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Preface

This volume contains the papers presented at the Ninth International Sympo-
sium on Practical Aspects of Declarative Languages (PADL 2007) held on Jan-
uary 14-15, 2007 in Nice, France. Information about the conference can be found
at http://www.informatik.uni-kiel.de/ mh/padl07. Following the tradition
of previous events, PADL 2007 was co-located with the 34th Annual Symposium
on Principles of Programming Languages (POPL 2007) that was held on January
17-19, 2007.

The PADL conference series is a forum for researchers and practioners to
present original work emphasizing novel applications and implementation tech-
niques for all forms of declarative concepts, including functional, logic, con-
straints, etc. Topics of interest include:

— Innovative applications of declarative languages

— Declarative domain-specific languages and applications

Practical applications of theoretical results

— New language developments and their impact on applications

— Evaluation of implementation techniques on practical applications
Novel implementation techniques relevant to applications

— Novel uses of declarative languages in the classroom

Practical experiences

|

In response to the call for papers, 65 abstracts were initially received. Finally,
58 full papers were submitted. Each submission was reviewed by at least three
Program Committee members. The committee decided to accept 19 papers. In
addition, the program also included two invited talks by John Hughes (Chalmers
University of Technology) and Pedro Barahona (Universidade Nova de Lisboa).

I would like to thank the Program Committee members who worked hard to
produce high-quality reviews for the papers with a tight schedule, as well as all
the external reviewers involved in the paper selection. I also would like to thank
Gopal Gupta for his expert advice in many aspects of the conference and his
publicity efforts. Many thanks also to the organizers of POPL 2007 for hosting
PADL 2007 as an affiliated event and to Andrei Voronkov for his continuous
help with the EasyChair system that automates many of the tasks involved in
chairing a conference. Finally, I thank the University of Kiel, the University of
Texas at Dallas, and Compulog Americas for supporting PADL 2007.

October 2006 Michael Hanus
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QuickCheck Testing for Fun and Profit

John Hughes

Chalmers University of Technology,
S-41296 Gothenburg,
Sweden

1 Introduction

One of the nice things about purely functional languages is that functions often
satisfy simple properties, and enjoy simple algebraic relationships. Indeed, if the
functions of an API satisfy elegant laws, that in itself is a sign of a good design—
the laws not only indicate conceptual simplicity, but are useful in practice for
simplifying programs that use the API, by equational reasoning or otherwise. It
is a comfort to us all, for example, to know that in Haskell the following law
holds:

reverse (xs++ys) == reverse xst++reverse ys

where reverse is the list reversal function, and ++ is list append.

It is productive to formulate such laws about one’s code, but there is always
the risk of formulating them incorrectly. A stated law which is untrue is worse
than no law at all! Ideally, of course, one should prove them, but at the very
least, one should try out the law in a few cases—just to avoid stupid mistakes.
We can ease that task a little bit by defining a function to test the law, given
values for its free variables:

prop_revApp Xs ys =
reverse (xs++ys) == reverse xst+reverse ys

Now we can test the law just by applying prop_revApp to suitable pairs of lists.
Inventing such pairs of lists, and running the tests, is tedious, however. Wouldn’t
it be fun to have a tool that would perform that task for us? Then we could simply
write laws in our programs and automatically check that they are reasonable
hypotheses, at least. In 1999, Koen Claessen and I built just such a tool for
Haskell, called “QuickCheck” [4,5,7,6]. Given the definition above, we need only
pass prop_revApp to quickCheck to test the property in 100 random cases:

> quickCheck prop_revApp
Falsifiable, after 2 tests:
[1,-1]

(o]

Doing so exposes at once that the property is not true! The values printed are a
counter-example to the claim, [1,-1] being the value of xs, and [0] the value of
ys. Indeed, inspecting the property more closely, we see that xs and ys are the

M. Hanus (Ed.): PADL 2007, LNCS 4354, pp. 1-32, 2007.
© Springer-Verlag Berlin Heidelberg 2007



2 J. Hughes

wrong way round in the right hand side of the law. After correcting the mistake,
quickChecking the property succeeds:

> quickCheck prop_revApp
0K, passed 100 tests.

While there is no guarantee that the property now holds, we can be very much
more confident that we did not make a stupid mistake. . . particularly after run-
ning another few thousand tests, which is the work of a few more seconds.

We wrote QuickCheck for fun, but it has turned out to be much more useful
and important than we imagined at the time. This paper will describe some of
the uses to which it has since been put.

2 A Simple Example: Skew Heaps

To illustrate the use of QuickCheck in program development, we shall implement
skew heaps (a representation of priority queues), following Chris Okasaki [15]. A
heap is a binary tree with labels in the nodes,

data Tree a = Null | Fork a (Tree a) (Tree a)
deriving (Eq, Show)
empty = Null

such that the value in each node is less than any value in its subtrees:

invariant Null = True

invariant (Fork x 1 r) = smaller x 1 && smaller x r
smaller x Null = True

smaller x (Fork y 1 r) = x <= y && invariant (Fork y 1 r)

Thanks to the invariant, we can extract the minimum element (i.e. the first
element in the queue) very cheaply:

minElem (Fork x _ _) = X

To make other operations on the heap cheap, we aim to keep it roughly balanced—
then the cost of traversing a branch will be logarithmic in the number of elements.
This is achieved in a skew heap by inserting elements into the two subtrees
alternately. No extra information is needed in nodes to keep track of where to
insert next: we always insert into the left subtree, but swap the subtrees after
each insertion—skewing the heap—so that the next insertion chooses the other
subtree.

insert x Null = Fork x Null Null
insert x (Fork y 1 r) = Fork (min x y) r (insert (max x y) 1)

We expect that the two subtrees of a node should be “roughly balanced”, but
what does this mean precisely? A moment’s thought suggests that the left and
right subtrees should contain precisely the same number of elements after an odd
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number of insertions, but the right subtree may be one element larger than the
left one after an even number of insertions. We conjecture that skew heaps are
balanced in the following sense:

balanced Null = True
balanced (Fork _ 1 r) = (d==0 || d==1) && balanced 1 && balanced r

where d = weight r - weight 1

weight Null = O
weight (Fork _ 1 r) = 1 + weight 1 + weight r

Now we can use QuickCheck to test our conjecture. To do so we need to
generate random skew heaps. Since the only function so far that constructs skew
heaps is insert, we can construct any reachable skew heap by choosing a random
list of elements, and inserting them into the empty heap:

make :: [Integer] -> Tree Integer
make ns = foldl (\h n -> insert n h) empty ns

We can now formulate the two properties we are interested in as follows:

prop_invariant ns = invariant (make ns)
prop_balanced ns = balanced (make ns)

We gave make a specific type to control the generation of test data: QuickCheck
generates property arguments based on the type expected, and constraining
the type of make is a convenient way to constrain the argument types of both
properties at the same time. (If we forget this, then QuickCheck cannot tell what
kind of test data to generate, and an “ambiguous overloading” error is reported).
Now we can invoke QuickCheck to confirm our conjecture:

Skew> quickCheck prop_invariant
0K, passed 100 tests.
Skew> quickCheck prop_balanced
OK, passed 100 tests.

We also need an operation to delete the minimum element from a heap. Al-
though finding the element is easy (it is always at the root), deleting it is not,
because we have to merge the two subtrees into one single heap.

deleteMin (Fork x 1 r) = merge 1 r

(In fact, merge is usually presented as part of the interface of skew heaps, even
if its utility for priority queues is less obvious). If either argument is Null, then
merge is easy to define, but how should we merge two non-empty heaps? Clearly,
the root of the merged heap must contain the lesser of the root elements of 1
and r, but that leaves us with three heaps to fit into the two subtrees of the new
Fork—1, r and h below—so two must be merged recursively.. . but which two?
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merge 1 Null =1

merge Null r = r

merge 1 r | minElem 1 <= minElem r = join 1 r
| otherwise join r 1

join (Fork x 1 r) h = Fork x ...

The trick is to realize that the two subtrees of a node are not created equal: we
ensured during insertion that the left subtree is never larger than the right one.
So any recursion should be on the left subtree, guaranteeing that the size of the
recursive argument at least halves at each call, and that the total number of calls
is logarithmic in the size of the heaps. Thus we should merge 1 with h above, not
r, and because merging increases the size of the heap, skew the subtrees again,
so that the next merge will choose r instead.

join (Fork x 1 r) h = Fork x r (merge 1 h)

Is this really right? Let us test our properties again! Of course, now skew
heaps can be constructed by a combination of insertions and deletions, so our
method of generating random reachable heaps is no longer complete. Now we
must generate heaps from a random sequence of insertions and deletions:

data Op = Insert Integer | DeleteMin
deriving Show

make ops = foldl op Null ops
where op h (Insert n) = insert n h
op Null DeleteMin = Null
op h DeleteMin deleteMin h

One difficulty is that a random sequence of insertions and deletions may attempt
to delete an element from an empty heap, provoking an error. There are various
ways to avoid this: we could arrange not to generate such sequences in the first
place, we could generate arbitrary sequences but discard the erroneous ones, or
we can simply ignore any deletions that are applied to an empty heap. In the
code above we chose the last alternative, because it is the simplest to implement.

Note that make now has a different type—it expects a list of Ops as its
argument—and thus so do our two properties. To test them, QuickCheck needs
to be able to generate values of the Op type, and to make that possible, we must
specify a generator for this type.

QuickCheck generators are an abstract data type, with a rich collection of
operations for constructing them. Indeed, provision of first-class generators is
one of the main innovations in QuickCheck. We use the Haskell class system to
associate generators with types, by defining instances of

class Arbitrary a where
arbitrary :: Gen a

The Gen type is also a monad, making available the monad operations
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return :: a -> Gen a
to construct a constant generator, and
(>>=) :: Gen a -> (a -> Gen b) -> Gen b

to sequence two generators—although we usually use the latter via Haskell’s
syntactic sugar, the do-notation.
So, we specify how Op values should be generated as follows:

instance Arbitrary Op where
arbitrary =
frequency [(2,do n <- arbitrary; return (Insert n)),
(1,return DeleteMin)]

The frequency function combines weighted alternatives—here we generate an
insertion twice as often as a deletion, since otherwise the resulting heaps would
often be very small. In the first alternative, we choose an arbitrary Integer
and generate an Insert containing it; in the second alternative we generate a
DeleteMin directly.

Now we can check that any sequence of insertions and deletions preserves the
heap invariant

Skew> quickCheck prop_invariant
0K, passed 100 tests.

and that skew heaps remain balanced:

Skew> quickCheck prop_balanced

Falsifiable, after 37 tests:

[DeleteMin,Insert (-9),Insert (-18),Insert (-14),Insert 5,
Insert (-13),Insert (-8),Insert 13,DeleteMin,DeleteMinl]

Oh dear! Clearly, deletion does not preserve the balance condition. But maybe
the balance condition is too strong? All we really needed above was that the left
subtree is no larger than the right—so let’s call a node “good” if that is the case.

good (Fork _ 1 r) = weight 1 <= weight r

Now, if all the nodes in a heap are good, then insert and merge will still run in
logarithmic time. We can define and test the property that all nodes are good:

Skew> quickCheck prop_AllGood

Falsifiable, after 55 tests:

[Insert (-7),DeleteMin,Insert (-16),Insert (-14),DeleteMin,
DeleteMin,DeleteMin, Insert (-21),Insert (-8),Insert 3,
Insert (-1),Insert 1,DeleteMin,DeleteMin,Insert (-12),
Insert 17,Insert 13]

Oh dear dear! Evidently, skew heaps contain a mixture of good and bad nodes.
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Consulting Okasaki, we find the key insight behind the efficiency of skew
heaps: although bad nodes are more costly to process, they are cheaper to con-
struct! Whenever we construct a bad node with a large left subtree, then at the
same time we recurse to create an unusually small right subtree—so this recur-
sion is cheaper than expected. What we lose on the swings, we regain on the
roundabouts, making for logarithmic amortized complexity.

To formalise this argument, Okasaki introduces the notion of “credits”—each
bad node carries one credit, which must be supplied when it is created, and can
be consumed when it is processed.

credits Null = 0
credits h@(Fork _ 1 r) =
credits 1 + credits r + if good h then 0 else 1

Since we cannot directly observe the cost of insertion and deletion, we define a
function cost_insert h that returns the number of recursive calls of insert
made when inserting into h, and cost_deleteMin h, which returns the number
of calls of join made when deleting from h (definitions omitted). Now, we claim
that on average each insertion or deletion in a heap of n nodes traverses only
log2 n nodes, and creates equally many new, possibly bad nodes, so 2¥1og2 n
credits should suffice for each call. (The first log2 n credits pay for the recursion
in this call, and the second log2 n credits pay for bad nodes in the result).
If we now specify

prop_cost_insert n ops =
cost_insert h <= 2xlog2 (weight h) + 1
where h = make ops

then QuickCheck finds a counterexample!, because this property only holds on
average, but when we take credits into account

prop_cost_insert n ops =
cost_insert h + credits (insert n h)
<=
2x1log2 (weight h) + 1 + credits h
where h = make ops

then the property passes hundreds of thousands of tests. Likewise, the property

prop_cost_deleteMin ops =
h/=Null ==
cost_deleteMin h + credits (deleteMin h)
<=
2xlog2 (weight h) + credits h
where h = make ops

! Only one test case in around 3,000 is a counterexample. This is because the method
we use to generate heaps produces rather few bad nodes. Counterexamples can
be found more quickly by generating heaps directly, rather than via insert and
deleteMin, so that the proportion of bad nodes can be increased.



