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Preface

Overview

Objectives

If you are preparing for a career in business, economics, psychology,
sociology, architecture, or biology, and if you have taken high school
algebra, then this book was written for you. Its primary goal is to teach
you the techniques of differential and integral calculus that you are likely
to encounter in undergraduate courses in your major and in your subse-
quent professional activities.

Applications

The text is applications-oriented. Each new concept you learn is applied
to a variety of practical situations. The techniques and strategies you will
need to solve applied problems are stressed. The applications are drawn
from the social, managerial, and life sciences, with special emphasis on
business and economics.
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Level of Rigor

The exposition is designed to give you a sound, intuitive understanding of
the basic concepts without sacrificing mathematical accuracy. Thus, the
main results are stated carefully and completely, and whenever possible,
explanations are intuitive or geometric.

Problems

You learn mathematics by doing it. Each section in this text is followed by
an extensive set of problems. Many involve routine computation and are
designed to help you master new techniques. Others ask you to apply the
new techniques to practical situations. There is a set of review problems
at the end of each chapter. At the back of the book, you will find the
answers to the odd-numbered problems and to all the review problems.

Algebra Review

If you need to brush up on your high school algebra, there is an extensive
algebra review in the appendix that includes worked examples and prac-
tical problems for you to do. You will be advised throughout the text
when it might be appropriate to consult this material.

Major Features of the New Edition

This edition retains the straightforward style, intuitive approach, and
applications orientation of its predecessors, but contains the following
additions and revisions:

1. The treatment of limits and continuity has been expanded and moved
from the Appendix to Chapter 1. The intention is to make the limit
concept and its notation more readily accessible to students.

2. All topics on definite integration have been combined into a single
chapter (Chapter 6). This provides a more coherent treatment of
integration and its applications.

3. A new chapter (Chapter 8) on limits at infinity and improper integrals
has been included. This chapter includes new material on L’Hopital’s
rule and a discussion of indeterminate forms, as well as the applica-
tion of integration to the study of probability density functions.

4. Numerous new routine exercises have been added throughout the
text.
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Supplementary Materials

A Student’s Solutions Manual, prepared by Stanley Lukawecki at Clem-
son University, provides detailed solutions to all odd-numbered
exercises. Students may purchase this manual through their local book-
store.

An Instructor’s Manual provides solutions to the even-numbered
exercises, along with sample tests and transparency masters. This compli-
mentary manual is available to adopters.

In addition to the sample tests provided in the Instructor’s Manual,
further testing is provided in both computerized and print form. The
computerized testing provides the instructor with over 1800 test questions
from throughout the text. Several test question types are used, including
multiple choice, open-ended, matching, true-false, and vocabulary. The
testing system enables the teacher to find these questions by section,
topic, question type, difficulty level, and other criteria. Instructors may
add their own criteria and edit their own questions. The Print Test Bank is
a hard copy listing of the questions found in the computerized version.

A computerized study guide is also available. This tutorial provides
additional coverage and support for all sections of the text. Students can
work additional problems of many different question types, receiving
constructive feedback based on their answers. Virtually no computer
training is needed for the student to work with this supplement.
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Functions

CHAPTER

FUNCTIONS, GRAPHS,
AND LIMITS

Functions
Graphs

Linear Functions

h W N =

Iintersections of Graphs: Break-Even Analysis
and Market Equilibrium

Functional Models

Limits and Continuity

Chapter Summary and Review Problems

In many practical situations, the value of one quantity may depend on the
value of a second. For example, the consumer demand for beef may
depend on its current market price; the amount of air pollution in a
metropolitan area may depend on the number of cars on the road; the
value of a bottle of wine may depend on its age. Such relationships can
often be represented mathematically as functions.

Function

A function is a rule that assigns to each object in a set A, one and
only one object in a set B.

This definition is illustrated in Figure 1.1.



Figure 1.1 A visual rep-
resentation of a func-

tion.

EXAMPLE 1.1

2 Chapter | Functions, Graphs, and Limits

A B

For most of the functions in this book, the sets A and B will be
collections of real numbers. You can think of such a function as a rule that
assigns ‘“‘new’’ numbers to ‘‘old’’ numbers. To be called a function, the
rule must have the property that it assigns one and only one ‘‘new’’ num-
ber to each ‘‘old’’ number. Here is an example.

According to a certain function, the ‘‘new’’ number is obtained by adding
4 to the square of the ‘‘old’’ number. What number does this function
assign to 3?7

SOLUTION
The number assigned to 3 is 32 + 4, or 13.

Variables

Often you can write a function compactly by using a mathematical for-
mula. It is traditional to let x denote the old number and y the new num-
ber, and write an equation relating x and y. For instance, you can express
the function in Example 1.1 by the equation

y=x>+4

The letters x and y that appear in such an equation are called
variables. The numerical value of the variable y is determined by that of
the variable x. For this reason, y is sometimes referred to as the dependent
variable and x as the independent variable.

Functional Notation

There is an alternative notation for functions that is widely used and
somewhat more versatile. A letter such as f is chosen to stand for the
function itself, and the value that the function assigns to x is denoted by
f(x) instead of y. The symbol f(x) is read ‘‘f of x.”” Using this functional
notation, you can rewrite Example 1.1 as follows.



EXAMPLE 1.2

EXAMPLE 1.3

EXAMPLE 1.4

Section 1 Functions 3

Find f(3) if f(x) = x* + 4.

SOLUTION
f3) =32+ 4 =13

Observe the convenience and simplicity of this notation. In Example
1.2, the compact formula f(x) = x2 + 4 completely defines the function,
and the simple equation f(3) = 13 indicates that 13 is the number that the
function assigns to 3.

The use of functional notation is illustrated further in the following
examples. Notice that in Example 1.3, letters other than f and x are used
to denote the function and its independent variable.

If g(t) = (+ — 2)V/2, find (if possible) g(27), g(5), g(2), and g(1).

SOLUTION

Rewrite the function as g(r) = VvVt — 2. (If you need to brush up on
fractional powers, you can consult the discussion of exponential notation
in the Algebra Review at the back of the book.) Then,

g2 =V27 =2 =V25 =5

g5) = V5 — 2 =V3=17321
and ‘
g2 =V2-2=V0=0
However, g(1) is undefined since

gy = V1 -2 =V-1

and negative numbers do not have real square roots.

In the next example, two formulas are needed to define the function.

Find f(—%) _£(1), and £(2) if

1

x — 1

fx<l1

fo = .
x2 + 1 ifx=1
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SOLUTION
From the first formula,
N 1 12
f(‘i) T2 -1 —32° 3

and from the second formula,
f()y=3012+1=4 and fQ2)=322+1=13

The next example illustrates how functional notation is used in a
practical situation. Notice that to make the algebraic formula easier to
interpret, letters suggesting the relevant practical quantities are used for
the function and its independent variable. (In this example, the letter C
stands for ‘‘cost’” and g for ‘‘quantity’” manufactured.) :

Suppose the total cost in dollars of manufacturing ¢ units of a certain
commodity is given by the function C(g) = ¢> — 30g?> + 500g + 200.

(a) Compute the cost of manufacturing 10 units of the commodity.
(b) Compute the cost of manufacturing the 10th unit of the commodity.

SOLUTION
(a) The cost of manufacturing 10 units is the value of the total cost func-
tion when ¢ = 10. That is,

Cost of 10 units = C(10)
= (10)3 — 30(10)2 + 500(10) + 200
= $3,200

(b) The cost of manufacturing the 10th unit is the difference between the
" cost of manufacturing 10 units and the cost of manufacturing 9 units.
That is,

Cost of 10th unit = C(10) — C(9) = 3,200 — 2,999 = $201

The Domain of a Function

The set of values of the independent variable for which a function can be
evaluated is called the domain of the function. For instance, the function
f(x) = x2 + 4 in Example 1.2 can be evaluated for any real number x.
Thus, the domain of this function is the set of all real numbers. The
domain of the function C(g) = g°> — 30g? + 500g + 200 in Example 1.5 is
also the set of all real numbers [although C(g) represents total cost only
for nonnegative values of ¢]. In the next example are two functions whose
domains are restricted for algebraic reasons.
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EXAMPLE 1.6 Find the domain of each of the following functions:
|

@ fl) = T3
(b) glx) = Vx — 2
SOLUTION

(a) Since division by any real number except zero is possible, the only

value of x for which f(x) = cannot be evaluated is x = 3, the

1
x -3
value that makes the denominator of f equal to zero. Hence the do-
main of f consists of all real numbers except 3.
(b) Since negative numbers do not have real square roots, the only values
of x for which g(x) = Vx — 2 can be evaluated are those for which
x — 2 is nonnegative, that is, for which

x—2=0 or x=2

That is, the domain of g consists of all real numbers that are greater
than or equal to 2.

Composition of Functions

There are many situations in which a quantity is given as a function of one
variable which, in turn, can be written as a function of a second variable.
By combining the functions in an appropriate way, you can express the
original quantity as a function of the second variable. This process is
known as the composition of functions.

Composition of Functions

The composite function g[h(x)] is the function formed from the two
functions g(u) and A(x) by substituting A(x) for « in the formula for
gu).

The situation is illustrated in Figure 1.2.

Figure 1.2 The com-
position of functions. h



