Michael Hanus (Ed.)

Practical Aspects
of Declarative
Languages

9th International Symposium, PADL 2007
Nice, France, January 2007
Proceedings

LNCS 4354

@ Springer

Michael Hanus (Ed.)

Practical Aspects
of Declarative
LLanguages

9th International Symposium, PADL 2007
Nice, France, January 14-15, 2007
Proceedings

@ Springer

Volume Editor

Michael Hanus
Christian-Albrechts-Universitit Kiel
Institut fiir Informatik

24098 Kiel, Germany

E-mail: mh@informatik.uni-kiel.de

Library of Congress Control Number: 2006939136

CR Subject Classification (1998): D.3, D.1, F.3, D.2
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-69608-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-69608-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11968177 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4354

Preface

This volume contains the papers presented at the Ninth International Sympo-
sium on Practical Aspects of Declarative Languages (PADL 2007) held on Jan-
uary 14-15, 2007 in Nice, France. Information about the conference can be found
at http://www.informatik.uni-kiel.de/ mh/padl07. Following the tradition
of previous events, PADL 2007 was co-located with the 34th Annual Symposium
on Principles of Programming Languages (POPL 2007) that was held on January
17-19, 2007.

The PADL conference series is a forum for researchers and practioners to
present original work emphasizing novel applications and implementation tech-
niques for all forms of declarative concepts, including functional, logic, con-
straints, etc. Topics of interest include:

— Innovative applications of declarative languages

— Declarative domain-specific languages and applications

Practical applications of theoretical results

— New language developments and their impact on applications

— Evaluation of implementation techniques on practical applications
Novel implementation techniques relevant to applications

— Novel uses of declarative languages in the classroom

Practical experiences

|

In response to the call for papers, 65 abstracts were initially received. Finally,
58 full papers were submitted. Each submission was reviewed by at least three
Program Committee members. The committee decided to accept 19 papers. In
addition, the program also included two invited talks by John Hughes (Chalmers
University of Technology) and Pedro Barahona (Universidade Nova de Lisboa).

I would like to thank the Program Committee members who worked hard to
produce high-quality reviews for the papers with a tight schedule, as well as all
the external reviewers involved in the paper selection. I also would like to thank
Gopal Gupta for his expert advice in many aspects of the conference and his
publicity efforts. Many thanks also to the organizers of POPL 2007 for hosting
PADL 2007 as an affiliated event and to Andrei Voronkov for his continuous
help with the EasyChair system that automates many of the tasks involved in
chairing a conference. Finally, I thank the University of Kiel, the University of
Texas at Dallas, and Compulog Americas for supporting PADL 2007.

October 2006 Michael Hanus

Conference Organization

Program Chair

Michael Hanus

Institut fiir Informatik
Christian-Albrechts-Universitat Kiel
24098 Kiel, Germany

E-mail: mh@informatik.uni-kiel.de

General Chair

Gopal Gupta

Department of Computer Science
University of Texas at Dallas
Dallas, Texas, USA

E-mail: gupta@utdallas.edu

Program Committee

Matthias Blume Toyota Technological Institute at Chicago, USA
Manuel Chakravarty University of New South Wales, Australia
Marc Feeley University of Montreal, Canada

Hai-Feng Guo University of Nebraska at Omaha, USA
Gopal Gupta University of Texas at Dallas, USA
Michael Hanus University of Kiel, Germany (Chair)
Michael Leuschel University of Diisseldorf, Germany

Simon Peyton Jones Microsoft Research, Cambridge, UK
Enrico Pontelli New Mexico State University, USA
Germéan Puebla Technical University of Madrid, Spain
Francesca Rossi University of Padova, Italy

Michel Rueher University of Nice, France

Christian Schulte Royal Institute of Technology, Sweden
Zoltan Somogyi University of Melbourne, Australia

Peter Stuckey University of Melbourne, Australia
Doaitse Swierstra Utrecht University, The Netherlands
Simon Thompson University of Kent, UK

Pascal Van Hentenryck Brown University, USA
German Vidal Technical University of Valencia, Spain

VIII Organization

External Reviewers

Slim Abdennadher
Alex Aiken
Beatriz Alarcon
Jesus Almendros
Puri Arenas

Ajay Bansal

Jens Bendisposto
Gilles Bernot
Gavin Bierman
Stefano Bistarelli

Mireille Blay-Fornarino

Dan Licata
Suhabe Bugrara
Daniel Cabeza
Manuel Carro
John Clements
Jesus Correas
John Dias

Frank Dignum
Greg Duck
Martin Erwig
Marc Feeley
Amy Felty
Matthew Flatt
Matthew Fluet
Marc Fontaine
Arnaud Gotlieb
Dan Grossman
Raul Gutierrez
David Haguenauer
Kevin Hammond
Stefan Holdermans
Jose Iborra,
Johan Jeuring
Andrew Kennedy
Andy King

Karl Klose
Srividya Kona
Marco Kuhlmann

Mikael Z. Lagerkvist
Mario Latendresse
Roman Leshchinksiy
Rainer Leupers
Olivier Lhomme
Sylvain Lippi
Andres Loeh
Michael Maher
Ajay Mallya
Massimo Marchiori
Stefan Monnier
Jose Morales
Claudio Ochoa
Ross Paterson
Inna Pivkina
Bernie Pope

Fred Popowich
Norman Ramsey
Francesca Rossi
Michel Rueher
Claudio Russo
Jean-Charles Régin
Kostis Sagonas

Jaime Sanchez-Hernandez

Dietmar Seipel
Manuel Serrano
Luke Simon
Harald Sondergaard
Don Stewart
Martin Sulzmann
Don Syme

Guido Tack

Peter Thiemann
Son Cao Tran
Alicia Villanueva
Qian Wang

Roland Yap
Damiano Zanardini
Neng-Fa Zhou

Lecture Notes in Computer Science

For information about Vols. 1-4271

please contact your bookseller or Springer

Vol.4377: M. Abe (Ed.), Topics in Cryptology — CT-RSA
2007. X1, 403 pages. 2006.

Vol. 4369: M. Umeda, A. Wolf, O. Bartenstein, U. Geske,
D. Seipel, O. Takata (Eds.), Declarative Programming
for Knowledge Management. X, 229 pages. 2006. (Sub-
library LNAI).

Vol. 4367: K. De Bosschere, D. Kaeli, P. Stenstrém, D.
Whalley, T. Ungerer (Eds.), High Performance Embed-
ded Architectures and Compilers. X1, 307 pages. 2006.

Vol. 4361: H.J. Hoogeboom, G. Paun, G. Rozenberg, A.
Salomaa (Eds.), Membrane Computing. IX, 555 pages.
2006.

Vol. 4357: L. Buttydn, V. Gligor, D. Westhoff (Eds.),
Security and Privacy in Ad-hoc and Sensor Neworks. X,
193 pages. 2006.

Vol. 4355: J. Julliand, O. Kouchnarenko (Eds.), B 2007:
Formal Specification and Development in B. XIII, 293
pages. 2006.

Vol. 4354: M. Hanus (Ed.), Practical Aspects of Declar-
ative Languages. X, 335 pages. 2006.

Vol. 4353: T. Schwentick, D. Suciu (Eds.), Database The-
ory — ICDT 2007. X1, 419 pages. 2006.

Vol. 4352: T.-J. Cham, J. Cai, D. Rajan, T.-S. Chua, L.-T.
Chia (Eds.), Advances in Multimedia Modeling, Part II.
XVIII, 743 pages. 2007.

Vol. 4351: T.-J. Cham, J. Cai, C. Dorai, D. Rajan, T.-S.
Chua, L.-T. Chia (Eds.), Advances in Multimedia Mod-
eling, Part I. XIX, 797 pages. 2007.

Vol. 4348: S.T. Taft, R.A. Duff, R.L. Brukardt, E. Ploed-
ereder, P. Leroy (Eds.), Ada 2005 Reference Manual.
XXI1I, 765 pages. 2006.

Vol. 4347: J. Lopez (Ed.), Critical Information Infras-
tructures Security. X, 286 pages. 2006.

Vol. 4345: N. Maglaveras, I. Chouvarda, V. Koutkias, R.
Brause (Eds.), Biological and Medical Data Analysis.
XITII, 496 pages. 2006. (Sublibrary LNBI).

Vol. 4344: V. Gruhn, F. Oquendo (Eds.), Software Archi-
tecture. X, 245 pages. 2006.

Vol. 4342: H. de Swart, E. Ortowska, G. Schmidt, M.
Roubens (Eds.), Theory and Applications of Relational
Structures as Knowledge Instruments II. X, 373 pages.
2006. (Sublibrary LNAT).

Vol. 4341: P.Q. Nguyen (Ed.), Progress in Cryptology -
VIETCRYPT 2006. X1, 385 pages. 2006.

Vol. 4340: R. Prodan, T. Fahringer, Grid Computing.
XXIII, 317 pages. 2006.

" Vol. 4339: E. Ayguadé, G. Baumgartner, J. Ramanujam,
P. Sadayappan (Eds.), Languages and Compilers for Par-
allel Computing. XI, 476 pages. 2006.

Vol. 4338: P. Kalra, S. Peleg (Eds.), Computer Vision,
Graphics and Image Processing. XV, 965 pages. 2006.

Vol. 4337: S. Arun-Kumar, N. Garg (Eds.), FSTTCS
2006: Foundations of Software Technology and Theo-
retical Computer Science. XIII, 430 pages. 2006.

Vol. 4334: B. Beckert, R. Hahnle, P.H. Schmitt (Eds.),
Verification of Object-Oriented Software. XXIX, 658
pages. 2006. (Sublibrary LNAI).

Vol. 4333: U. Reimer, D. Karagiannis (Eds.), Practical
Aspects of Knowledge Management. XII, 338 pages.
2006. (Sublibrary LNALI).

Vol. 4332: A. Bagchi, V. Atluri (Eds.), Information Sys-
tems Security. XV, 382 pages. 2006.

Vol. 4331: G. Min, B. Di Martino, L.T. Yang, M. Guo, G.
Ruenger (Eds.), Frontiers of High Performance Comput-
ing and Networking — ISPA 2006 Workshops. XXXVII,
1141 pages. 2006.

Vol. 4330: M. Guo, L.T. Yang, B. Di Martino, H.P. Zima,
J. Dongarra, F. Tang (Eds.), Parallel and Distributed Pro-
cessing and Applications. XVIII, 953 pages. 2006.

Vol. 4329: R. Barua, T. Lange (Eds.), Progress in Cryp-
tology - INDOCRYPT 2006. X, 454 pages. 2006.

Vol. 4328: D. Penkler, M. Reitenspiess, F. Tam (Eds.),
Service Availability. X, 289 pages. 2006.

Vol. 4327: M. Baldoni, U. Endriss (Eds.), Declarative
Agent Languages and Technologies I'V. VIII, 257 pages.
2006. (Sublibrary LNAI).

Vol. 4326: S. Gébel, R. Malkewitz, I. Iurgel (Eds.), Tech-
nologies for Interactive Digital Storytelling and Enter-
tainment. X, 384 pages. 2006.

Vol. 4325:J. Cao, I. Stojmenovic, X. Jia, S.K. Das (Eds.),
Mobile Ad-hoc and Sensor Networks. XIX, 887 pages.
2006.

Vol. 4320: R. Gotzhein, R. Reed (Eds.), System Analysis
and Modeling: Language Profiles. X, 229 pages. 2006.

Vol. 4319: L.-W. Chang, W.-N. Lie (Eds.), Advances in
Image and Video Technology. XX VI, 1347 pages. 2006.

Vol. 4318: H. Lipmaa, M. Yung, D. Lin (Eds.), Informa-
tion Security and Cryptology. XI, 305 pages. 2006.

Vol. 4317: S.K. Madria, K.T. Claypool, R. Kannan, P.
Uppuluri, M.M. Gore (Eds.), Distributed Computing and
Internet Technology. XIX, 466 pages. 2006.

Vol. 4316: M.M. Dalkilic, S. Kim, J. Yang (Eds.), Data
Mining and Bioinformatics. VIII, 197 pages. 2006. (Sub-
library LNBI).

Vol. 4313: T. Margaria, B. Steffen (Eds.), Leveraging
Applications of Formal Methods. IX, 197 pages. 2006.

Vol. 4312: S. Sugimoto, J. Hunter, A. Rauber, A. Mor-
ishima (Eds.), Digital Libraries: Achievements, Chal-
lenges and Opportunities. XVIII, 571 pages. 2006.

Vol. 4311: K. Cho, P. Jacquet (Eds.), Technologies for
Advanced Heterogeneous Networks II. XI, 253 pages.
2006.

Vol. 4309: P. Inverardi, M. Jazayeri (Eds.), Software En-
gineering Education in the Modern Age. VIII, 207 pages.
2006.

Vol. 4308: S. Chaudhuri, S.R. Das, H.S. Paul, S. Tirtha-
pura (Eds.), Distributed Computing and Networking.
XIX, 608 pages. 2006.

Vol. 4307: P. Ning, S. Qing, N. Li (Eds.), Information
and Communications Security. XIV, 558 pages. 2006.

Vol. 4306: Y. Avrithis, Y. Kompatsiaris, S. Staab, N.E.
O’Connor (Eds.), Semantic Multimedia. XII, 241 pages.
2006.

Vol. 4305: A.A. Shvartsman (Ed.), Principles of Dis-
tributed Systems. XIII, 441 pages. 2006.

Vol. 4304: A. Sattar, B.-h. Kang (Eds.), AI 2006: Ad-
vances in Artificial Intelligence. XXVII, 1303 pages.
2006. (Sublibrary LNAI).

Vol. 4303: A. Hoffmann, B.-h. Kang, D. Richards, S.
Tsumoto (Eds.), Advances in Knowledge Acquisition
and Management. XI, 259 pages. 2006. (Sublibrary
LNAI).

Vol. 4302: J. Domingo-Ferrer, L. Franconi (Eds.), Pri-
vacy in Statistical Databases. XI, 383 pages. 2006.

Vol. 4301: D. Pointcheval, Y. Mu, K. Chen (Eds.), Cryp-
tology and Network Security. XIII, 381 pages. 2006.

Vol. 4300: Y.Q. Shi (Ed.), Transactions on Data Hiding
and Multimedia Security 1. IX, 139 pages. 2006.

Vol. 4299: S. Renals, S. Bengio, J.G. Fiscus (Eds.), Ma-
chine Learning for Multimodal Interaction. XII, 470
pages. 2006.

Vol. 4297: Y. Robert, M. Parashar, R. Badrinath, VK.
Prasanna (Eds.), High Performance Computing - HiPC
2006. XXIV, 642 pages. 2006.

Vol. 4296: M.S. Rhee, B. Lee (Eds.), Information Se-
curity and Cryptology — ICISC 2006. XIII, 358 pages.
2006.

Vol. 4295: J.D. Carswell, T. Tezuka (Eds.), Web and
Wireless Geographical Information Systems. XI, 269
pages. 2006.

Vol. 4294: A. Dan, W. Lamersdorf (Eds.), Service-
Oriented Computing — ICSOC 2006. XIX, 653 pages.
2006.

Vol. 4293: A. Gelbukh, C.A. Reyes-Garcia (Eds.), MI-
CAI 2006: Advances in Artificial Intelligence. XX VIII,
1232 pages. 2006. (Sublibrary LNAI).

Vol. 4292: G. Bebis, R. Boyle, B. Parvin, D. Koracin, P.
Remagnino, A. Nefian, G. Meenakshisundaram, V. Pas-
cucci, J. Zara, J. Molineros, H. Theisel, T. Malzbender
(Eds.), Advances in Visual Computing, Part II. XXXII,
906 pages. 2006.

Vol. 4291: G. Bebis, R. Boyle, B. Parvin, D. Koracin, P.
Remagnino, A. Nefian, G. Meenakshisundaram, V. Pas-
cucci, J. Zara, J. Molineros, H. Theisel, T. Malzbender
(Eds.), Advances in Visual Computing, Part I. XXXI,
916 pages. 2006.

Vol. 4290: M. van Steen, M. Henning (Eds.), Middleware
2006. XIII, 425 pages. 2006.

Vol. 4289: M. Ackermann, B. Berendt, M. Grobelnik, -

A. Hotho, D. Mladeni¢, G. Semeraro, M. Spiliopoulou,
G. Stumme, V. Svatek, M. van Someren (Eds.), Seman-
tics, Web and Mining. X, 197 pages. 2006. (Sublibrary
LNAI).

Vol. 4288: T. Asano (Ed.), Algorithms and Computation.
XX, 766 pages. 2006.

Vol. 4287: C.Mao, T. Yokomori (Eds.), DNA Computing.
XII, 440 pages. 2006.

Vol. 4286: P. Spirakis, M. Mavronicolas, S. Kontogiannis
(Eds.), Internet and Network Economics. XI, 401 pages.
2006.

Vol. 4285: Y. Matsumoto, R. Sproat, K.-F. Wong, M.
Zhang (Eds.), Computer Processing of Oriental Lan-
guages. XVII, 544 pages. 2006. (Sublibrary LNAI).

Vol. 4284: X. Lai, K. Chen (Eds.), Advances in Cryptol-
ogy — ASIACRYPT 2006. XIV, 468 pages. 2006.

Vol. 4283: Y.Q. Shi, B. Jeon (Eds.), Digital Watermark-
ing. XII, 474 pages. 2006.

Vol. 4282: Z. Pan, A. Cheok, M. Haller, R. W.H. Lau, H.
Saito, R. Liang (Eds.), Advances in Artificial Reality and
Tele-Existence. XXIII, 1347 pages. 2006.

Vol. 4281: K. Barkaoui, A. Cavalcanti, A. Cerone (Eds.),
Theoretical Aspects of Computing - ICTAC 2006. XV,
371 pages. 2006.

Vol. 4280: A.K. Datta, M. Gradinariu (Eds.), Stabiliza-
tion, Safety, and Security of Distributed Systems. XVII,
590 pages. 2006.

Vol. 4279: N. Kobayashi (Ed.), Programming Languages
and Systems. XI, 423 pages. 2006.

Vol. 4278: R. Meersman, Z. Tari, P. Herrero (Eds.), On
the Move to Meaningful Internet Systems 2006: OTM
2006 Workshops, Part II. XLV, 1004 pages. 2006.

Vol. 4277: R. Meersman, Z. Tari, P. Herrero (Eds.), On
the Move to Meaningful Internet Systems 2006: OTM
2006 Workshops, Part I. XLV, 1009 pages. 2006.

Vol. 4276: R. Meersman, Z. Tari (Eds.), On the Move
to Meaningful Internet Systems 2006: CooplS, DOA,
GADA, and ODBASE, Part II. XXXII, 752 pages. 2006.

Vol. 4275: R. Meersman, Z. Tari (Eds.), On the Move
to Meaningful Internet Systems 2006: CooplS, DOA,
GADA, and ODBASE, Part I. XXXI, 1115 pages. 2006.

Vol. 4274: Q. Huo, B. Ma, E.-S. Chng, H. Li (Eds.), Chi-
nese Spoken Language Processing. XXIV, 805 pages.
2006. (Sublibrary LNAI).

Vol. 4273: 1. Cruz, S. Decker, D. Allemang, C. Preist,
D. Schwabe, P. Mika, M. Uschold, L. Aroyo (Eds.), The
Semantic Web - ISWC 2006. XXIV, 1001 pages. 2006.

Vol. 4272: P. Havinga, M. Lijding, N. Meratnia, M. Weg-
dam (Eds.), Smart Sensing and Context. XI, 267 pages.
2006.

Table of Contents

QuickCheck Testing for Fun and Profit (Invited Talk) 1
John Hughes

A Constraint Programming Approach to Bioinformatics Structural
Problems (Invited Talk), 33
Pedro Barahona and Ludwig Krippahl

Rewriting Haskell Stringso 50
Duncan Coutts, Don Stewart, and Roman Leshchinskiy

Instantly Turning a Naive Exhaustive Search into Three Efficient
Searches with Pruning 65
Takeshi Morimoto, Yasunao Takano, and Hideya Iwasaki

Algebraic Knowledge Discovery Using Haskell 80
Jens Fisseler, Gabriele Kern-Isberner, Christoph Beierle,
Andreas Koch, and Christian Miiller

Applications, Implementation and Performance Evaluation of Bit
Stream Programming in Erlang L. 94
Per Gustafsson and Konstantinos Sagonas

Automatic Incrementalization of Prolog Based Static Analyses......... 109
Michael FEichberg, Matthias Kahl, Diptikalyan Saha,
Mira Mezini, and Klaus Ostermann

Verification of Java Bytecode Using Analysis and Transformation of

Logic Programs :«:ssisisvsssisimsivisisnssas s saimasaioiinsas o 124
Elvira Albert, Miguel Gomez-Zamalloa, Laurent Hubert, and
German Puebla

Combining Static Analysis and Profiling for Estimating Execution

THIIES s 5ix ncsmmrmsmmrws ssms eEsEs s@ims LR s BHEBIEPIMI PRI NS HAsEa § 936 140
FEdison Mera, Pedro Lopez-Garcia, Germdn Puebla,
Manuel Carro, and Manuel V. Hermenegildo

On Improving the Efficiency and Robustness of Table Storage
Mechanisms for Tabled Evaluation 155
Ricardo Rocha

Compiling Constraint Handling Rules for Efficient Tabled Evaluation ... 170
Beata Sarna-Starosta and C.R. Ramakrishnan

Prolog Performance on Larger Datasets 185
Vitor Santos Costa

X Table of Contents

BAD, a Declarative Logic-Based Language for Brain Modeling 200
Alan H. Bond
From Zinc to Design Model i 215

Reza Rafeh, Maria Garcia de la Banda, Kim Marriott, and
Mark Wallace

Inductive Logic Programming by Instance Patterns................... 230
Chongbing Liu and Enrico Pontelli

ARMC: The Logical Choice for Software Model Checking with
Abstraction Refinement 245
Andreas Podelski and Andrey Rybalchenko

The Joins Concurrency Library 260
Claudio Russo

HPorter: Using Arrows to Compose Parallel Processes 275
Liwen Huang, Paul Hudak, and John Peterson

Coupled Schema Transformation and Data Conversion for
XML and SQL: 5 cssmesms smams sims 55505 £5 505 dmsmmnmanmamemasme v 290
Pablo Berdaguer, Alcino Cunha, Hugo Pacheco, and Joost Visser

Aspect-Oriented Programming in Higher-Order and Linear Logic 305
Chuck C. Liang

Partial Evaluation of Pointcuts 320
Karl Klose, Klaus Ostermann, and Michael Leuschel

Author Index 335

QuickCheck Testing for Fun and Profit

John Hughes

Chalmers University of Technology,
S-41296 Gothenburg,
Sweden

1 Introduction

One of the nice things about purely functional languages is that functions often
satisfy simple properties, and enjoy simple algebraic relationships. Indeed, if the
functions of an API satisfy elegant laws, that in itself is a sign of a good design—
the laws not only indicate conceptual simplicity, but are useful in practice for
simplifying programs that use the API, by equational reasoning or otherwise. It
is a comfort to us all, for example, to know that in Haskell the following law
holds:

reverse (xs++ys) == reverse xst++reverse ys

where reverse is the list reversal function, and ++ is list append.

It is productive to formulate such laws about one’s code, but there is always
the risk of formulating them incorrectly. A stated law which is untrue is worse
than no law at all! Ideally, of course, one should prove them, but at the very
least, one should try out the law in a few cases—just to avoid stupid mistakes.
We can ease that task a little bit by defining a function to test the law, given
values for its free variables:

prop_revApp Xs ys =
reverse (xs++ys) == reverse xst+reverse ys

Now we can test the law just by applying prop_revApp to suitable pairs of lists.
Inventing such pairs of lists, and running the tests, is tedious, however. Wouldn’t
it be fun to have a tool that would perform that task for us? Then we could simply
write laws in our programs and automatically check that they are reasonable
hypotheses, at least. In 1999, Koen Claessen and I built just such a tool for
Haskell, called “QuickCheck” [4,5,7,6]. Given the definition above, we need only
pass prop_revApp to quickCheck to test the property in 100 random cases:

> quickCheck prop_revApp
Falsifiable, after 2 tests:
[1,-1]

(o]

Doing so exposes at once that the property is not true! The values printed are a
counter-example to the claim, [1,-1] being the value of xs, and [0] the value of
ys. Indeed, inspecting the property more closely, we see that xs and ys are the

M. Hanus (Ed.): PADL 2007, LNCS 4354, pp. 1-32, 2007.
© Springer-Verlag Berlin Heidelberg 2007

2 J. Hughes

wrong way round in the right hand side of the law. After correcting the mistake,
quickChecking the property succeeds:

> quickCheck prop_revApp
0K, passed 100 tests.

While there is no guarantee that the property now holds, we can be very much
more confident that we did not make a stupid mistake. . . particularly after run-
ning another few thousand tests, which is the work of a few more seconds.

We wrote QuickCheck for fun, but it has turned out to be much more useful
and important than we imagined at the time. This paper will describe some of
the uses to which it has since been put.

2 A Simple Example: Skew Heaps

To illustrate the use of QuickCheck in program development, we shall implement
skew heaps (a representation of priority queues), following Chris Okasaki [15]. A
heap is a binary tree with labels in the nodes,

data Tree a = Null | Fork a (Tree a) (Tree a)
deriving (Eq, Show)
empty = Null

such that the value in each node is less than any value in its subtrees:

invariant Null = True

invariant (Fork x 1 r) = smaller x 1 && smaller x r
smaller x Null = True

smaller x (Fork y 1 r) = x <= y && invariant (Fork y 1 r)

Thanks to the invariant, we can extract the minimum element (i.e. the first
element in the queue) very cheaply:

minElem (Fork x _ _) = X

To make other operations on the heap cheap, we aim to keep it roughly balanced—
then the cost of traversing a branch will be logarithmic in the number of elements.
This is achieved in a skew heap by inserting elements into the two subtrees
alternately. No extra information is needed in nodes to keep track of where to
insert next: we always insert into the left subtree, but swap the subtrees after
each insertion—skewing the heap—so that the next insertion chooses the other
subtree.

insert x Null = Fork x Null Null
insert x (Fork y 1 r) = Fork (min x y) r (insert (max x y) 1)

We expect that the two subtrees of a node should be “roughly balanced”, but
what does this mean precisely? A moment’s thought suggests that the left and
right subtrees should contain precisely the same number of elements after an odd

QuickCheck Testing for Fun and Profit 3

number of insertions, but the right subtree may be one element larger than the
left one after an even number of insertions. We conjecture that skew heaps are
balanced in the following sense:

balanced Null = True
balanced (Fork _ 1 r) = (d==0 || d==1) && balanced 1 && balanced r

where d = weight r - weight 1

weight Null = O
weight (Fork _ 1 r) = 1 + weight 1 + weight r

Now we can use QuickCheck to test our conjecture. To do so we need to
generate random skew heaps. Since the only function so far that constructs skew
heaps is insert, we can construct any reachable skew heap by choosing a random
list of elements, and inserting them into the empty heap:

make :: [Integer] -> Tree Integer
make ns = foldl (\h n -> insert n h) empty ns

We can now formulate the two properties we are interested in as follows:

prop_invariant ns = invariant (make ns)
prop_balanced ns = balanced (make ns)

We gave make a specific type to control the generation of test data: QuickCheck
generates property arguments based on the type expected, and constraining
the type of make is a convenient way to constrain the argument types of both
properties at the same time. (If we forget this, then QuickCheck cannot tell what
kind of test data to generate, and an “ambiguous overloading” error is reported).
Now we can invoke QuickCheck to confirm our conjecture:

Skew> quickCheck prop_invariant
0K, passed 100 tests.
Skew> quickCheck prop_balanced
OK, passed 100 tests.

We also need an operation to delete the minimum element from a heap. Al-
though finding the element is easy (it is always at the root), deleting it is not,
because we have to merge the two subtrees into one single heap.

deleteMin (Fork x 1 r) = merge 1 r

(In fact, merge is usually presented as part of the interface of skew heaps, even
if its utility for priority queues is less obvious). If either argument is Null, then
merge is easy to define, but how should we merge two non-empty heaps? Clearly,
the root of the merged heap must contain the lesser of the root elements of 1
and r, but that leaves us with three heaps to fit into the two subtrees of the new
Fork—1, r and h below—so two must be merged recursively.. . but which two?

4 J. Hughes

merge 1 Null =1

merge Null r = r

merge 1 r | minElem 1 <= minElem r = join 1 r
| otherwise join r 1

join (Fork x 1 r) h = Fork x ...

The trick is to realize that the two subtrees of a node are not created equal: we
ensured during insertion that the left subtree is never larger than the right one.
So any recursion should be on the left subtree, guaranteeing that the size of the
recursive argument at least halves at each call, and that the total number of calls
is logarithmic in the size of the heaps. Thus we should merge 1 with h above, not
r, and because merging increases the size of the heap, skew the subtrees again,
so that the next merge will choose r instead.

join (Fork x 1 r) h = Fork x r (merge 1 h)

Is this really right? Let us test our properties again! Of course, now skew
heaps can be constructed by a combination of insertions and deletions, so our
method of generating random reachable heaps is no longer complete. Now we
must generate heaps from a random sequence of insertions and deletions:

data Op = Insert Integer | DeleteMin
deriving Show

make ops = foldl op Null ops
where op h (Insert n) = insert n h
op Null DeleteMin = Null
op h DeleteMin deleteMin h

One difficulty is that a random sequence of insertions and deletions may attempt
to delete an element from an empty heap, provoking an error. There are various
ways to avoid this: we could arrange not to generate such sequences in the first
place, we could generate arbitrary sequences but discard the erroneous ones, or
we can simply ignore any deletions that are applied to an empty heap. In the
code above we chose the last alternative, because it is the simplest to implement.

Note that make now has a different type—it expects a list of Ops as its
argument—and thus so do our two properties. To test them, QuickCheck needs
to be able to generate values of the Op type, and to make that possible, we must
specify a generator for this type.

QuickCheck generators are an abstract data type, with a rich collection of
operations for constructing them. Indeed, provision of first-class generators is
one of the main innovations in QuickCheck. We use the Haskell class system to
associate generators with types, by defining instances of

class Arbitrary a where
arbitrary :: Gen a

The Gen type is also a monad, making available the monad operations

QuickCheck Testing for Fun and Profit 5

return :: a -> Gen a
to construct a constant generator, and
(>>=) :: Gen a -> (a -> Gen b) -> Gen b

to sequence two generators—although we usually use the latter via Haskell’s
syntactic sugar, the do-notation.
So, we specify how Op values should be generated as follows:

instance Arbitrary Op where
arbitrary =
frequency [(2,do n <- arbitrary; return (Insert n)),
(1,return DeleteMin)]

The frequency function combines weighted alternatives—here we generate an
insertion twice as often as a deletion, since otherwise the resulting heaps would
often be very small. In the first alternative, we choose an arbitrary Integer
and generate an Insert containing it; in the second alternative we generate a
DeleteMin directly.

Now we can check that any sequence of insertions and deletions preserves the
heap invariant

Skew> quickCheck prop_invariant
0K, passed 100 tests.

and that skew heaps remain balanced:

Skew> quickCheck prop_balanced

Falsifiable, after 37 tests:

[DeleteMin,Insert (-9),Insert (-18),Insert (-14),Insert 5,
Insert (-13),Insert (-8),Insert 13,DeleteMin,DeleteMinl]

Oh dear! Clearly, deletion does not preserve the balance condition. But maybe
the balance condition is too strong? All we really needed above was that the left
subtree is no larger than the right—so let’s call a node “good” if that is the case.

good (Fork _ 1 r) = weight 1 <= weight r

Now, if all the nodes in a heap are good, then insert and merge will still run in
logarithmic time. We can define and test the property that all nodes are good:

Skew> quickCheck prop_AllGood

Falsifiable, after 55 tests:

[Insert (-7),DeleteMin,Insert (-16),Insert (-14),DeleteMin,
DeleteMin,DeleteMin, Insert (-21),Insert (-8),Insert 3,
Insert (-1),Insert 1,DeleteMin,DeleteMin,Insert (-12),
Insert 17,Insert 13]

Oh dear dear! Evidently, skew heaps contain a mixture of good and bad nodes.

6 J. Hughes

Consulting Okasaki, we find the key insight behind the efficiency of skew
heaps: although bad nodes are more costly to process, they are cheaper to con-
struct! Whenever we construct a bad node with a large left subtree, then at the
same time we recurse to create an unusually small right subtree—so this recur-
sion is cheaper than expected. What we lose on the swings, we regain on the
roundabouts, making for logarithmic amortized complexity.

To formalise this argument, Okasaki introduces the notion of “credits”—each
bad node carries one credit, which must be supplied when it is created, and can
be consumed when it is processed.

credits Null = 0
credits h@(Fork _ 1 r) =
credits 1 + credits r + if good h then 0 else 1

Since we cannot directly observe the cost of insertion and deletion, we define a
function cost_insert h that returns the number of recursive calls of insert
made when inserting into h, and cost_deleteMin h, which returns the number
of calls of join made when deleting from h (definitions omitted). Now, we claim
that on average each insertion or deletion in a heap of n nodes traverses only
log2 n nodes, and creates equally many new, possibly bad nodes, so 2¥1og2 n
credits should suffice for each call. (The first log2 n credits pay for the recursion
in this call, and the second log2 n credits pay for bad nodes in the result).
If we now specify

prop_cost_insert n ops =
cost_insert h <= 2xlog2 (weight h) + 1
where h = make ops

then QuickCheck finds a counterexample!, because this property only holds on
average, but when we take credits into account

prop_cost_insert n ops =
cost_insert h + credits (insert n h)
<=
2x1log2 (weight h) + 1 + credits h
where h = make ops

then the property passes hundreds of thousands of tests. Likewise, the property

prop_cost_deleteMin ops =
h/=Null ==
cost_deleteMin h + credits (deleteMin h)
<=
2xlog2 (weight h) + credits h
where h = make ops

! Only one test case in around 3,000 is a counterexample. This is because the method
we use to generate heaps produces rather few bad nodes. Counterexamples can
be found more quickly by generating heaps directly, rather than via insert and
deleteMin, so that the proportion of bad nodes can be increased.

