symmetric algebras, to the case of “twisted
symmetric algebras of finite groups™. Finally, we give a new criterion for a
symmetric algebra to be split semisimple.

In the third chapter, we introduce the notion of “essential algebras™. These
are symmetric algebras whose Schur elements have a specific form: they are
products of irreducible polynomials evaluated on monomials. We obtain many
results on the block theory of these algebras, which we later apply to the
Hecke algebras, after we prove that they are essential in Chapter 4. In par-
ticular, we have our first encounter with the phenomenon of semi-continuity
(see Theorem 3.3.2).

It is in the fourth chapter that we define for the first time the braid group.
the generic Hecke algebra and the cyclotomic Hecke algebras associated to a
complex reflection group. We show that the generic Hecke algebra of a com-
plex reflection group is essential, by proving that its Schur elements are of the
required form. Applying the results of Chapter 3, we obtain that the Rouquier
blocks (i.e., the families of characters) of the cyclotomic Hecke algebras have
the property of semi-continuity and only depend on some “essential” hyper-
planes for the group, which are determined by the generic Hecke algebra.
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In the fifth and final chapter of this book, we present the algorithms and
the results of the determination of the families of characters for all irreducible
complex reflection groups. The use of Clifford theory is essential, since it
allows us to restrict ourselves to the study of only certain cases of complex
reflection groups. The computations were made with the use of the GAP
package CHEVIE (cf. [37]) for the exceptional irreducible complex reflection
groups, whereas combinatorial methods were applied to the groups of the
infinite series. In particular, we show that the families of characters for the
latter can be obtained from the families of characters of the Weyl groups of
type B, already determined by Lusztig.
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Chapter 1
On Commutative Algebra

The first chapter contains some known facts and some novel results on Com-
mutative Algebra which are crucial for the proofs of the results of Chapters 3
and 4. The former are presented here without their proofs (with the exception
of Theorem 1.4.1) for the convenience of the reader.

In the first section of this chapter, we define the localization of a ring
and give some main properties. The second section is dedicated to integrally
closed rings. We study particular cases of integrally closed rings, such as val-
uation rings, discrete valuation rings and Krull rings. We use their properties
in order to obtain results on Laurent polynomial rings over integrally closed
rings. We state briefly some results on completions of rings in Section 1.3.
In the fourth section, we introduce the notion of morphisms associated with
monomzials. They are morphisms which allow us to pass from a Laurent poly-
nomial ring A in m + 1 indeterminates to a Laurent polynomial ring B in m
indeterminates, while mapping a specific monomial to 1. Moreover, we prove
(Proposition 1.4.9) that every surjective morphism from A to B which maps
each indeterminate to a monomial is associated with a monomial. We call
adapted morphisms the compositions of morphisms associated with mono-
mials. They play a key role in the proof of the main results of Chapters 3
and 4. Finally, in the last section of the first chapter, we give a criterion
(Theorem 1.5.6) for a polynomial to be irreducible in a Laurent polynomial
ring with coefficients in a field.

Throughout this chapter, all rings arc assumed to be commutative with 1.
Moreover, if R is a ring and xg,x,...,1,, is a set of indeterminates on R,

then we denote by R[;zrffl , :1:1i ' ..., ! the Laurent polynomial ring in m + 1
indeterminates R[xq,xo~ ', xy,.007 L | |

1.1 Localizations

Definition 1.1.1. Let R be a commutative ring with 1. We say that a subset
S of R is a multiplicatively closed set if 0 ¢ S, 1 € S and every finite product
of elements of S belongs to S.

M. Chlouveraki. Blocks and Families for C'yclotomic Hecke Algebras, 1
Lecture Notes in Mathematics 1981, DOI 10.1007/978-3-642-03064-2_1.
© Springer-Verlag Berlin Heidelberg 2009



2 1 On Commutative Algebra

In the set R x S, we introduce an equivalence relation such that (r,s) is
equivalent to (7', s") if and only if there exists t € S such that t(s'r —sr’) = 0.
We denote the equivalence class of (r, s) by r/s. The set of equivalence classes
becomes a ring under the operations such that the sum and the product of
r/s and r'/s" are given by (s'r + sr')/ss’ and rr’/ss’ respectively. We denote
this ring by S7'R and we call it the localization of R at S. If S contains no
zero divisors of R, then any element r of R can be identified with the element
r/1 of ST'R and we can regard the latter as an R-algebra.

Remarks.

e If S is the set of all non-zero divisors of R, then S™'R is called the total
quotient ring of R. If, moreover, R is an integral domain, the total quotient
ring of R s the field of fractions of R.

o If R is Noetherian, then S™'R is Noetherian.

o Ifp is a prime ideal of R, then the set S := R — p is a multiplicatively
closed subset of R and the ring S™'R is simply denoted by R,.

The proofs for the following well known results concerning localizations
can be found in [11].

Proposition 1.1.2. Let A and B be two rings with multiplicative sets S
and T respectively and f an homomorphism from A to B such that f(S) is
contained in T. Then there exists a unique homomorphism f’ from S™'A to
T~'B such that f'(a/1) = f(a)/1 for every a € A. Let us suppose now that
T is contained in the multiplicatively closed set of B generated by f(S). If
f 1is surjective (respectively injective), then f’ is also surjective (respectively
injective).

Corollary 1.1.3. Let A and B be two rings with multiplicative sets S and
T respectively such that AC B and S CT. Then ST'AC T 'B.

Proposition 1.1.4. Let A be a ring and S,T two multiplicative sets of A
such that S C T. We have S™'A = T~ ' A if and only if every prime ideal of
R that meets T also meets S.

The following proposition and its corollary give us information about the
ideals of the localization of a ring R at a multiplicatively closed subset S
of R.

Proposition 1.1.5. Let R be a ring and let S be a multiplicatively closed
subset of R. Then

(1) Every ideal b’ of S™'R is of the form S~'b for some ideal b of R.

(2) Let b be an ideal of R and let f be the canonical surjection R — R/b.
Then f(S) is a multiplicatively closed subset of R/b and the homomor-
phism from S™'R to (f(S))~'(R/b) canonically associated with f is
surjective with kernel b’ = S~'b. By passing to quotients, an isomor-
phism between (ST'R)/b’ and (f(S))~'(R/b) is defined.
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(3) The application b’ — b, restricted to the set of mazximal (respectively
prime) ideals of ST'R, is an isomorphism (for the relation of inclusion)
between this set and the set of mazximal (respectively prime) ideals of R
that do not meet S.

(4) If ' is a prime ideal of ST'R and q is the prime ideal of R such that
q = S~ !q (we have qN'S = (), then there exists an isomorphism from
Ry to (S™'R)y which maps /s to (r/1)/(s/1) forr € R, s€ R —q.

Corollary 1.1.6. Let R be a ring, p a prime ideal of R and S := R — p.
For every ideal b of R which does not meet S, let b’ := bR,. Assume that
b’ # R,. Then

(1) Let f be the canonical surjection R — R/b. The ring homomorphism
from R, to (R/b),/s canonically associated with f is surjective and its
kernel is b’. Thus it defines, by passing to quotients, a canonical isomor-
phism between R, /b’ and (R/b),/p.

(2) The application b’ +— b, restricted to the set of prime ideals of R,, is an
isomorphism (for the relation of inclusion) between this set and the set
of prime ideals of R contained in p. Therefore, pR,, is the only mazimal
tdeal of Ry.

(3) If now b’ is a prime ideal of Ry, then there exists an isomorphism from
Ry to (Rp)y which maps r/s to (r/1)/(s/1) forr € R, s € R —b.

The notion of localization can also be extended to the modules over the
ring R.

Definition 1.1.7. Let R be a ring and S a multiplicatively closed set of R. If
M is an R-module, then we call localization of M at S and denote by S~!M
the S~'R-module M ®r S™'R.

1.2 Integrally Closed Rings

Theorem-Definition $.2.1 Let R be a ring, A an R-algebra and a an ele-
ment of A. The following properties are equivalent:

(i) The element a is a root of a monic polynomial with coefficients in R.
(ii) The subalgebra Rla] of A is an R-module of finite type.
(i1i) There exists a faithful R[a]-module which is an R-module of finite type.

If a € A verifies the conditions above, we say that it is integral over R.

Definition 1.2.2. Let R be a ring and A an R-algebra. The set of all ele-
ments of A that are integral over R is an R-subalgebra of A containing R;
it is called the integral closure of R in A. We say that R is integrally closed
in A, if R is an integral domain and coincides with its integral closure in
A. If now R is an integral domain and F is its field of fractions, then the
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integral closure of R in F' is named simply the integral closure of R, and if
R is integrally closed in F, then R is said to be integrally closed.

The following proposition ([12], §1, Proposition 13) implies that the trans-
fer theorem holds for integrally closed rings (Corollary 1.2.4).

Proposition 1.2.3. If R is an integral domain, let us denote by R the in-
tegral closure of R. Let wo, ...,y be a set of indeterminates over R. Then
the integral closure of R[xg, ...,y is Rlxe,... T

Corollary 1.2.4. Let R be an integral domain. Then R[xg.,....x,] is inte-
grally closed if and only if R is integrally closed.

Corollary 1.2.5. If K is a field, then every polynomial ring K|z, ....rm]
is integrally closed.

The next proposition ([12], §1, Proposition 16) along with its corollaries
treats the integral closures of localizations of rings.

Proposition 1.2.6. Let R be a ring, A an R-algebra, R the integral closure
of R in A and S a multiplicatively closed subset of R which contains no zero
divisors. Then the integral closure of ST'R in S™'A is S™'R.

Corollary 1.2.7. Let R be an integral domain. R the integral closure of R
and S a multiplicatively closed subset of R. Then the integral closure of S™'R
is ST'R.

Corollary 1.2.8. If R is an integrally closed domain and S is a multiplica-
tively closed subset of R, then S™'R is also integrally closed.

Ezxample 1.2.9. Let K be a finite field extension of Q and Zj the integral clo-

sure of Z in K. Obviously, the ring Zy is integrally closed. Let xg.r...... '
be indeterminates. Then the ring Zg [xE', 3t ... 2E!] is also integrally
closed.

1.2.1 Lifting Prime Ideals

Definition 1.2.10. Let R, R’ be two rings and let h : R — R’ be a ring
homomorphism. We say that a prime ideal a’ of R’ lies over a prime ideal a
of R, if a = h™!(a’).

The next result is [12], §2, Proposition 2.

Proposition 1.2.11. Let h: R — R’ be a ring homomorphism such that R’
is integral over R. Let p be a prime ideal of R, S := R —p and (p})ics the
family of all the prime ideals of R lying over p. If 8" = (,c,(R" — p}). then
SR =S'"'R.
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The following corollary of Proposition 1.2.11 deals with a case we will
encounter in a following chapter, where there exists a unique prime ideal
lying over the prime ideal p of R. In combination with Proposition 1.2.6,
Proposition 1.2.11 implies the following;:

Corollary 1.2.12. Let R be an integral domain, A an R-algebra, R the in-
tegral closure of R in A. Let p be a prime ideal of R and S := R — p. If there
exists a unique prime ideal p of R lying over p, then the integral closure of
Ry, in S7'A is R.

1.2.2 Valuations

Definition 1.2.13. Let R be a ring and I" a totally ordered abelian group.
We call a valuation of R with values in I" any application v : R — I U {o0}
which satisfies the following properties:

(V1) wv(zy) =v(z)+v(y) forz € R,y € R.
(V2) wv(z+y)>inf{v(z),v(y)} for z € R,y € R.
(V3) (1) =0 and v(0) = oc.

In particular, if v(z) # v(y), property (V2) gives v(z + y) = inf{v(z),v(y)}
for z € R,y € R. Moreover, from property (V1), we have that if z € R with
z" =1 for some integer n > 1, then nv(z) = v(z") = v(1) = 0 and thus
v(z) = 0. Consequently, v(—z) = v(—1) + v(z) = v(z) for all z € R.

Now let F' be a field and let v : FF — I" be a valuation of F. The set A of
a € F such that v(a) > 0 is a local subring of F. Its maximal ideal m(A) is
the set of a € A such that v(a) > 0. For alla € F — A, we have a~! € m(A).
The ring A is called the ring of the valuation v on F.

We will now introduce the notion of a valuation ring. For more information
about valuation rings and their properties, see [13]. Some of them will also
be discussed in Chapter 2, Section 2.4.

Definition 1.2.14. Let R be an integral domain contained in a field F. Then
R is a valuation ring if for all non-zero element x € F, we have x € R or
z~1 € R. Consequently, F is the field of fractions of R.

If R is a valuation ring, then it has the following properties:

e It is an integrally closed local ring.
e The set of the principal ideals of R is totally ordered by inclusion.
e The set of the ideals of R is totally ordered by inclusion.

Let R be a valuation ring and F' its field of fractions. Let us denote by
R* the set of units of R. Then the set I'p := F*/R* is an abelian group,



