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Preface

This book is intended as a half-year course for undergraduate students of
mathematical science and is based on a one semester course given to second-year
students at the University of Liverpool. The object of such a course is to provide
guidance to those using or writing computer programs or intending to do so. At the
same time it is an attempt to provide an insight into the mathematical analysis for
those students with no more than a passing interest in the computational aspects of
the methods. The individual sections are roughly equal in length and content, and
they could each be reasonably covered in a single lecture. The sections can, in most
cases, be classified as either theoretical or practical and there are approximately
equal numbers of each. ‘ :

- The book is in two parts and, with one or two exceptions, there is no specific
cross referencing, so the two parts can be read in either order. There are a few
sections towards the end of Part II which, in view of their somewhat limited appeal,
can be safely omitted. v

In Part II special methods for polynomial equations are omitted as they have
been dealt with effectively elsewhere and it would be difficult to improve on the
presentation in, for.example, Householder (1970). In addition, the usefulness of
such methods in practice is highly questionable, since a polynomial equation can be
formulated as a matrix eigenproblem and then solved by.the QR algorithm. In the
solution of arbitrary non-linear problems, there is no attempt to emulate the breadth
and rigour of advanced texts such as Traub (1964), Ostrowski (1966), Ortega and
Rheinboldt (1970) or Rheinboldt (1974). There is, however, an attempt to provide

"a thorough introduction to the theory of iterative methods such as cannot be found

in general introductory texts on numerical analysis, which usually contain a very
sketchy treatment of this area, At the same time numerous exercises and worked
examples illustrate the directions in which the analysis proceeds in more advanced
situations. It is intended herein to go beyond the ubiquitous Newton’s method and
give practical methods that work in practical problems, together with some indica-
tion of the relevance of current theory to current practice.

A knowledge of the calculus as far as Taylor series expansions is assumed, as is a

- degree of familiarity with the concepts of vectors and matrix norms. In order to

avoid the book becoming a mere catalogue of all the available methods it has been

necessary in certain instances to omit any discussion of some of the alternatives in

order to concentrate on one of the best. Thus there is no explanation of Householde:

transformations because there is a careful assessment of Givens transformations: in
vii
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particular there is one of the first accounts at this level, of the square-root-free
Givens transformations. No attempt has been made to discuss the associated sub-
jects of matrix eigenproblems, linear programming and optimization, although their
connexions with the solution of algebraic equations is indicated where appropriate.

This is one of the first introductory text books (as opposed to a specialist mono-
graph or the proceedings of a conference) to include a discussion of many of the
practical difficulties to be encountered when solving systems of equations and to
describe some of the possible methods of overcoming them. In particular, there is
a discussion of sparse-matrix techniques for linear systems (the cases of an irregular
pattern and of a regular structure are both covered), Brown’s Newton—Gauss—
Seidel type of method for systems, quasi-Newton methods for non-linear systems
and orthogonal factorization of matrices, together with a description of their
practical application in the numerical solution of equations. Robust methods for
single equations are covered; in particular the Pegasus method appears in a text-
book for the first time. All these methods are used by practical people to solve
practical problems and students should therefore be aware of them at an early
stage. Such methods should be included in any book that claims to show how to
solve problems; up to the present these methods have in general been restricted to
research papers in the scientific journals and an elementary exposition is long
overdue.

It is to be expected that practising scientists and engineers will find this book of
value as an introduction to the modern methods that are available. It would be
possible for them to proceed to a more detailed account by following up the
references in the extensive bibliography provided. It should also prove to bea
suitable textbook for many of the short courses in numerical methods that now
form part of a typical course for engineering students. On the other hand, students
with a more mathematical bias should find sufficient material to stimulate their
particular interests in what is, without doubt, one of the key foundations of
aumerical mathematics, on which other areas — numerical solution of differential
equations for example — can build.

I would like to acknowledge the assistance that I received from colleagues and

tudents, past and present, in preparing the manuscript of this book. In particular
7. M. Watt and N. G. Brown deserve a special mention. In addition I would like to
thank the secretaries of the department of Computational and Statistical Science
at the University of Liverpool for their painstaking typing of large parts of the
manuscript. ' :

Liverpool R Wait
July 1978



Contents

Preface .

1.

Introduction
1.1 Linear Equations: An Introductxon
1.2 Iterative Methods: An Introduction .
1.3 Algebraic Problems: An Introduction
(@) Chemical equilibrium problems
(b) Leontieff input—output analysis
(c) General market equilibrium
(d) Electric power networks
(e) Differential equations
(f) Partial differential equations

PART I LINEAR ALGEBRA

. Direct Methods for Linear Equatlons

2.1 Introduction

2.2 Gauss Elimination

2.3 Pivoting Strategy :
2.4 Triangular Factorization .

. Orthogonal Factorization

3.1 Existence and Uniqueness
3.2 Givens Transformations .
3.3 Overdetermined Systems: An Introductlon

3.4 Overdetermined Systems: A Numerical Implementatlon

. Sparse-matrix Techriques .

4.1 Introduction
4.2 Reduction of Fill-in i
(a) Minimizing the local fill-in .
(b) Markowitz criterion .
(c) Other methods ’
4.3 Methods for Structured Matrlces ;
(a) Reverse Cuthill-McKee .
(b) Nested dissection .

\DOO\]O\O\UIAM—‘—‘EZ

13
13
14
17
21
28
28
31
35
37

41
41
44
45
47
48
49
50
54



PART II NON-LINEAR EQUATIONS

5. One-point Iteration Formulae
5.1 Introduction
5.2 Contraction Mapping Theorem :
5.3 Proof of the Contraction Mapping Theorem
5.4 Systems of Non-linear Equations

5.5 [Iterative Methods for Systems of Linear Equatlons .

5.6 Order of Convergence
5.7 Interpolatory Iteration Formulae

(a) Direct interpolation

(b) Inverse interpolation :
5.8 Newton’s Method for Systems of Equatlons :
5.9 Brown’s Method . :
5.10 Global Convergence of Newton s Method

6. Multi-step Iteration Formulae
6.1 Introduction e
6.2 Interpolatory Iteratron Formulae :
(a) Direct interpolation .
(b) Inverse interpolation
6.3 Order of Convergence
6.4 Bracketing Methods

7. Systems of Equations
7.1 The Secant Method
7.2 Quasi-Newton Methods

7.3 Efficient Implementation of quasr~Newton Methods

(a) Updating the orthogonal factors .
(b) Using the structure of the Jacobian .
7.4 Gradient Methods .
8. Other Methods
8.1 Multiple Roots
8.2 Aitken’s A%-acceleration
*8.3 Multi-stage Methods
*8.4 A Continuation Method .

9. Comparison of Methods .
9.1 Comparison of Newton and Secant Iteratrons ;
*9.2 More General Comparisons .

Historical Appendix
Bibliography
Index

*Can be omitted on first reading.

. 102
. 102
. 104
. 104
. 106
. 107
sl

. 118
. 118
121
. 124
. 124
. 128
4+i81
. 134
. 134
G187
. 140

Contents

61
61
63
67
70
75
80
83
84
86
90
94
97

143

. 145
. 146
. 148

150
153
157



Introduction

1.1 Lineaz.Equations: An Introduction

One of the most fundamental problems of numerical analysis is the solution of a
system of linear algebraic equations. Another cornerstone of the subject — the
solution of non-linear equations — is also dealt with.

The numerical solution of linear algebraic systems is the object of a considerable
amount of ongoing study, primarily in the solution of large sparse systems (see for
example Rose and Willoughby, 1972; Bunch and Rose, 1976) and in the production
of computer library packages, of which the most widely used are the .LM.S.L.
Library, the FUNPACK, EISPACK, and LINPACK routines of the Argonne
Laboratory, and the N.A.G. Library. This book will however be concerned only with
a few of what might reasonably be termed basic methods and as much (or as little)
theory as is considered appropriate. There is no attempt to provide an exhaustive
catalogue of methods — merely enough to suggest the breadth of the subject. Whilst
it is intended, as far as possible, to provide efficient and up-to-date methods, it
should be remarked that it is on the ‘computer implementation that such judge-
ments ought to be made, and so without lengthy computer programs any assess-
ments may of necessity be extremely vague and have limited validity. The important
distinction between the mathematical statement of a method and the computer
implementation should never be overlooked, and it is no coincidence that it is
discussed again.

Classification
There are three largely distinct groups of methods:

(1) direct methods;
(2) iterative methods;
(3) other types.

The third group consists of such methods as conjugate gradients — see for
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example Engeli, Ginsburg, Rutishauser and Stiefel (1959) for a rather elegant
account, or Reid (1971b) for a more up-to-date approach. These methods have
their uses in various applications but unfortunately cannot find a place in the
present slim volume. The sections on direct methods are not only important as a
summary of some of the basic methods for solving linear equations, but also
provide an introduction to the concepts of matrix factorization, which has many
other applications. One very important application is the solution of the algebraic
eigenvalue problem, viz. for any matrix A determine non-trivial x and A such that

Ax = Ax.

Several excellent texts are available that consider this problem — for example
Wilkinson (1965a) and Gourlay and Watson (1973). The section on iterative
methods for linear systems is delayed until a more appropriate place in Section 5.5
alongside descriptions of iterative methods in general, but it can be read out of
sequence after Chapter 2. :

1.2 Iterative Methiods: An Introduction
Any iterative method consists of three parts:

(1) an initial estimate (or set of estimates) of the solution;
(2) a formula for updating the approximate solution;
(3) a “fail-safe’ procedure for stopping the updating process.

The different components and their relative importance are emphasized when the
iterative process is represented by a flow chart such as Figure 1.

( Start )

Input / compute
initial approximation(s)

Updme—T

mation|

( Stop }

Figure 1 ~ The iterative process
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It is important to distinguish between the iterative algorithm — the total process
from start to stop — and a single part of that process namely, the iteration formula.
To be precise, mathematical (or non-mathematical) statements of (1), (2), (3) do
not constitute an algorithm; it is only a computer implementation of the method
that can justifiably be termed an algorithm. There are usually many different ways
of expressing a particular mathematical formula, but they are rarely equally suitable
as a basis for numerical computation.

A classical example of the difference between ‘suitable’ and ‘unsuitable’
mathematical formulae arises in computing the roots of the quadratic equation

ax? —2bx +c=0.

The roots can be expressed as either

b \/(b? — ac) G ¢
a b F(b? —ac)’

When jac | <b%, b and \/(b - ac) are approximately equal in magnitude. Since
subtracting nearly equal numbers invariably results in a loss of accuracy in the
difference, the roots should be computed as

b +A(b* - ac) c )
a ; b+/(®* —ac)”

if » <0, the minus sign is taken. This particular device for reducing round-off
errors appears again in Sections 5.7 and 6.2.

The terminating condition is always of vital importance and it must anticipate all
possible outcomes of the updating process. The method may not work every time
and so the algorithm should be able to judge when the method has failed. Since
iteration provides a sequence of approximate solutions, the algorithm will reach a
successful conclusion when it adjudges the most recent approximation to be
sufficiently accurate. An additional test in the algorithm should decide when the
iteration has spent enough time/money even though the desired accuracy has not
been attained. It should be noted that the first stage often needs to include more
than a straightforward input of data, it may incorporate a test to ensure that the
initial data are compatible with the update formula; for example, the iteration may
require two numbers x and y such that x <y, in which case it is essential to check
the ordering of the input data. :

In general in this book, it is the updating section of the algorithm that is
discussed. All the update formulae considered in Chapter S require one approximate
solution, invariably denoted by x(") (x(") for a system of equations), and generate
a further approximation x"*1) (x("+1))_ It is to be hoped that x("*1) js a better
approximation than x (), :

Exmnpf . of iteration formulae -
: (1) For ﬁ‘ndi'ng_ a'? for any positive number &; that is for solving the equation
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x2—a=0:
2
1) = X" +a
2% (")
or

' 2
D) =x(")(3a —x(M7)
e Pad ol

Note that both formulae have the solution x) = x(**1) =472,
(2) For solving an arbitrary non-linear equation in the form fx)=0:

gln+1) = yOn) _ {Ef_g‘;('i)—)} ™). (1.1)

(3) For solving a system of linear equations Ax =b, where 4 = {ay},
x=[xy,...,xy]T . and  b=[by,.... 081", _ ]
that is the system of equations
N .
i§1aiixi = by a; #0, e e s
"("‘.”) = [t "xg.ﬂ)]'r

is given in terms of - {
x(n)'_- [x(l")"."xgl)]'r \
!

as

1Y N
x§nt) =— Ea,-,-x}")—b; 3 i Sl tsaoih
i § j=1
i

Exercise
1.1 Write out the formula (1.1) in the particular cases
(@) flx)=x* —a, a>0

1
(b) f(X)=--a
X

13 Algebraic Problems: An Introduction

The types of equations illustrated in the pievious section arise naturally in
the formulation of mathematical models. A few such modéls are given in this
section to emphasize the importance of this area of numerical analysis.
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(a) Chemical equilibrium problems

In simple models of chemical reactions, if it is assumed that all chemicals are
kept well mixed, then spatial differences can be ignored. If, in addition, it is
assumed that the equilibrium state has been reached, then transient effects can be
ignored. The resulting conditions on the equilibrium state reduce to a set of non-
linear algebraic equations.

As an example, consider the problem of finding the acidity of a solution made
from a little soda lime and a lot.of rhubarb leaves, that is a solution of oxalic acid
(COOH), , and sodium hydroxide, NaOH. If we denote by [A] the molecular
concentration of substance A, the equilibrium equations are conservation of mass
and balance of electric charge in the sclution.

The oxalic acid partially dissociates, so that

[(COOH), ] tota1 = [(COOH), ] + [H(COO0);] + [(CO0)3 ] (1.2)
for which the dissociation constants are known to be

_ [H'] [H(CO0); ]

t = " [(COOH), ] e

and

- [H'][(CO0)']

* = "[(co0); ] (14)

. If it is a weak solution, then the sodium hydroxide dissociates completely, so that

 [NaOH] 11 = [Na'].
Since the change is balanced, it follows that
[Nd] + [H*] = [OH] + [H(COO);] +2[(COO)?]. (1.5)
The dissociation constant for water is known to be
K; =[H'][OHT].

Using (1.2)—(1.4) to eliminate the unknowns [(COOH), ], [H(COO);] and
[(CO0)%7] from (1.5) leads to a quartic equation for x = [H*] in terms of the
known values

K1,K;,K3,K4 = [(COOH), Jtotai and K5 = [NaOH] o ¢a)
in the form
fG)=(x* +xKs — K3 )x? +xK, +K,K,) — x(K,x + 2K:K,)K, =0.

It is known that [H*] >0 and [H*] <(K3)'"?, so once the values of K, . .., K
are determined it is possible to use the computer program in Section 6.4 to solve
‘this problem.
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(b) Leontieff input—output analysis

An economic model reduces to a system of algebraic equations only when the
economy is assumed to be in equilibrium. The Leontieff analysis determines the
level of production in an economy wit": many sections, each buying goods from the
others in order to prodnce their own end products. The model could be of the
national economy or of a single large industry with many divisions buying and
selling amongst themselves as well as to the general public.

Let x;; be the volume of sales from industry 7 to industry j. Let x; be the gross
output of industry i and let b; be the external consumer demand for the products of
industry i. Thus it follows that if there are /N industries in the model, then

N

Exi,-+b,~=x,~ i=1;5.. N

j=1

Assume that the sales from industry i to industry j are a fixed multiple of the
production of industry j; then

Xij = CijXj, i,f=1,...,N.

This situation would occur if industry i provided components for each product of
industry j. The model then leads to

N
_la,-]-xj=b,~, l=l,...,N,

J

where all the
—Cij, [#j
1 —cy, 057
and b; (i=1,...,NN)are known.
If it is a model of a particular sector of the economy with some industries

producing components for other industries, the matrix A4 = {a;;} is upper
triangular, that is

a;=0, i>j.

Alternatively if the model is of a very large system such as the national economy,
there will be a large number of zeros corresponding to sections that have no direct
trade. In this case the matrix will be large and sparse and a suitable candidate for
the methods of Section 4.2.

aij o

(c) General market equilibrium

Assume that the supply and demand for each of the products y,, ...,y are not
fixed but are governed by the price of the product and of its competitors. Let S;,
D; and P; be respectively the supply, demand and price of product y;. If the products
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can be substituted one for another to a greater or lesser extent, then the demand
for product y; can be written as

Di=Fi(P1,...,PN), i=1,...,N,
where F; is a non-linear function with known (or estimated) coefficients such as

Fy =aq —ayPy — a3 P} +a3P, +a, P,

where ay, . .., a4 > 0. Supply is also a function of the prices, again not negessarily
a linear function, so that
Si=Gi(Py,...,PN), i=1,...,N

If the market is balanced, then
S;=Dy, i=1,...,N
and the model can be represented as a system of non-linear equations
- f(x)=0,
where
Xx=(Py,...,Py]T  and f=[F, -G,,....Fy-GplT.

The solution of this non-linear system is the system of prices to be charged to
achieve a market in equilibrium.

(d) Electric power networks

Large sparse linear equations arise in the study of power networks. A power
network contains a number of power stations connected by a network of
transmission lines to a number of customers and the object of the analysis is to
investigate the flow, subject to given load conditions.

Assume that there are M branches and NV nodes. Along the jth branch of the
network

Mpj=kf;, j=1,....M

where, in electrical networks, Ap; is the voltage drop, k; is the resistance (ohms) and
fj is the current (amperes). If, at the ith node, the input is F;, where F; < 0 indicates
a flow out of the system, then

zcilfl‘zpi’ i=1,...,N
j
in which
{ 1 flow along branch j towards node 7,
Cgl =

1 flow along branch j away from node i,
0 . node i not on branch .
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The matrix C = {¢;;} is the incidence matrix of the network and this latter can be
interpreted as a directed graph (see Section 4.2). It follows that the pressure drops
Apj can be written in terms of the nodal voltages P; as

SeyPi=Ap,  j=1,...,M.
i

These three sets of equations can be combined as
Ax=b,
where
A= Cdiag(k')CT,
x=[Py,...,PN]T,
b=[Fy,...,Fy]".

The same sets of equations can be used to analyse the flow in a grid of gas
pipelines or any other flow network.

(e) Differential equations

In each of the preceding examples an equilibrium state was reached, but in many
problems the transient state is of interest. Consider the photolysis of nitrogen
dioxide, which is the first step in the production of photochemical smog:

NO, + sunlight >NC + O (reaction rate 4 ),
0+0; +N; =03 +N, (reactioﬁ rate k),
0+20, >0, +0, (reaction rate k,),

NO + 03 -+ NO, + O, (reaction rate k4).

i the concentration of O; is ¢y, the concentration of O is ¢, , the concentration of
NO, is ¢3 and the concentration of NO is ¢4, then the four reactions lead to a
system of coupled differential equations. If it is assumed that the supplies of
sunlight, N, and O, are sufficiently large, this system can be written as

de
d_; =(ky tk3)ey — kacycq,

de,
—==kyc3 — (ky +k3)e;,
dr 163 — (k2 +k3)e,

dCJ
— = —ky¢3 tkacicg,
dt 1¢3 4C144

dc
j =k103 e k4C1C4.

(1.6)
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The initial concentrations ¢, (0), ¢, (0), ¢3(0) and ¢4 (O)f-gre a%ﬁo»}&and the
system can be written as | b
d
b F(c), given ¢(0).
dt
For some value At > 0, let ¢,, = n At and let C, be the finite-difference approxi-
mation to ¢(t,,) such that

(o1 =~ Ca} =4{F(Crar) + FC). : a.n

Proceeding from time 7,, to time ¢, +; , knowing C,,, it is necessary to determine
the C,,4+; that satisfies this non-linear aigebraic system. Very often the methed used
is a predictor—corrector method, which uses the formula (1.7) together with a less
accurate form to provide a value for €, explicitly. Such a formula is

1 .
~ {Cns1 — Cu} =F(Cp). (1.8)

Given C,,, a sequence {x(")} of approximations tc C,+; is produced, where
x(®) satisfies

1
"A_t{x(o) = Cn} = F(Cn)
and where
1
Zt{"(“” —C,}=H{FGx®) -F(,)}, k=0,1,....

This second equation defines an iteration of the type investigated in Chapter 5.
Frequently such a simple iteration does not converge and the non-linear equation
(1.7) has to be solved by alternative methods as in Section 5.8.

(f) Partial differential equations

It is probable that the largest single area in which large sparse systems of
algebraic equations arises is the solution of partial differential equations. A large
number of such problems involve diffusion: diffusion of heat, diffusion of pollutants
in the atmosphere or in rivers, and so on. The diffusion of heat is governed by
Fourier’s law of heat conduction

o k(8% 2%0 0
d (a a__aa)’ 49

ot pc

axt oyt oz’

where

0 = temperature,



&

10-1& Introduction

k= coef,gcient of thermal conductivity,
¢ = specific heat
and p = density.

The coefficient k/pc is called the thermal diffusivity and is denoted by a.
Equations similar to (1.9) can be derived for other forms of diffusion. If the
derivatives in (1.9) are replaced by finite differences, then it is necessary to replace
the continuous function 6 by a sequence of approximate values defined at mesh
points as in the preceding example. An alternative approach based on finité elements
also involves a grid of nodal values. In this example each time level ¢, corresponds
to a three-dimensional network of points. In the resulting system of linear equations
that have to be solved at each time level, the structure is similar to the power
network problems. The mesh points are the nodes and the positions of the branches
joining near neighbours are governed by the choice of difference formula. Unlike
the power networks and the economic models, the finite-difference or finite-
element model has a regular structure that can be exploited in the solution
procedure. For this reason it is appropriate to devote the whole of Section 4.3 to
the solution of such structured problems; in addition, Section 5.5 deals with
methods frequently applied to such problems.

- The construction of the. difference schemes themselves is beyond the scope of
this book and the reader should consult a detailed text such as Mitchell (1969) or
Mitchell and Wait (1977). y




