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Preface

Mathematical Control Theory is a branch of Mathematics having as one of its
main aims the establishment of a sound mathematical foundation for the con-
trol techniques employed in several different fields of applications, including
engineering, economy, biology and so forth. The systems arising from these ap-
plied Sciences are modeled using different, types of mathematical formalism,
primarily involving Ordinary Differential Equations, or Partial Differential
Equations or Functional Differential Equations. These equations depend on
one or more parameters that can be varied, and thus constitute the control as-
pect of the problem. The parameters are to be chosen so as to obtain a desired
behavior for the system. From the many different problems arising in Control
Theory, the C.I.LM.E. school focused on some aspects of the control and opti-
mization of nonlinear, not necessarily smooth, dynamical systems. Two points
of view were presented: Geometric Control Theory and Nonlinear Control
Theory. The C.I.LM.E. session was arranged in five six-hours courses delivered
by Professors A.A. Agrachev (SISSA-ISAS, Trieste and Steklov Mathematical
Institute, Moscow), A.S. Morse (Yale University, USA), E.D. Sontag (Rutgers
University, NJ, USA), H.J. Sussmann (Rutgers University, NJ, USA) and V.I.
Utkin (Ohio State University Columbus, OH, USA).

We now briefly describe the presentations.

Agrachev’s contribution began with the investigation of second order in-
formation in smooth optimal control problems as a means of explaining the
variational and dynamical nature of powerful concepts and results such as
Jacobi fields, Morse’s index formula, Levi-Civita connection, Riemannian cur-
vature. These are primarily known only within the framework of Riemannian
Geometry. The theory presented is part of a beautiful project aimed at inves-
tigating the connections between Differential Geometry, Dynamical Systems
and Optimal Control Theory.

The main objective of Morse’s lectures was to give an overview of a va-
riety of methods for synthesizing and analyzing logic-based switching con-
trol systems. The term “logic-based switching controller” is used to denote a
controller whose subsystems include not only familiar dynamical components
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(integrators, summers, gains, etc.) but logic-driven elements as well. An im-
portant category of such control systems are those consisting of a process to
be controlled, a family of fixed-gain or variable-gain candidate controllers, and
an “event-drive switching logic” called a supervisor whose job is to determine
in real time which controller should be applied to the process. Examples of
supervisory control systems include re-configurable systems, and certain types
of parameter-adaptive systems.

Sontag’s contribution was devoted to the input to state stability (ISS) par-
adigm which provides a way of formulating questions of stability with respect
to disturbances, as well as a method to conceptually unify detectability, in-
put/output stability, minimum-phase behavior, and other systems properties.
The lectures discussed the main theoretical results concerning ISS and related
notions. The proofs of the results showed in particular connections to relax-
ations for differential inclusions, converse Lyapunov theorems, and nonsmooth
analysis.

Sussmann’s presentation involved the technical background material for a
version of the Pontryagin Maximum Principle with state space constraints and
very weak technical hypotheses. It was based primarily on an approach that
used generalized differentials and packets of needle variations. In particular, a
detailed account of two theories of generalized differentials, the “generalized
differential quotients” (GDQs) and the “approximate generalized differential
quotients” (AGDQs), was presented. Then the resulting version of the Maxi-
mum Principle was stated.

Finally, Utkin’s contribution concerned the Sliding Mode Control concept
that for many years has been recognized as one of the key approaches for the
systematic design of robust controllers for complex nonlinear dynamic sys-
tems operating under uncertainty conditions. The design of feedback control
in systems with sliding modes implies design of manifolds in the state space
where control components undergo discontinuities, and control functions en-
forcing motions along the manifolds. The design methodology was illustrated
by sliding mode control to achieve different objectives: eigenvalue placement,
optimization, disturbance rejection, identification.

The C.ILM.E. course was attended by fifty five participants from several
countries. Both graduate students and senior mathematicians intensively fol-
lowed the lectures, seminars and discussions in a friendly and co-operative
atmosphere.

As Editors of these Lectures Notes we would like to thank the persons and
institutions that contributed to the success of the course. It is our pleasure
to thank the Scientific Committee of C.I.M.E. for supporting our project: the
Director, Prof. Pietro Zecca and the Secretary, Prof. Elvira Mascolo for their
support during the organization. We would like also to thank Carla Dionisi
for her valuable and efficient work in preparing the final manuscript for this
volume.
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Our special thanks go to the lecturers for their early preparation of the
material to be distributed to the participants, for their excellent performance
in teaching the courses and their stimulating scientific contributions.

We dedicate this volume to our teacher Prof. Roberto Conti, one of the
pioneers of Mathematical Control Theory, who contributed in a decisive way
to the development and to the international success of Fondazione C.I.M.E.

Siena and Firenze, May 2006 Paolo Nistri
Gianna Stefani
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Geometry of Optimal Control Problems
and Hamiltonian Systems

A A. Agrachev

SISSA-ISAS, International School for Advanced Studies, via Beirut 4, 34014
Trieste, Italy

Steklov Institute of Mathematics, Moscow, Russia

agrachev@ma.sissa.it

Preface

These notes are based on the mini-course given in June 2004 in Cetraro,
Italy, in the frame of a C.I.M.E. school. Of course, they contain much more
material that I could present in the 6h course. The idea was to explain a
general variational and dynamical nature of nice and powerful concepts and
results mainly known in the narrow framework of Riemannian Geometry.
This concerns Jacobi fields, Morse’s index formula, Levi-Civita connection,
Riemannian curvature and related topics.

I tried to make the presentation as light as possible: gave more details in

smooth regular situations and referred to the literature in more complicated
cases. There is an evidence that the results described in the notes and treated
in technical papers we refer to are just parts of a united beautiful subject to
be discovered on the crossroads of Differential Geometry, Dynamical Systems,
and Optimal Control Theory. I will be happy if the course and the notes
encourage some young ambitious researchers to take part in the discovery and
exploration of this subject.
Acknowledgments. 1 would like to express my gratitude to Professor
Gamkrelidze for his permanent interest to this topic and many inspiring
discussions and to thank participants of the school for their surprising and
encouraging will to work in the relaxing atmosphere of the Mediterranean
resort.

1 Lagrange Multipliers’ Geometry

1.1 Smooth Optimal Control Problems

In these lectures we discuss some geometric constructions and results emerged
from the investigation of smooth optimal control problems. We will consider
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problems with integral costs and fixed endpoints. A standard formulation of
such a problem is as follows: Minimize a functional

T8 (u(-)) = / olq(t). u(t)) dt, (1)

where

q(t) = f(q(t),u(t)), wu(t) €U, VtE [to,t1], (2)
q(to) = qo. q(t1) = qi. Here q(t) € R", U C R*, a control function u(-) is
supposed to be measurable bounded while g(-) is Lipschitzian; scalar function
o and vector function f are smooth. A pair (u(-),q(-)) is called an admissible
pair if it satisfies differential (2) but may violate the boundary conditions.

We usually assume that Optimal Control Theory generalizes classical Cal-
culus of Variations. Unfortunately, even the most classical geometric varia-
tional problem, the length minimization on a Riemannian manifold, cannot
be presented in the just described way. First of all, even simplest mani-
folds, like spheres, are not domains in R™. This does not look as a serious
difficulty: we slightly generalize original formulation of the optimal control
problem assuming that ¢(t) belongs to a smooth manifold M instead of R".
Then ¢(t) is a tangent vector to M, i.e., q(t) € T, M and we assume that
f(q,u) € TyM, VYq,u. Manifold M is called the state space of the optimal
control problem.

Now we will try to give a natural formulation of the length minimiza-
tion problem as an optimal control problem on a Riemannian manifold M.
Riemannian structure on M is (by definition) a family of Euclidean scalar
products (-, ), on Ty;M, g € M, smoothly depending on q. Let fi(q), ..., fn(q)
be an orthonormal basis of T, M for the Euclidean structure (-, ), selected in
such a way that f;(q) are smooth with respect to q. Then any Lipschitzian
curve on M satisfies a differential equation of the form:

n

g=_u(t)filq), (3)

=1

where u;(-) are measurable bounded scalar functions. In other words, any
Lipschitzian curve on M is an admissible trajectory of the control system (3).

n n 1/2
The Riemannian length of the tangent vector Y w;fi(q) is <Z uf) .

i=1 i=1
Hence the length of a trajectory of system (3) defined on the segment [t, 1]
n 1/2
is (u ft“ u?(t dt. Moreover, it is easy to derive from the

l_

CauCh} ~Schwarz 1nequallt\ that the length minimization is equivalent to the
n

minimization of the functional J;! (u fth u;(t) dt. The length mini-
1

mization problem is thus reduced to a spemhc opglmal control problem on the
manifold of the form (1), (2).
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Unfortunately, what I have just written was wrong. It would be correct
if we could select a smooth orthonormal frame f;(q), ¢ € M, i =1,...,n
Of course, we can always do it locally, in a coordinate neighborhood of M
but, in general, we cannot do it globally. We cannot do it even on the two-
dimensional sphere: you know very well that any continuous vector field on
the two-dimensional sphere vanishes somewhere. We thus need another more
flexible formulation of a smooth optimal control problem.

Recall that a smooth locally trivial bundle over M is a submersion 7 :
V — M, where all fibers V, = m!(q) are diffeomorphic to each other and,
moreover, any g € M possesses a neighborhood O, and a diffeomorphism
D, 1 Oy x Vy — 7 1O,) such that &,(¢',V,) = Vg, V¢ € O, In a less
formal language one can say that a smooth locally trivial bundle is a smooth
family of diffeomorphic manifolds V; (the fibers) parameterized by the points
of the manifold M (the base). Typical example is the tangent bundle T'M =

U T,M with the canonical projection 7 sending T, M into q.
qEM

Definition. A smooth control system with the state space M is a smooth
mapping f : V — TM, where V is a locally trivial bundle over M and f(V,) C
T,M for any fiber V,, g € M. An admissible pair is a bounded! measurable
mapping v( [tg,tl] — V such that t — m(v(t)) = ¢(t) is a Lipschitzian
curve in ]\[ and q( ) = f(v(t)) for almost all t € [to,t1]. Integral cost is a

functional Jfo‘ f p(v(t)) dt, where ¢ is a smooth scalar function on V.
Remark. The above more narrow definition of an optimal control problem
on M was related to the case of a trivial bundle V.= M x U, V, = {q} x U.
For the length minimization problem we have V. = TM, f = Id, ¢(v) =
(v,0)q, Yo € TyM, q€ M.

Of course, any general smooth control system on the manifold M is locally
equivalent to a standard control system on R™. Indeed, any point ¢ € M
possesses a coordinate neighborhood O, diffeomorphic to R" and a mapping
D, : Oy x V; — 7 1(Oy) trivializing the restriction of the bundle V' to Oy;
moreover, the fiber V; can be embedded in R* and thus serve as a set of
control parameters U.

Yes, working locally we do not obtain new systems with respect to those
in R™. Nevertheless, general intrinsic definition is very useful and instructive
even for a purely local geometric analysis. Indeed, we do not need to fix spe-
cific coordinates on M and a trivialization of V when we study a control
system defined in the intrinsic way. A change of coordinates in M is actually
a smooth transformation of the state space while a change of the trivialization
results in the feedback transformation of the control system. This means that
an intrinsically defined control system represents actually the whole class of

! The term “bounded” means that the closure of the image of the mapping is
compact.
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systems that are equivalent with respect to smooth state and feedback trans-
formations. All information on the system obtained in the intrinsic language
is automatically invariant with respect to smooth state and feedback trans-
formations. And this is what any geometric analysis intends to do: to study
properties of the object under consideration preserved by the natural trans-
formation group.

We denote by Lo ([to.t1]; V') the space of measurable bounded mappings
from [tg,t1] to V equipped with the L..-topology of the uniform conver-
gence on a full measure subset of [tg,t;]. If V were an Euclidean space, then
Lo ([to,t1]; V) would have a structure of a Banach space. Since V is only
a smooth manifold, then L. ([to,t1]; V) possesses a natural structure of a
smooth Banach manifold modeled on the Banach space Lo, ([to, t1]; RAim V',

Assume that V' — M is a locally trivial bundle with the n-dimensional
base and m-dimensional fibers; then V' is an (n + m)-dimensional manifold.

Proposition 1.1. Let f : V. — TM be a smooth control system; then the
space V of admassible pairs of this system is a smooth Banach submanifold of
L ([to,t1]; V) modeled on R™ x Loo([to.t1]; R™).

Proof. Let v(-) be an admissible pair and q(t) = m(v(t)), t € [to,t1]. There
exists a Lipschitzian with respect to ¢ family of local trivializations R; : Oy %
U — 7Y (Ogyt)), where U is diffeomorphic to the fibers V,. The construction
of such a family is a boring exercise which we omit.

Consider the system

() = f o Rf((]~ U). U € Lr- (4)

Let v(t) = Ry(q(t),u(t)); then Ry, to <t < ty, induces a diffeomorphism of
an L..-neighborhood of (g(-),u(+)) in the space of admissible pairs for (4) on
a neighborhood of v(-) in V. Now fix t € [to,t1]. For any ¢ close enough to
q(t) and any u/(-) sufficiently close to u(-) in the L.-topology there exists
a unique Lipschitzian path ¢/(-) such that ¢’'(t) = f o Ri(q'(t),u'(1))), to <
t < t1. ¢'(t) = ¢; moreover the mapping (¢, u'(+)) — ¢'(-) is smooth. In other
words, the Cartesian product of a neighborhood of ¢(#) in M and a neighbor-
hood of u(-) in L. ([te,t1], U) serves as a coordinate chart for a neighborhood
of v(-) in V. This finishes the proof since M is an n-dimensional manifold and
Lo ([to,t1],U) is a Banach manifold modeled on L ([to,t;],R™). O

An important role in our study will be played by the “evaluation map-
pings” F; : v(:) — q(t) = w(v(t)). It is easy to show that F} is a smooth
mapping from V to M. Moreover, it follows from the proof of Proposition 1.1
that F} is a submersion. Indeed, ¢(t) = F;(v(+)) is, in fact a part of the coor-
dinates of v(-) built in the proof (the remaining part of the coordinates is the
control u(-)).

1.2 Lagrange Multipliers

Smooth optimal control problem is a special case of the general smooth con-
ditional minimum problem on a Banach manifold W. The general problem
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consists of the minimization of a smooth functional J : W — R on the level
sets ®1(z) of a smooth mapping @ : W — N, where N is a finite-dimensional
manifold. In the optimal control problem we have W =V, N =M x M, & =
(Fros Fr,).

An efficient classical way to study the conditional minimum problem is
the Lagrange multipliers rule. Let us give a coordinate free description of this
rule. Consider the mapping

&= (J,):W-RxN, &w)=(J(w),d(w)), weW.

It is easy to see that any point of the local conditional minimum or maxi-
mum (i.e., local minimum or maximum of J on a level set of @) is a crit-
ical point of @. I recall that w is a critical point of @ if the differential
Dy® : T,W — Ty (R X N) is not a surjective mapping. Indeed, if D,®
were surjective then, according to the implicit function theorem, the image
&(0,,) of an arbitrary neighborhood O,, of w would contain a neighborhood
of ®(w) = (J(w),®(w)); in particular, this image would contain an interval
(J(w) — e, J(w) + ), (w)) that contradicts the local conditional minimality
or maximality of J(w).

The linear mapping D, ® is not surjective if and only if there exists a
nonzero linear form ¢ on Ty (R x N) which annihilates the image of D,®.
In other words, /D,® = 0, where D, & : T,W — R is the composition of
D,,® and the linear form ¢ : T3, (R x N) — R.

We have T3,y (R X N) = RxTy(,)N. Linear forms on (R x N) constitute
the adjoint space (R x N)* = R%T,}‘,(w)N, where Tq’;(u,)N is the adjoint space
of Tp(wyM (the cotangent space to M at the point @(w)). Hence { = v & ¢,
where v € R, £ € Td‘;(u,)N and

(Dy® = (v & 0) (dwJ. Du®) = vdyJ + (D, .

We obtain the equation
vdyJ + (D,® = 0. (5)

This is the Lagrange multipliers rule: if w is a local conditional extremum,
then there exists a nontrivial pair (v,¢) such that (5) is satisfied. The pair
(v, £) is never unique: indeed, if o is a nonzero real number, then the pair
(av, af) is also nontrivial and satisfies (5). So the pair is actually defined up
to a scalar multiplier; it is natural to treat this pair as an element of the

projective space P (R = T,}‘,(u,)]\’) rather than an element of the linear space.

The pair (v, ¢) which satisfies (5) is called the Lagrange multiplier associ-
ated to the critical point w. The Lagrange multiplier is called normal if v # 0
and abnormal if v = 0. In these lectures we consider only normal Lagrange

multipliers, they belong to a distinguished coordinate chart of the projective
space P (]R & T;,(u,)N>.
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Any normal Lagrange multiplier has a unique representative of the form
(—1,¢); then (5) is reduced to the equation

(Dy® = dy,J. (6)

The vector ¢ € T;(w)N from (6) is also called a normal Lagrange multiplier
(along with (—1,7)).

1.3 Extremals

Now we apply the Lagrange multipliers rule to the optimal control problem.
We have ¢ = (Fi,, Fy,) : V — M x M. Let an admissible pair v € V be a
critical point of the mapping (J,'(:di) the curve q(t) = w(v(t)), to <t <t
be the corresponding trajectory, and ¢ € T(‘;(t“)_q(m)(]\f x M) be a normal
Lagrange multiplier associated to v(-). Then

ZDU(Ft(wFM) :d”‘]ft(: (7)

We have T, ;) oty (M x M) =Tg, \M xTj, M, hence £ can be presented
in the form £ = (=, A, ), where A, € Tiy, M, i = 0,1. Equation (7) takes
the form

My DyFy, — Mg Dy Fyy = dyJ;t. (8)

Note that A, in (8) is uniquely defined by A;; and v. Indeed, assume that
A, Do Fyy =iy Dy Fyy = dyJ;! for some X, € Ty, M. Then (X, = A, ) Dy Fy, =
0. Recall that F}, is a submersion, hence D, F}, is a surjective linear map and

X, — Ay =0,

Proposition 1.2. Equality (8) implies that for any t € [to,t1] there exists a
unique Ay € T{;( t)]L[ such that

/\tD'UFf - /\!”DUFI.” = dl"]tt“ (9)
and N\; is Lipschitzian with respect to t.

Proof. The uniqueness of \; follows from the fact that F; is a submersion
as it was explained few lines above. Let us proof the existence. To do that
we use the coordinatization of V' introduced in the proof of Proposition 1.1,
in particular, the family of local trivializations Ry : Oty x U — 71 (Oyy)).
Assume that v(t) = Ri(q(t),u(t)), to < t < t1, where v(-) is the referenced
admissible pair from (8).

Given 7 € [to,t1], § € Oy(r) let t — Q% (q) be the solution of the differential
equation ¢ = R;(q, u(t)) which satisfies the condition Q7(q) = ¢. In particular,
Q! (q(7)) = q(t). Then Q! is a diffeomorphism of a neighborhood of ¢(7) on
a neighborhood of ¢(t). We define a Banach submanifold V; of the Banach
manifold V in the following way:

V. ={ eV:n@'(t) =QLn(v'(1))), T <t<t1}.



