

CONCURRENT
HARDWARE

The Theory and Practice of Self-timed Design

Michael Kishinevsky
R&D Coop TRASSA, Russia

Technical University of Denmark

and

Alex Kondratyev, Alexa
and

Victor Varshavsky

R&D Coop TRASSA, Russia
University of Aizu, Japan

Translated by

Alex Yakovlev, Eric Napelbaum
and

Olga Reva

JOHN WILEY & SONS

Chichester - New York * Brisbane * Toronto * Singapore

Copyright © 1994 by John Wiley & Sons Ltd.
Baffins Lane, Chichester
West Sussex PO19 1UD, England
Telephone (+44) (243) 779777

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval
system or transmitted, in any form or by any means, electronic,
mechanical, xerographic, photographic, recorded, or otherwise,
without the prior written permission of the publisher, with the
exception of any material supplied specifically for the purpose of
being entered and executed on a computer system for exclusive use by
the purchaser of the publication.

Other Wiley Editorial Offices

John Wiley & Sons, Inc., 605 Third Avenue,
New York, NY 10158-0012, USA

Jacaranda Wiley Ltd, 33 Park Road, Milton,
Queensland 4064, Australia

John Wiley & Sons (Canada) Ltd, 22 Worcester Road,
Rexdale. Ontario M9W 1L1, Canada

John Wiley & Sons (SEA) Pte Ltd, 37 Jalan Pemimpin 05-04,
Block B, Union Industrial Building, Singapore 2057

Library of Congress Cataloging-in-Publication Data

Concurrent hardware : the theory and practice of self-timed design /
M. Kishinevsky ... [et al.].
p. cm.

Includes bibliographical references (p.) and index.

ISBN 0 471 93536 0

1. Parallel computers—Design and construction. 1. Kishinevskir’
M. A. (Mikhail Aleksandrovich)
QA76.58.C666 1994

004".35—dc20 93-29284
CIP

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN 0 471 93536 0

Produced from camera-ready copy supplied by the authors using LaTeX
Printed and bound in Great Britain by Bookcraft (Bath) Ltd

CONCURRENT
HARDWARE

) WILEY SERIES IN PARALLEL COMPUTING
SERIES EDITORS:

R.G. Babb Il, Oregon Graduate Institute, USA

J.W. de Bakker, Centrum voor Wiskunde en Informatica, The Netherlands
M. Hennessy, University of Sussex, UK

R. Oldehoeft, Colorado State University, USA

D. Simpson, Srighton University, UK

Carey (ed.): Parallel Supercomputing: Methods, Algorithms and Applications
de Bakker (ed.): Languages for Parallel Architectures: Design, Semantics, Implementation Models

Axford: Concurrent Programming: Fundamental Techniques for Real-Time and Parallel Software
Design

Gelenbe: Multiprocessor Performance

Treleaven (ed.): Parallel Computers: Object-oriented, Functional, Logic

Williams: Programming Models for Parallel Systems

Raynal and Helary: Synchronization and Control of Distributed Systems and Programs
Takeuchi: Parallel Logic Programming

Eliens: DLP — A Language for Distributed Logic Programming: Design, Semantics and
Implementation

Kacsuk and Wise (eds): Implementations of Distributed Prolog

Pitas (ed.): Parallel Algorithms for Digital Image Processing, Computer Vision and Neural
Networks

Kishinevsky et al: Concurrent Hardware: The Theory and Practice of Selftimed Design

Mos mewma nadmenna u npocma!
Creamums 6ccao, nocmagums nozy 6 cmpems
H obmanyms smedaumeavioe epemd ...

H.C. 'ymnuaes, “or Kyan”

My simple dream is haughty and sublime!

To take an oar, to spur a steed of mine

And to deceive His Majesty the Time...
N.S. Gumilev

To speak a language is to commit ourselves to the double indeterminacy
due to our reliance both on its formalism and on our own continued
reconsideration of this formalism in its bearing on experience.

Michael Polanyi, ‘“Personal Knowldege”

Preface

Why should | know what I think?

Let me say it first — then I know.
B.Zakhoder

The Foreword to the Russian version of

“Alice in Wonderland” by L.Carroll.

Perhaps, we should have cut this preface to a haughty phrase, “We have written this book
just because we wanted to write it”.

In our case this confession would have been true. The chief thing for us was that we really
longed to work together. Of course, the current situation in science was also conducive to the
creation of this volume. It prompted the direction in which we had “to take the offensive”.

In 1984 we completed our work on the book entitled *“Self-timed control of concurrent
processes” (the Russian version was published in 1986, with the English translation in
1990). As usual, only after we had finished it, we realized that everything should have
been done in a different way. But later it became clear that it was not just a result of a
spiritual bankruptcy caused by the parting with the fostered piece of writing (the state that
can probably be best described by the term “post-natal depression”). It was rather a reflection
of the objective necessity. The theory of self-timing, was living through its usual kind of
crisis: almost everything was solvable in theory but the tools proposed here and there filled
us with a feeling of dissatisfaction. The exponential barrier of complexity hindered practical
implementation of the analysis and synthesis methods. We really felt as if we had poured an
old vintage into a modern high-tech container.

We were contronting the problem of translating the results of the self-timed circuit theory
into a new language (not from Russian into English, of course, but into the language of
compact event-based models). The purity of the scientific field here was a reminder of the
glorious times of conquering the Wild West. We were working easily and freely, without
looking back to any authorities.

During the past decade the “ideology of event-based specifications’ has firmly taken hold
of the masses and created its gurus. This inspires the hope that our book will find its interested
reader.

No doubt “the book which is not worth reading twice is not worth reading even once’.
We believe that we have come close to the requirements of this old universal criterion since
few readers could grasp the involved picture of the results at first reading. This is not a
consequence of an ill-intentioned confusion but rather of a striving for formal proofs and
substantiations.

xii PREFACE

In fact, the main ideas of the book are simple and few in number (approximately one for
each chapter).

We shall try to set our reader’s imagination free suggesting a somewhat flippant associative
row to illustrate our main ideas (we all once took an interest in psychology and remembered
the importance of the first impression or, if you wish, imprinting).

A relatively scarce “foreign experience” of the authors suggests that the only thing the
West is short of, but Russia abounds in, is anecdotes.

The remainder of this foreword is built on the following pattern: a title of the chapter, an
anecdote to illustrate it and the comment of a clever narrator. So, ...

Chapter 1. The Models for Parallel Processes Specification...

At an international competition of dwarfs a dwarf from America won the first prize. The
Russian delegation appealed against the jury’s decision by saying, “The decision is not fair
for our dwarf is bigger”.

The pivot of the chapter is the event-based model called change diagram (CD). The
necessity to introduce our own original model can be accounted for by the following two
reasons:

1) At that time (we mean 1982-1984) “the American dwart™ (a model of Signal Transition
Diagram by T.A.Chu) had not yet been born. 2) “Our dwarf™ indeed proved bigger. The CD
model allows description of a wider scope of self-timed circuits and is supplied with effective
analysis tools. But this brings us to the next chapter.

Chapter 2. Verification of Parallel System Behavior with Formal Models.

The scientists wanted to compare the quickness of a monkey’s with that of a man. High
up on the tree a banana was hung. The monkey began to shake the tree - to no avail. Then it
scratched its head, took a stick and knocked the banana down.

A student of a Computer Science faculty volunteers for the test. He shakes the tree again
and again. The student is sweating, the experimenters are in despair, the banana does not
fall down. A young apprentice shouts to the student, “Hold on, buddy, just give it a bit of
thought!”. But without a break in his action the volunteer says, gasping, “Come on ... Why
should I think? ... I have been taught to shake...”

Let not the followers of the verification methods by global state models take offence for
our innocent analogy with the tenacious student. Without their continuous effort we would
have never obtained our present results. The transition from the state-based to the event-based
models demands, indeed, a certain “toggle” in thinking, but it is fully justified allowing us to
reduce the complexity of the problem from exponential to polynomial.

Chaprer 3. Relationship Between State-Based and Event-Based Models.

Albert Einstein failed to create integral theory of space and time. But Sergeant Petrov
succeeded. This morning he gave his young soldiers a command, “Dig a trench from this
post to lunch!™.

The laurels of Sergeant Petrov would not let us have a moment’s peace. Withoutelucidating
the relations between habitual global and event-based models we could not get an integral
idea of the processes in self-timing. The establishment of a one-to-one correspondence
between CDs and transition diagrams justifies the use of CDs as a main tool for the design of
self-timed circuits. In practice it gives a tempting possibility of handling the models of both
types together.

PREFACE Xiii

Chapter 4. Behavior ldentification and Circuit Analysis.

The teacher told the class to bring ten roubles each for the starving people of Donako.
Everybody brought the money except Little Vovotchka who explained that his father said
there were no starving people in Donako.

Next time the teacher collected the money to protect the Nature of Donako, but Little
Vovotchka again gave nothing. This time his father said that everything was OK with Nature
in Donako.

On the third occasion a charity was set up to support the Fraternal Communist Party of
Donako. To everyone’s surprise Little Vovotchka brought twenty roubles, “My father said
that if there are communists in Donako, then there should also be both starving people and
dying nature.”

In Chapter 4 circuits are analyzed through the reconstruction of the event-based model.
The method operates in naive confidence that such a model can be generated by the circuit.
But with any incorrectness detected, the algorithm behaves like Little Vovotchka - rejects the
illusions (part of the reconstructed behaviour) and reports when the circuit is “bad”. If this
analysis is successful, it is then possibile to compare the circuit and the model of its behavior
(circuit identification).

Chapter 5. Transformation of the Behavior Specification.

Everlasting peace was declared in the jungle, but the very next day a tiger attempted to
kill a goat. Luckily, the victim managed to escape. The animals summoned a court to try
the tiger. “Cut off his head!” demanded the monkey. “Not the whole head, not straight off™,
pronounced the presiding elephant, “let’s cut off his tail.” “OK”, agreed the monkey. “Let it
be the tail... But up to his ears!™.

CD is a compact language. But high-level languages are even more compact. They
are usually worked out hierarchically, top-down. The language constructs are traditionally
introduced so as to suit the potential user who pays little attention to the implementations
compared to the problem descriptions (“from head to tail”). We are concerned about circuits
and we prefer departing from them, so our language meccano generalizes the practice of the
design upon the CD basis and are built mainly bottom-up. This way yields the specifications
of sufficiently high level (“from the tail but as far as the ears”™).

Chapter 6. Methods of Direct Translation of Specifications into Circuits.

Second World War. Front line. Heavy fire. A soldier broke through to the inspecting
general with a suggestion to build a gun which would shoot with a range of 200 miles. The
soldier is immediately taken to Stalin. “Well, well, well! Now tell us how to make it!”
demands the generalissimo. “My business is only to suggest. But how to do it ... You’ve got
these designers™, was the reply.

We do not want to be that soldier, that is why our book contains Chapters 6 and 7 instructing
how to build circuits using these models. This task turned out to have a rather simple solution;
as in a meccano: “a brick to a brick™ - and the circuit is ready. This is a syntax-directed,
modular or structural synthesis. Chapter 6 presents the scope of such synthesis methods
whereby the CD graph is directly translated into a circuit structure.

Chapter 7. Formal Methods of Synthesis...
A Soviet leader, Nikita Khruschev once did not like some orator’s speech at the UN
Assembly. He took off his shoe and began knocking it on the table. When reporters asked

Xiv PREFACE

Churchill what he thought about such behavior, he said, “I don’t mind him using his shoe,
the British parliament has seen even worse actions. But to have put on yellow shoes with
such a suit is really impossible!”

Frankly speaking, we are fond of the English classical style. The formal and strict synthesis
methods presented in this chapter will hopefully balance a certain engineering eclecticism
akin to the structural approach of the preceding chapter. Not every CD implies a physical
circuit. The formal theory enables not only analysis of the shortcomings of this or that
CD (“yellow shoes™) but also suggests effective ways for its “modernization™ (not to say
“perestroika’) to achieve implementability.

Chapter 8. Review of the State-of-the-Art in Self-Timing.

At a history lesson the teacher asks, “Who was Stalin?”, a girl answers, “A communist
leader who messed up the USSR economy in the 40s.” “Sit down, your mark is ‘excellent’.
And who was Breznev?” Another girl answers, “Breznev was a communist leader who
messed up the USSR economy in the 70s.” “Sit down, excellent. And who is Gorbatchev?”
Vovotchka who has been holding out his hand for a long time, stands up to blurt out,
“Gorbatchev is a communist leader who messed up the USSR economy in the 80s!” “Sit
down, your mark is ‘bad’ ... so far.”

We did not know how soon this joke would have become out of date. Maybe our review
will face the same destiny. Its main observations and conclusions are not very likely to suffer
from time, but any evaluation of the latest achievements is changeable and dynamic.

Chapter 9. The FORCAGE System and Self-Timed Circuit Design.

(It supplements the material of the book together with a CAD-demo disk).

A psychiatric patient boasts of the advantages of his new asylum, “We have a swimming
pool there with a ten meter high tower for diving. And our Doctor promises us that if we
learn to dive well, he will let us have it filled with water.”

Deprived of the practical application, our book would be like diving into a swimming
pool without water. To avoid the criticisms that our book is fruitless and abstract we are
supplying with it a demo-version of a software system called FORCAGE in order to support
the self-timed design. The results, in theory, have laid the foundation for the development of
this system.

Prefaces are usually concluded with acknowledgements, but we dared not express them
in such an off-hand manner. We shall do it later, in our introduction, by the end of which we
hope to have gained a sufficient degree of seriousness.

Introduction

Why did time exist? Why always this idiotic
succession of one thing after another, and not a
roaring surfeiting simultaneity?

H.Hesse, “Klingsor’s Last Summer”

The rapid advance in semiconductor technology (IC, LSI, VLSI, ULSI...) has generated
a euphoria among the designers of computing systems. Before very long the difference
between “I want” and “I can” seems to have vanished altogether. Despite the physical limit
for miniaturization which has now become quite near, the desire to build more complex and
faster chips remains unabated, and “the eyes are still greedier than the mouth”. As a result of
this “physiological” dissatisfaction, the designers have refocussed their effort into the search
for new architectures.

In the title of this book we have used two terms: concurrency and self-timing. The firstis
very popular in modern computer science. “More parallelism - good and varied” seems to be
the motto of today’s design. But the collocation “concurrent hardware” must be explained.

It is rather usual to see the notions of concurrency, concurrent process, concurrent sys-
tem etc., in the context related to the fields of software engineering and computer system
architecture, both at the modelling and application level.

The concept of self-timing encompasses both parallelism in the behavior of the system
and asynchronism in the interaction of the components at the “lowest” hardware level, where
possible ordering in the switching of logical elements (gates) can be considered. In that sense,
all the results of the concurrency theory are applicable in the theory of self-timed systems.
We believe that the converse is also true — the results of the self-timing theory can be useful
and necessary in the theory of concurrency.

The term “self-timing” is well-known. For the last 35 years, since the publication of
the pioneering works by David E. Muller and his followers (the speed-independent circuits
theory), self-timing still remains somewhat exotic in theory and design. But, especially
during the last decade, the scope of research, development and design in this field has been
gradually broadened. It may be because the exotic “islands™ have always been attractive not
only for the tourists. We are the natives of those lands, the majority of us “originated™ there
and we hope that the description of the living conditions and opening horizons can prove
interesting and attractive for the reader.

We must confess that our argument about a possible influence of self-timing upon the
development of general architectural ideas is not new. The ideas of data-flow architecture
had found their roots in the general ideas of self-timing and it was not incidental that the

Xvi INTRODUCTION

authors of the data-flow concept, e.g. Jack B. Dennis, made their contribution into the
development of self-timing principles.

The fundamental idea of a self-timed circuitdesign is a principle of a two-phase handshake
operation . The process of any complexity can be modelled as a delay between the signals of
its initiation and completion, i.e. between the changes of its phase states. As a result, if such
a process is included in a series with some gate taken in a self-timed circuit, it will not change
the partial ordering of the events in the original circuit, whose behavior does not depend on
the delay of its elements. Two important conclusions can be drawn from this statement:

e for every concurrent system one can construct a self-timed circuit, in which the states
of the outputs of its gates model (represent) the phase states of the processes, i.e. for
every concurrent system there can be constructed its hardware model;

e such a hardware model can be used as a control device coordinating a concurrent
system.

Thus, the term “concurrent hardware” has a dual meaning. On the one hand, a self-timed
circuit is a concurrent system with respect to its components. On the other hand, a self-timed
circuit is the hardware to coordinate the processes (control) in a concurrent system.

It would be fair to state that the above ideas emerged long after the beginning and spreading
of the work on self-timing. The true impact to such research and the introduction of the
term “self-timing” (speed-independent, delay-insensitive) were due to real difficulties in the
external timing of circuits and high complexity systems.

Meanwhile the obstacles against constructing the global timing systems kept growing.

One of the main problems in superminiaturization is the necessity to allow for the duration
and variation of the delays in gates and interconnections between chips.

For the 3 micron technology, the gate delay is about 3 nsec, and the device performance
is not seriously affected by the variations in time parameters at the level of several hundred
picoseconds. For the 1.5 micron technology, the gate delay and the variations in the time
parameters turn comparable, which often causes the violation of the circuit’s functionality.
In submicron technology this grows into a major trouble — the delays at the interconnections
become a dominating factor (the circuit proves to be made “not of the gates connected by
wires but of the wires connected through the gates™).

The abovementioned circumstances made the designers focus their attention on the be-
havioral modelling of circuits. Unfortunately, as often in such cases, the hopes are pinned
on the “front attack™. It is suggested, for example, that a simulation program must emulate
the timing waveforms of a real circuit in the operation mode allowing for the variations in
values of the physical parameters of a particular chip [1]. In practice this implies enumerating
the values of the delays of the real gates and interconnections, which is bound to result in
“combinatorial explosion” thus making the solution absolutely hopeless.

The only alternative to the enumeration of values of real component delays is to guarantee
that the circuit acts correctly for any combination of the delay values, i.e. that the circuit is
self-timed.

Thus, undoubtedly, we are the adherents to the self-timed circuits (STCs). What are the
major “pros and cons’ of self-timed design?

1. Asintegration scale goes up the traditional clock systems are becoming bulkier and less
efficient. Today, in the large circuits the number of synchro-threads is over a dozen and
the clocks specially adjustable to the circuit parameters are being constructed. It has

INTRODUCTION xvii

even come to “suspending” a laser above the chip [2] to provide the simultaneous start
of the clocks in several equichronic regions (such a region is an area on the chip within
which reliable external clocking can be implemented without loss of speed). The size
of equichronic regions deceases with the increase of integration scale. Therefore, the
number of regions per chip gets larger and so constructing an integral clock system
becomes more and more problematic.

Self-timed systems do not require any common clocks at all.

2. The idea of self-timing is based upon the possibility of controlling the duration of
the phase transition (the analogue of clock signal) by the built-in circuits indicating
the completion of the transient processes. With this capability, STCs can operate
correctly under any deviations of the component delays from the standard values and
are degradation failure-insensitive. Moreover, they fully utilize the speed properties
of the elements since they operate on the actual rather than maximum delays.

3. STCs proved to be self-checking with respect to stuck-at faults [3,4]. (The circuit
simply halts when the output of any element gets stuck at a constant 0 or 1). This
allows for self-repair in a simple way.

4. The latter issue is especially important in constructing Ultra-LSI or wafer-scale inte-
grated circuits. It is the possibility of warding off the defects on the wafer through
reconfiguration which is acknowledged as the decisive condition in the organization of
such circuits, guaranteeing a sufficiently high yield [5].

5. From the standpoint of the popular concept of silicon compilation, it seems most
attractive how easy would be to reimplement an STC in a technology with a different
feature size (the layout scaling does not cause any degradation in the STC functionality).

However, all these nice features are only achievable at the expense of the following:

e The area cost increases. (Usually, the increase is considered to be twofold, but we
would recommend to look at this pessimistic estimation with some care. For a wide
range of applications, such as counters, pipelines and memory, to name but a few,
we have obtained the solutions whose complexity exceeded that of their synchronous
analogues by 10-20% only.)

e The design is more difficult in comparison with the standard techniques for synchronous
circuits. It was the complexity of their design that hindered the proliferation of STCs.
Manual STC design (“on the piece of paper”) demands rather high skills. For the
design of such circuits to be automated it is necessary to have a powerful theoretical
foundation. And so, the STC theory is the major subject of this book.

The basic tool for the STC study and design is a behavioral model since semantically
self-timing can be best defined in terms of behavior: through the causal relations between the
switchings of the elements. According to the experts’ opinion, it is namely the “behavioral
design” that is to become the pivot of the CAD development in the 90s [6]. With submicron
technology all the designers will face the tasks of specification, verification and implementa-
tion of the circuit behavior refined to the level of the transitions of signals in gates and wires.
As aresult, the complexity in obtaining synchronous implementations may even outgrow the
complexity of the STC design.

Xviii INTRODUCTION

This enables us to speak about the complexity in the design of self-timed and other VLSI
circuits as levelling.

As we have already mentioned, D.E. Muller was the first to study the circuits whose
behavior does not depend on the relative times of the elements’ reactions. At the end of
the 50s, he developed the theory of speed-independent circuits and suggested a method for
specifying their behavior, which is now known as the Muller model.

Muller also investigated some methods of analysis and synthesis for such circuits [7-12].

Although ahead of its time, Muller’s work found no practical success, chiefly because
the level of semiconductor technology was inadequate (discrete elements) and the subject of
practical circuit engineering was not sufficiently studied.

The concept of “aperiodic automata with self-synchronization” [13] based on the two-
phase handshake principle of behavioral organization seems to be the next stage in the STC
development. This concept took its final shape during the period of 1972-1975 and the first
book on STC design saw its publication in 1976 [14].

The advancements in the STC theory and practice of the next decade were reflected in
a collective monograph [4]. The main results of that period were due to the development
of basic circuitry, methods of STC modular design and STC analysis methods based upon
the global states model (transition diagram of the Muller model). For the first time the self-
checking properties of STCs and the methods for the selfrepair were thoroughly investigated.

For STCs, as well as for computer technology on the whole, the modern period of develop-
ment is characterized by the total “assault” of the models, methods and algorithms, specially
targeted at design automation.

With enormous variety and complexity of the circuits now being developed, the VLSI
design discipline is increasingly more like “software engineering”. Such an approach usually
suggests a “top-down design” of hardware, from the behavior specifications to the circuit
layout [15]. Behavioral design [6] is now becoming the kernel of modern CAD.

The experts in STCs more than anyone else have been in need of the CAD tools which
would enable an “amateur” to design efficient circuits (“VLSI programming”). Long ago
they were confronted with the problems in behavioral modelling. It is no wonder that four
groups, in the California Institute of Technology [16], Stanford University [17], Technical
University of Denmark [18] and the Philips Research Laboratories [19] have stated their
intention to construct CAD for STC “programming”.

In such an approach, the key issue is to choose and formally investigate some model that
would allow the specification of finely grained dynamic phenomena in the self-timed circuit
behavior.

The models studied by the above-named groups, such as trace structures, abstract circuits,
production rules and models of synchronized transitions are aimed exactly at this objective.

To overcome the verification difficulties, some original criteria of the circuit behavior
correctness are introduced into such models of the lower level. But, what is typical for them,
the question of the correspondence of these criteria to the Muller theory, is ignored. As a
result, the class of implementable processes becomes artificially narrowed, and quite “good”
circuits, falling into this class, are claimed to be incorrect (and, moreover, nonsemi-modular
[20]). Thus the authors, being unaware of the existence of the types of behavior rejected by
them (e.g. in [20,21]), virtually ignore the existence of the subclass of semi-modular circuits
with the term takeover.

Choosing the formal specification language is always a pivotal question. On the one
hand, the desire and effort to make the model as simple as possible is quite natural. But

INTRODUCTION Xix

it is dangerous to overdo that effort, impoverishing the “instrumental opportunities” of the
designer. The “short-sightedness” of the model may strongly diminish the yield of efficient
implementations.

On the other hand, overly powertul models generate complex algorithms of synthesis and
analysis. Toa certain extent it refers, for example to the classical Muller’s transition diagrams
(TD), which are practically impossible to apply for the real tasks due to the exponential (to
the size of the initial specification) number of the states in them. (Itis a general shortcoming
of models in global states.)

Balancing between these two extremes, we have tried to suggest a new event-based model,
called the change diagram (CD) (Chapter 1).

CD is a formalism which guarantees the complexity of the verification algorithms to be
polynomial, but not exponential to the specification size (Chapter 2). This enables to work,
both in the analysis (Chapter 2 and 4) and formal synthesis (Chapter 7) procedures, with
the circuits as complex as hundreds of gates. At the same time, the modular synthesis
methodology, based on the CD language (Chapter 6), the decomposition methods and the
methods for the direct translation of CD into circuits (Chapter 5 and 6) all enable the
automated design (Chapter 9) of systems of practically any complexity.

No less important is the theoretically proved fact that correct CD and semi-modular TD
possess equal descriptive power (Chapter 3). And thus, passing from TD to a compact
CD model, we lose no specification details. CD is the only event-based model to possess
such attractive qualities. Hence it has been chosen to become the basic description language
within the scope of the present book.

Numerous interesting publications on self-timing have arrived in an avalanche during the
last few years, with gifted young researchers emerging on the “self-timing horizon” and
new knowledge “crystallizations centres” springing up everywhere - all this provides indirect
evidence that the interests of applied microelectronics and pure science have finally matched
the STC design automation. The groups dealing with the study and design of STC have
been organized in most of the leading academic centers of the USA, Europe and Japan
[16-30] (cf. Table 8.1. “BRIEF INFORMATION ON MAIN CENTERS OF RESEARCH IN
SELF-TIMING” and Chapter 8).

Such firms as Intel, Digital Equipment Corp., Sun Microsystems, SGS-Thomson, Philips,
Hewlett-Packard, Mastek etc., began to finance the work on STC.

In this wave the main practical achievements have been obtained on the way of “evo-
lutionary penetration” into synchronous environment. The bestknown of such devices are:
self-timed mesh-routing chips for the Intel Touchstone Delta multicomputer (Ch. Seitz et
al., Caltech), micropipeline registers (Turing Award lecture by Ivan E. Sutherland), pipeline
and ring iterative structures (a division chip by T. Williams), interface blocks in the data
transmission processor (Mitsubishi Corp.) and modules made by Austek Microsystems Ltd.

The present book is envisaged by the authors as a contribution, within their powers, to a
common theoretical “box”, making the foundation for such studies.

The above-stated scope of questions concerning the parallel STC design has already been
touched in the monographs [14] and [4]. Those books are the snapshots of their respective
up-to-the-date results and are not characterized by a sufficient theoretical or conceptual
integrity.

This book makes an attempt to systematically present an integral design theory for con-
current self-timed systems, from their general specification and to concrete implementation
algorithms. Most of our results on concurrency are fall beyond the scope of the STC theory

XX INTRODUCTION

and from the authors’ viewpoint may be of interest for the general theory of the formal models
of concurrent processes.

Acknowledgments

First of all we would like to state that we are much indebted to our colleagues without whose
advice we would never have become professionals and this volume would not have been
possible.

They are: Leonid Rosenblum, Vyacheslav Marakhovsky, Valery Peschansky and Boris
Tsirlin. We would also like to mention here Nikolai Starodubzev, who took an active part in
the discussions which led to the creation of Change Diagram as a model.

We are grateful to the Russian specialists: Alexander Astanovsky, Alexander Yakovlev,
Hary Tani, Dmitry Pospelov, Vadim Kotov, Pavel Parkhomenko, Adolf Filin, Yuri Stepchen-
kov, Anatoli Chebotarev for their attention to our work.

We would also like to thank the scientists whose work or advice produced a stimulating
effect on the preparation of this book: David Muller, Charles Molnar, Tam-Anh Chu, Robert
Brayton, Luciano Lavagno, Michael Yoeli, Teresa Meng, Jgrgen Staunstrup, Gert Goossens,
Peter Vanbegbergen, Alain Martin, David Dill, Jo Ebergen, John Brzozowski, Martin Rem,
Jan Udding, Mark Josephs, Dines Bjgrner and many many others.

Our thanks to Luciano Lavagno, Jorgen Staunstrup, Christian Nielsen and Ganesh Gopalakr-
ishnan for their remarks to the “Table of Self-timing World” (Table 8.1).

We highly appreciate titanic efforts of Alex Yakovlev, who translated the Russian English
of this book into proper English. He became the first reader of our book and his comments
were extremely helpful in preparing the final version. Eric Napelbaum and Olga Reva
produced the first translation of this book.

Special thanks to Vadim Yakker and two Elenas (Kishinevsky and Varshavsky) for
their technical assistance and software support in the development of our CAD system
“FORCAGE".

We are especially grateful to IRCA (Instituto per la Riserca Applicata, S.p.A., Milano,
[taly) and Professors Gian Paolo Caliguri and Umberto Pellegrini for support of our work
(including book preparation) during the period of 1989 — 1992.

M. Kishinevsky is grateful to the “Mogens Balslevs Fond™ which supported his stay at
the Department of Computer Science, Technical University of Denmark. The preliminary
version of the book was used for a course on Self-timed Design given at the Technical
University of Denmark, where the students did their best in finding errors in the text.

Finally we want to express our deepest gratitude to our relatives, friends and colleagues tfor
their patience in coping with the outbursts of our cantankerous characters. This was entirely
due to the tight schedule of our work.

Contents

Preface

Introduction

1 Models for a Specification of Parallel Processes
1.1 Types of parallelism. State and eventmodels

1.2 Muller model. Transition diagrams
1.2.1 Transition diagrams and circuitso
1.2.2 Speed-independent and semi-modular circuits
1.2.3 Circuits with restricted parallel interaction
1.3 Changediagramso e
1.3.1 CDforacyclic processes . . . « « v v v v v v v v i e e e e
132 CyclicCD e e e e e
1.3.3 Anequivalence relationinCD
1.3.4 Concurrency and precedence relation betweenevents
1.3.5 Orderrelations over setsofevents
1.3.6 CDunfolding o v it e

2 Verification of Parallel System Behavior
2.1 Self-timed circuit analysis based on transition diagrams
2.2 Verification of self-timed circuits behavior basedonCD

2.2:1
222
223
224
225
22.6
227
228

Event reachability inacyclicCD
Acyclic CD properties v v v v v v v v v v e e e e
Cyclic CD and propertics of unfolding
Concurrency relationsincyclicCD o o o000
Well-formed CD o o o o o e
Strong precedence relationinacyclicCD
Boundedness and connectednessof CD
Analysis and verification of cyclicCDs

3 Relationship Between the State- and Event-based Models
3.1 IntroducCtion i e e e e e e e e
3.2 Relationship between models. Anoutline

32.1
322
323
324

Excitation regionsinTDand CTD
Immediate causes of signal changes
The splitting of excitation regions. Initially-safe and initially-bounded CD

vii

Xi

XV

W L =

11
12
15
19
21
24
30

35
37
39
39
40
42
43
46
49
50
55

59
59
60
60
63
65
66

