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Preface

Hermann Weyl’s celebrated work from 1910 "Uber gewthnliche Differen-
tialgleichungen mit Singularitaten und die zugehorigen Entwicklungen will-
kiirlicher Funktionen" together with the developement of quantum mechanics
around 1925 initiated a continuous and extremely fruitful research activi-
ty in the spectral theory of Sturm-Liouville operators. Although the gene-
ral theory in some sense had reached its final shape with the proof of the
spectral representation and the Weyl-Titchmarsh formula for the spectral
matrix, many fascinating results about special operators have been contri-

buted by a large number of mathematicians up to the present days.

Wide parts of the theory were generalized long time ago to certain
even order operators mainly by I.M. Glazman, K. Kodaira and M.A. Neumark.
On the other hand by S.D. Conte, B.W. Roos, W.C. Sangren and E.C.
Titchmarsh results which are almost identical to those in the Sturm-
Liouville case have been found for certain first order differential
expressions operating on C?-valued functions (Dirac systems). But there
was no general frame including all these different types, although it
seemed obvious that there were many common features.

The starting point for writing these notes was the intention to pre-
sent a general theory of ordinary differential operators, covering opera-
tors of arbitrary order n operating on C®-valued functions for arbi-
trary m. This is the content of about two thirds of the present text. In
the remaining part we apply this theory to Sturm-Liouville operators and
Dirac systems, studying mainly oscillation theory and absolute continuity
of the spectrum. Most of the results can be found in the literature in
some form; but there are also some new results, mainly connected with the
problem of existence of self-adjoint realizations with separated boundary
conditions (section 4), multiplicity of the spectrum (section 10), and the
absolute continuity of the spectrum (sections 10, 15 and 16). The proofs

are functional analytic in spirit wherever possible.



\Y

The text is almost completely self-contained. Besides some fundamental
facts from various fields of analysis which are used without reference we
only need a number of results from the abstract theory of self-adjoint
operators in Hilbert spaces; for all these results we refer to the
author’s book [70]. This should make the subject easily accessible to
mathematicians interested in applications to physical problems as well as

to physicists with some mathematical background.

Many people helped me during the preparations of the manuscript. Dis-
cussions with auditors of several lecture series on this subject at the
Universities of Munich, Frankfurt and Pretoria (R.S.A.) lead to many im-
provements. My collaborators Andreas Orth, Gunter Stolz, Thomas Poerschke,
and Werner Stork read the manuscript at different stages and with their
criticism contributed a lot to its final form. Christel QuaBl typed parts
of an earlier version of the text, and finally Martina Eismann typed the
complete manuscript into the computer and never lost patience with my
permanent wishes for corrections and changes. It is a pleasure to thank

all of them for their invaluable assistance.

Frankfurt am Main, March 1987 J. Weidmann
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Introduction

Many physical systems are described by differential equations (or
systems) of the form

. 9
i FT wix,t) = Ay(x,t) (1)

(e.g. Schrodinger equation) or

2
%E; yix,t) = -Ay(x,t) (1)

(e.g. Wave equation), where A4 1is a (in general partial) differential ex-
pression with respect to the x-variable. In many cases it is quite natural
to consider (1) and (1’) as differential equations in an L.-Hilbert space

H of states of the system:

o | - A ;
la f(t) = Af(t), (Z)
dz 9
m f(t) = - Af(t), (27)

where A represents an operator in the Hilbert space H. If A is self-
adjoint then by means of the spectral calculus the solutions of the

initial value problems

d . . .
i £ F(t) = Af(L), £(0) = f € D(A), (3)
E st) = - Af(t), £(0) = £. € D(A), £'(0) = f£. € D(A%) (3")
at = ' =1y ' =5y

can be given by
f(t) = exp(-it A) fO' (4)

respectively

f(t) = cos (tA%) £, # A"? sin (tA?) £, (47)



Theretfore we have a complete description of the solutions of the above

initial value problems if the spectral resolution of A is known.

In general it cannot be expected that the spectral resolution of a
self-adjoint partial differential operator is known explicitly. But, if
the differential expression A has certain symmetry properties (e.g.
rotational symmetry of the potential in a one particle Schrodinger equa-
tion), then it may be possible to apply a separation of variables which
leads to a decomposition of the Hilbert space H into an orthogonal sum
of Hilbert spaces H; (j € J) which reduce A and have the property that
the restriction A; of A to H; is unitarily equivalent to an ordinary
differential operator T; in a space l2(I), I ¢ R. In section 1 we give
a number of examples from mathematical physics to which this procedure is

applicable.

The ordinary differential expression occurring most frequently in ap-

plications is the Sturm-Liouville expression

o1 ; ' .
Tu(x) = ) { = (p(x)u’(x))’ + q(x)u(x) } , X € (a,b).

The study of the self-adjoint operators associated with Sturm-Liouville
expressions goes back at least to H. Weyl [72]. Many authors have
contributed to this theory; we only mention F. Rellich, Ph. Hartman,
A. Wintner, K. Kodaira and E.C. Titchmarsh. Weyl’s alternative (limit
point case and limit circle case) allows a complete description of all
self-adjoint realizations of <t in the weighted L:-space L2 (a,b;r). The
general structure of the resolvents, of the spectral resolutions, and of
the spectral representations are known, and the formulae of Weyl-
Titchmarsh-Kodaira allow to calculate the spectral resolution and the
spectral representation explicitely. For a huge number of special cases
many specific results about spectral properties have been proved (semi-
boundedness, pure point spectrum, absolute continuity, absence of singular

continuous spectrum etc.).

For the Dirac operator with spherically symmetric potential a
separation of variables (cf. Appendix to section 1) leads to a family
t; (J € Z\{0}) of first order differential expressions for C2-valued
functions on (0,o). The corresponding self-adjoint operators in L2 (0,®)?2
have been studied by S.D. Conte, B.W. Roos and W.C. Sangren (9, 54, 55,



56], E.C. Titchmarsh [61 - 65]. The theory of these Dirac systems was
developed in complete analogy to the theory of Sturm-Liouville operators,
including Weyl’s alternative and the Weyl-Titchmarsh-Kodaira formula.
Detailed studies of the spectral properties for potentials which are suf-
ficiently general for applications to physically interesting problems were
given by J. Weidmann [68, 71] and H. Behncke [2, 3, 4]. A theory which
allows to treat Sturm-Liouville operators and Dirac systems simultaneously

did not exist so far.

In these notes we give a general and rather complete theory of self-
adjoint ordinary differential operators of arbitrary order n operating
on Cmn-valued functions for arbitrary m € N. The general form of these
formally self-adjoint differential expressions is given in (1.1). It spe-

cifies for

= o = =i y X . ’ <
n=1: tu(x) = r(x) { (qo(x)u(x)) qo(x)u (x) + po(x)u(x) } 5

- Do oYy = -1 _ » Vg ? ’ L X ) "
n = 2: tu(x) = r(x) { (pl(x)u (x)) +(q0(x)u(x)) qo(x)u (x)+p0(x)u(x) bi
etc., where r(.), p;(.) and q;(.) are m~m-matrix valued, p;(x)¥ =

p; (x), and r(x) is positive definite. It is known (cf. 1.M. Glazman [15])
that every formally self-adjoint differential expression with sufficiently
smooth coefficients can be written in the form (1.1). But we allow quite
singular coefficients, such that the differential expressions cannot be
evaluated term by term; we have to use the quasi derivatives which are
introduced in section 2 (sometimes such differential expressions are
called quasi differential expressions ). For the above special cases tu

must be evaluated as follows:

n=1: <tu(x) = r(x)_l{ (qo(x) - qé(x))u’(x) + (q(’)(x) + pO(X))u(X) }y

= X
r(x) 1{—(p1(x)u’(x)—qo(x)u(x))’— qo(x)u’(x) + po(x)u(x) Yo

n = 2: tu(x)

For m = 1 a similar class of ordinary differential expressions has
been introduced by N.W. Everitt and A. Zettl [14, 74]. Differential ex-
pressions of the above form containing only the even order terms
(p; (x)uld) (x))3) have already been studied much earlier by I.M. Glazman
[14], K. Kodaira [40] and M.A. Neumark [46] (see also E. Miller-Pfeiffer

[45] and the references given there); this theory was also developed along



the lines of the Sturm-Liouville theory, but a result comparable to Weyl’s

alternative does not exist (cf. 1.M. Glazman |14]).
The organization of the book is as follows:

After describing several typical examples covered by our theory we
start in section 2 with some basic facts about our class of differential
expressions. The quasi derivatives are introduced in order to transform
the differential equations (t-X)u = f into first order systems. Together
with a quite general existence and uniqueness theorem for linear first
order systems with locally integrable coefficients this enables us to
state our general assumptions on the coefficients which will be used

throughout the following sections.

In section 3 the maximal operator T associated with t is defined
in a natural way to be the "differential operator" defined by =t with the
largest possible domain. The minimal operator Té (or its closure TO’
the closed minimal operator) is such that Té‘ =T, 1.e. the adjoint of
every operator with "essentially smaller'" domain would not be a "differen-
tial operator'" any more. Therefore every self-adjoint realization A of
T must be a restriction of the maximal operator T and an extension of

the minimal operator To, i.e. To ¢ A c T.

In section 4 the deficiency indices of To are determined by means
of the Lz-properties of the solutions of (r-X)u = 0 near the boundary
points a and b. By means of von Neumann’s theory this solves the
problem of existence of self-adjoint extensions of To and allows to con-
struct all of them as restrictions of T by means of boundary conditions.
A large part of this section is devoted to the question if there exist
self-adjoint extensions of To with separated boundary conditions. For
regular problems (cf. section 3) all self-adjoint extensions of To can

be given explicitely.

The form of the solutions of the inhomogeneous equation (t-X)u = f
is studied in section 5. Among others the results allow to prove that, if
for some X0 € C all solutions of (t-d)u = 0 and of (t-h)u = 0 are
square integrable near a, resp. b, then this holds for every xecC
(quasi regular at a, resp. b); we also give a functional analytic proof of
this fact going back to I.M. Glasman [14]. Specializing to the case
Pp=nx=m=2 Weyl’s limit point / limit circle alternative follows. In

this case a complete description of all self-adjoint extensions



of To can be given. Some of the most important limit point / limit
circle criteria are proved in section 6, separately for Sturm-Liouville
expressions and Dirac systems; these cover most of the physically rele-
vant problems. In an appendix operators of Sturm-Liouville type (i.e. ope-
rators of the form of a Sturm-Liouville operator, but with m 2 1) are stu-

died with respect to semi-boundedness.

The general form of the resolvent of self-adjoint extensions of To
is studied in section 7; the calculation of the resolvent turns out to be
especially simple in the case of separated boundary conditions. In section
8 the representation of the resolvent is used to find the general form of
the spectral representation and of the spectral resolution. This involes a
spectral matrix e(.) containing complete information about the spectrum.
It can be calculated by means of the Weyl-Titchmarsh-Kodaira formula;

several versions of which are proved in section 9.

It is obvious from the general form of the spectral representation
that the spectral multiplicity is at most p = n = m. In section 10 we
prove that the multiplicity is smaller under several very general assump-
tions. We also prove a simple result about the absence of singular con-
tinuous spectrum (Theorem 10.14) which has an immediate application to

periodic operators in section 12.

Ph. Hartman and A. Wintner [20] have proved that a X € B belongs to
the essential spectrum of every self-adjoint realization of a Sturm-
Liouville expression if the equation (T-X)u = 0 has no solution which is
square integrable near a (or b ). This result easily extends to the
general case with p = n =~ m = 2. Several extensions to arbitrary t are
given in section 11. On the other hand, if <t 1is regular at a and for
every X from an interval I there exists a square integrable solution
of (T-X)u = 0, then the spectrum is a pure point spectrum and nowhere
dense in I; this also generalizes a result of Ph. Hartman - A. Wintner

[22] for Sturm-Liouville operators.

The spectral properties of differential operators with periodic
coefficients are studied in section 12. We get absolutely continuous band
spectrum. For the case p = n =~ m = 2 the connection between the bands
and the eigenvalues of the regular problems on a periodicity interval with
periodic and semi-periodic boundary conditions is given. In an appendix we
study operators with periodic coefficients on the half-line.



In the remaining sections we turn to the special case p = n =m = 2,
In section 13, 14 and 15 we study oscillation theory for regular respec-
tively singular Sturm-Liouville operators. We prove the connection between
the '"number" of the eigenvalue and the zeros of the corresponding eigen-
function for regular problems as well as the connection between oscilla-
tion properties and the essential spectrum in the singular case. And
finally we use oscillation methods in order to prove absolute continuity
of the positive spectrum of certain Sturm-Liouville operators. These re-
sults are essentially contained in J. Weidmann (67, 71]. New is only the
fact that the operator of multiplication with the variable in 12 (0,0) is
unitarily equivalent to some part of these Sturm-Liouville operators.
These results are applicable to every reasonable one particle Schrodinger
operator with spherically symmetric potential without any restriction of

the behaviour of the potential near the origin (cf. section 17.F).

Similar results for Dirac systems are proved in section 16. In order
to do this we develop an oscillation theory for Dirac systems. The techni-
cal details are much simpler than for Sturm-Liouville operators. These re-
sults are also essentially taken from J. Weidmann [68, 71]. The absolute
continuity result for Dirac systems as well as for Sturm-Liouville opera-
tors has also been proved by E. Heinz [24] using completely different me-
thods (limiting absorption).

In the final section 17 we apply many of our results in order to
study a number of more or less explicitely solvable problems. The first
example shows that the one dimensional Fourier transform can easily be re-
covered as the spectral representation of the simplest first order opera-
tor T = -i d/dx on R!. All other examples are concerned with special
cases of Sturm-Liouville operators and Dirac systems: Coefficients which
are constant near infinity, periodic coefficients, Sturm-Liouville expres-
sions with non-definite main part, and the Sturm-Liouville expressions and
Dirac systems occurring after separation of the one particle Schrodinger

operator and Dirac operator with spherically symmetric potentials.



1. Formally self-adjoint differential expressions

We shall study operators generated by means of formal differential

expressions t of the form

(3]

eutxl = pix) ) { % (—l)j(p‘j(x)u(‘j)(x))(j)

J=0
(1.1)
[n-l
2 S . . i .
+ »  (-1)Y [(q'(x)u(J)(x))(J+1) B (qf(x)u(3+1)(x))(3) ] }’
= b :
Jj=0
where
- u are Cm -valued functions defined on (a,b), - ® <a <b 2w,

- the symbol [a] stands for the largest integer less than or equal to a;

therefore the natural number n is the order of the differential

expression t,

- the coefficients r, pj and q; are m~m-matrix valued functions on

(a,b), r(x) is positive definite, and the p;(x) are hermitian.

Further assumptions on the coefficients will be stated in the following

section.

(a)

(B)

(v)

The factors (-1)3 are chosen such that:
for m=1, n=2 and q =0 we have the well known Sturm-
Liouville differential expression

Tu(x) = ;%;7 { -(pl(X)U’(X))’ + pO(X)u(X) }y

for m=1, n=1, po =0, g = L and r =1 we have the 1-dimen-

sional momentum operator
1.5
Tu(x) = Tu (x),

for n = 2k, px(x) > O (positive definite) and some additional con-
ditions on the lower order terms the operators defined by =t will be
bounded from below,



(6) the definition of the quasi derivatives in section 2 is comparatively

simple.

It is apparent that these differential expressions are formally self-

adjoint in the following sense: If (.,.) denotes the usual inner product
in Cm
m —
(Ey,m) = JEI Ejnj for ¢ = (&1,---,Em), n = (”1""’"m)’
then we have for "sufficiently smooth" functions u,v : (a,b) — Cm with

compact support

b b
J (r(x)tu(x),v(x)) dx = [ (r(x)u(x),rv(x)) dx.
a a

So far it is not clear that there are "sufficiently many" functions u to
which the differential expression =t can be applied. In the following
sections we shall define a Hilbert space of Cm-valued functions on (a,b)

with the inner product
b
an,v> = [ (r(x)u(x),v(x)) dx.
a

The formal self-adjointness means that <t generates a hermitian operator
in this Hilbert space. We shall see that this operator is densely defined
(i.e. symmetric). In many cases the existence of self-adjoint extensions

can be shown.

We shall demonstrate now that many interesting applications lead to

differential expressions of the above form.

Example 1.1 The vibrating string. We assume that an elastic string is
spanned over the interval [a,b], clamped at the end points a and b.
Let r(x) > 0 be the mass density (mass per unit length) at the
point x, p(x) > 0 the elasticity modulus at the point x, u(x,t) the
displacement of the string at the point x and time t. Then

r(x)utt(x,t) = (p(x)ux(x,t))x for a<x <b, t2>20,

with the boundary condition

%
o

ufa,t) = ulb,t) =0 for t



It is expected that, in order to have uniqueness of the solution, we also
need the initial conditions
u(x,0) = uo(x)

} for a < x < b.

ut(x,O) = ul(x)

For solutions of the form
u(x,t) = vix)w(t)
(separation of variables) we have

utt(x,t) = vix)w"(t),
(p(X)ux(x,t))x = (p(x)v’(x))’w(t),

and therefore
r(x)v(x)w"(t) = (p(x)v’(x))’'w(t).
For v(x) # 0 and w(t) # 0 this implies

w'(t) _ (p(x)v’(x))’

e - )V (X) for x € [a,b], t > 0.

Since both sides depend on different variables this equation can only hold

if both sides are constant, say equal to -X :
- w'(t) = aw(t),
- (p(x)v’(x))’ = Aar(x)v(x), v(a) = v(b) = 0.
If the second equation (including the boundary conditions) has a solution
v for some X, then setting
i e pY
w(t) = A cos (X*t) + B % ® sin ()2°t)

we get a solution u(x,t) = v(x)w(t) of the original problem:

1

1 = 1
u(x,t) = { A cos (A%t) + B 2 2 sin (33t) } v(x).
Clearly this solution satisfies the initial conditions
u(x,0) = Av(x),

ut(x,O) = Bv(x).

The boundary value problem

WwW(x) = tv(x) := —r(x)-l(p(x)v’(x))', v(a) = v(b) = 0



