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PREFACE

Modern society is dominated by a complex of networks for the transmission of in-
formation, the transportation of people, and the distribution of goods and energy.
This complex includes such diverse systems as the telephone network. gas and oil
pipelines, airline networks, and networks of computers serving as data banks and
remote processing units. The enormous cost of these networks demands that existing
ones be rationally used and new ones intelligently planned.

The purpose of this book is to develop a unified treatment of the fundamental
theory of networks. We present the underlying problems and properties common to
many classes, and techniques for their solution. We have intended the treatment to
be rigorous and include many problems concerning new mathematical developments
relevant to the study of physical networks. In all cases, we present algorithms which
are computationally efficient. These algorithms usually require the use of a computer
for implementation. In a few cases, where a rigorous theory is not available, we give
heuristic methods whose merits have been substantiated by successful, documented
computer programs.

The material is organized with respect to classes of physical problems rather than
the techniques used to solve them. For example, a unified treatment of network
vulnerability is presented even though significantly different mathematical techniques
are required to treat various aspects of the problem. In spite of this problem orienta-
tion, many new theoretical results appear throughout the book. Problems or tech-
niques which do not seem to be presently applicable to the study of physical systems
are omitted or mentioned only in problems at the ends of chapters.

All basic concepts are defined and many exercises are included to illustrate them.
Hence no prior background in networks is required. However, in almost all cases,
the material is developed to the level of present research. Indeed, we believe that
much of the material in the book is new or novel." As far as we know, this is the first
book to treat the theory of probabilistic graphs in depth. The material we present on
the graph theoretic formulation of vulnerability has never appeared in any book ; nor
has the general solution of the multiterminal synthesis problem. Numerous other
algorithms are presented in book form for the first time. Many of these are based on
our own research and that of our graduate students.

The book contains parallel treatments of deterministic and probabilistic net-
works. A knowledge of the fundamental concepts of probability theory is required
for the latter. The entire book can be covered in a one-year sequence of courses for
students with no previous background in graph theory or networks. Several possible

v



vi PREFACE

one-semester or quarter courses can also be taught from it. A course treating only
deterministic problems could be based on Chapters 1, 2, 3, 5, Sections 1 through 7,
9, 10, and 13 of Chapter 6, and Chapter 7. A course emphasizing probabilistic con-
cepts could be built on Chapters 1, 2, Sections 1, 2, 3, and 6 of Chapter 3, Chapter 4,
Sections 1, 2, 3, 5 through 8, and 10 through 12 of Chapter 6, and Chapters 8 and 9.
A course combining both deterministic and probabilistic treatments would consist of
Chapters 1, 2, Sections 1 through 8 of Chapter 3, Sections 1 through 6 of Chapter 4,
Sections 1 through 6 of Chapter 5, and either Sections 1 through 10 of Chapter 6 or
.Chapter 7 and either Sections 2, 3, and 7 of Chapter 8 or Chapter 9. We have taught
courses using a number of these options.

Each of the above sequences requires approximately forty hours of lectures. For
students who have already had a course in network flows the following option might
be desirable: Chapter 4, Sections 1 through 6 of Chapter 5, Sections 5 through 13 of
Chapter 6, Chapter 7, and Chapter 8. A shorter course on vulnerability can be taught
using Chapters 1, 2, Sections 1, 2, 3, and 6 of Chapter 3, and Chapters 7, 8, and 9.
For students with a background in network flow theory, Chapters 7 and 8 can form
the basis of a twenty-hour course on vulnerability. We have taught several such varia-
tions at Berkeley.-
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NOTES TO THE READER

. Sections marked with an asterisk contain advanced topics not essential to the

continuity of the main development and may be omitted on first reading.

. Unless otherwise indicated, a reference to a section, figure, formula, etc., is to an

item in the same chapter as the reference.

. References in the text are indicated by the first two letters of the author’s surname

followed by an indexing number. The references are listed alphabetically at the
end of each chapter.

Many of the problems at the ends of chapters are based on results from published
papers. Insuch cases, a reference to the appropriate paper is given in the problem.
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CHAPTER 1

GRAPHS AND PHYSICAL MODELS

1.1 GRAPHS AS STRUCTURAL MODELS

Many systems involve the communication, transmission, transportation, flow, or
movement of commodities. The commodity under consideration may be a tangible
item, such as railway cars, automobiles, oil drums or water, or an intangible item, such
as information, disease, “‘friendship,” or heredity. Thus, a highway system, a tele-
phone network, an interconnection of warehouses and retail outlets, a power grid, or
an airline network all involve the flow of commodities through a network. Often these
networks can be modeled by a mathematical entity called a graph.

A graph may be considered to be a collection of points called vertices connected
by lines called branches. The modeling of some physical systems by graphs is quite
natural, while for others the relationship between the graph theoretic model and the
original system is extremely subtle. In the former group are communication or trans-
portation systems. The branches of the graph can represent roads, telegraph wires,
railroad tracks, airline routes, water pipes—in general, channels through which the
commodities are transmitted. The vertices of the graph can represent communities,
highway intersections, telegraph stations, railroad yards, airline terminals, water
reservoirs and outlets—in general, points where flow originates, is relayed, or
terminates.

Two physical networks may be structurally similar, but have significantly dif-
ferent characteristics. For example, the interconnections in both an electrical net-
work and a telephone system can be specified by a graph. However, the branches of
the electrical network model are characterized by parameters such as resistance,
inductance, or capacitance whereas the branches of the telephone network model are
characterized by parameters such as the number of wires per trunk, the maximum
transmission rate, and the cost per unit length. We must account for these para-
meters as part of the model, to obtain meaningful results.

With each branch and vertex of a graph, we can associate a number of parameters
that represent the natural limitations and capabilities of the branches and vertices. For
example, a power system might be modeled by a graph in which the branches repre-
sent power lines and the vertices represent power generation stations, substations,
and customers. The important parameters of the system are incorporated into the
model as numbers, or weights, on the branches and vertices of the graph. These
weights may be either fixed or random. Thus, for the power system, a typical vertex

]



2 GRAPHS AND PHYSICAL MODELS 1.1

Fig. 1.1.1 Pictorial representation of a graph.

representing a power generator might have the following weights: maximum power
output, number of generators at the station, reliability of each generator, and cost
per kilowatt-hour. A typical branch might have three weights corresponding to the
maximum power-handling capacity, reliability, and cost.

The purpose of the branch and vertex weights is to include nonstructural informa-
tion into the graph theoretic model of a system. The following examples further
illustrate this point.

Example 1.1.1 A traffic network. Let each vertex of a graph represent a city. Two
vertices are connected by a branch if there is a highway between the corresponding
cities. A number is associated with each branch to indicate the length of the cor-
responding highway. A second weight represents the maximum number of cars that
can be accommodated per unit length per unit time, and a third branch weight could
be the speed limit.

Example 1.1.2 An airline system. Let each vertex of a graph represent an airline
terminal. Two vertices are connected by a branch if there is a direct air link between
the terminals. Each vertex of the graph has a weight indicating the number of air-
planes that the terminal can handle in a given interval of time. This vertex weight
could be a fixed number if the traffic-handling capability of the terminal is assumed
to be constant, it could be time-varying if the traffic-handling capability fluctuates, or
it could be a random variable if it depends on unpredictable elements such as weather.

Example 1.1.3 A telegraph system. Let each vertex of a graph represent a telegraph
station. Two vertices are connected if there is a telegraph wire between the corre-
sponding telegraph stations. That is, there will be a branch between two vertices if
the stations can communicate directly without any intermediate relay station. The
number of telegraph operators at each station is limited, so there is a maximum num-
ber of messages which can be simultaneously transmitted and received. This can be
included in the model by an appropriate vertex weight. The maximum number of
messages on a branch is determined by the number of telegraph wires. We weight
each branch by the maximum number of simultaneous messages that can be handled.
Another possible consideration is the time delay required to send a message through
the network. At each station there will be a “‘waiting” time for an available operator
or channel, as well as the time required to transmit the message. The total time delay
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at a given station will usually be a random variable and can be represented by an addi-
tional vertex weight.

Example 1.1.4 Aneconomic model. Suppose we are given a system of factories, ware-
houses, and outlets connected by a set of highways, railroads, and waterways. This
systenr can be structurally modeled by a graph with the branches representing trans-
portation channels and the vertices representing factories, warehouses, and outlets.
In the graph, the factories are source vertices, the outlets are terminal vertices, and the
warehouses are relay vertices. We could further distinguish between the vertices. For
example, some source vertices might produce one type of commodity while others
produce a different type. Among the many possible vertex weights are the rate of pro-
duction of the ith commodity, the production cost per unit of the ith commodity, and
the time required to produce a unit of the ith commodity. For the relay vertices, a
single weight representing the storage space might suffice. A terminal vertex could be"
weighted with numbers which indicate the types of commodity which are sold at that
vertex, the price of each commodity, the amount of local storage available, and the
demand (usually a random variable) for each commodity. Typical branch weights
could be maximum volume per unit time, cost of transportation per unit of ith com-
modity, and transmission time per unit of ith commodity.

1.2 TYPICAL PROBLEMS

The utility of graphs as models depends ou the nature of the physical problem to be
solved. The type of probiem for which a graph is most obviously useful is that of con-
nectivity. Given a system and its graph, we might be interested in determining
whether or not a particular commodity can be transported from one given location
to another. We are interested in finding a “path”™ between two given vertices over
which the commodity can be sent. A more general, but similar, problem is to estab-
lish whether or not a given commodity can be sent from any point to any other point.
Here, we must determine whether there is at least one path from any vertex to any
other vertex.

The connectivity problems mentioned above are structural problems. The exis-
tence of a path between a pair of vertices implies that some amount of flow can be
transmitted between these two vertices. There is no information about the quantity of
flow which can be sent. To include this information, we must consider weighted
graphs. Suppose we weight each branch and vertex by a number which indicates the
maximum amount of flow that it can accommodate. These weights represent the
capacities of the channel, sources, terminals, and relay points in the original system.
We might then ask: What is the maximum amount of flow which can be sent be-
tween a given pair of vertices? In a power system, this number might correspond to
the maximum power that a particular generating station could supply to a particular
user; in a telegraph system, it might represent the maximum attainable rate of infor-
mation transmission between two telegraph stations.

The problem of finding the maximum amount of a given quantity which can be
transmitted between two points is known as the Maximum Flow Problem. A
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generalization of this problem is to find the maximum amount of several commodi-
ties which can be simultaneously sent between several pairs of points. This is known
as the Multicommodity Maximum Flow Problem. Both of these are analysis prob-
lems. Given a system and its graph theoretic model, we can attempt to analyze the
graph and find the maximum flow rates. We can also formulate an analogous syn-
thesis problem. Suppose we are given a set of stations and maximum flow-rate re-
quirements. We would like to design a system which satisfies these requirements.
Furthermore, since there may be many such systems, we would like to select a system
which is in some sense “‘optimal.” One possible optimality criterion could be mini-
mum cost. This synthesis problem has many variations. For example, we may as-
sume that the behavior of the network to be designed can be precisely predicted. In
this case, flow-rate requirements can be exactly satisfied. In other cases, there may be
random elements in the design or behavior of the system and so the meaning of the
phrase ‘“‘satisfy flow rate requirement’” must be interpreted probabilistically.

The preceding connectivity and maximum-flow problems are closely related to
a group of problems which may be termed problems of “‘vulnerability’” and *‘reli-
ability.”” Here, we are given a system operating in a “‘hostile” environment. This
hostility may be the result of natural disturbances. equipment failure, or enemy
attack. The effect of the hostility is to disrupt communications. Given an existing
system, we must analyze it to determine the system degradation which could occur.
Given a set of performance criteria, we must design a system which minimizes the
possible system degradation. Again, both the analysis and synthesis problems can
be posed in either deterministic or probabilistic terms.

It is usually possible to route a given commodity over many different paths, with
one routing possibly better than another. If a poor route is selected, it may block an
additional flow which might otherwise have been established. Among the problems
we must therefore consider are finding the shortest, the least expensive, or the most
reliable route for a given commodity.

In many physical systems network traffic is a function of time. All available
routes between a pair of stations may be occupied and so it is impossible to send addi-
tional flow between these stations. Thus, a subscriber at one of these stations must
wait until a channel is available. The expected value of the time he must wait is an im-
portant parameter of the system. Typical analysis problems are to find the average
waiting time and to investigate the effect of network structure and various routing
procedures on this waiting time.

The examples given above should suffice to point out the wide range and applic-
ability of the model and the nature of the probltms that can be posed. To solve these
problems, we require some concepts and results from the theory of graphs. These are
the subject of the next chapter.

1.3 RELATED READING

The material relevant to the study of networks is scattered throughout the journals of
a number of different disciplines, because, historically, problems modeled by graphs

H
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have arisen in varied and seemingly unrelated situations. Furthermore, solutions to
these problems have been achieved by the use of several different branches of
mathematics.

As we have seen, one motivation for the study of networks is tlie investigation of
traffic in communication systems. A. K. Erlang, whose work is summarized by
Brockmeyer ef al. [BR1], was one of the earliest and most significant innovators in
this area. Since his work, a tremendous body of literature has developed. References
to this literature can be found in the recent books by Benes [BE2] and Kleinrock
[KL1]. A good summary of the physical bases of these problems is given by Rubin
and Haller [RU1]. The results of extensive computer simulation are given by
Weber [WEI].

The second major impetus for the development of the theory of networks was the
formulation of mathematical models for economic and distribution systems, both of
which are included under the generic title of operations research. Probably the
earliest link between problems in this area and communication networks was
Hitchcock’s solution to the *‘transportation problem™ [HI1]. A number of the major
results and references in this area are given by Ford and Fulkerson [FO1], who have
been among the most original and prolific contributors to the development of the
theory of flows in networks.

Another stimulus to the study of networks has been in the study of steady-state
flow of information through a communication system. This approach seems to have
been first adopted by Elias, Feinstein and Shannon [EL1], although Mayeda [MAI1]
was the first to formulate and solve significantly different problems arising primarily
from the new viewpoint. This new stimulus came at a time when many electrical en-
gineers were prepared to apply their knowledge of graph theory acquired through the
study of electrical networks. Hence, a new body of literature was developed by this
group. Some of the early work in this area is given by Kim and Chien [KI1].

The primary mathematical disciplines relevant to the study of networks in this
book are graph theory, combinatorics, probability theory, and statistics. Secondary
use is made of mathematical programming and queuing theory. All the necessary
results from the theory of graphs are derived in this book and hence no outside refer-
ences are required. However, for those readers wishing to delve more deeply into this
subject, a number of excellent books and bibliographies are now available [BE3,
BE4, BU1, HA3, HA4, KI1, KOl, ORI, DEI, SEl, TUI, TU2, ZY1].

The book is also self-contained with regard to theorems from combinatorics. In-
deed, much of the material on flows in networks actually comprises a significant new
branch of combinatorics. We do not emphasize this viewpoint. However, as an
example, Ford and Fulkerson [FO1] use the theory of flows to solve many purely
combinatorial problems such as the assignment of entries to matrices of zeros and
ones to satisfy various constraints. The classical results of combinatorics can be
found in several references [BE1, RI1, RY1].

Probability theory and statistics are the only essential disciplines in which we
must assume some background on the part of the reader. However, except for a few
sections, only elementary knowledge is required. Furthermore, the book is or-
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ganized so that the material on random networks appears in separate chapters or
sections parallel to corresponding sections on deterministic networks. Hence, it is
possible to read those sections which do not require probabilistic theory indepen-
dently of the others. The required material on probability and statistics can be found
in references [CR1, FI1, LE1, MOI1]. Reference [CR1] is a classic work in prob-
ability theory and statistics, which contains all of the necessary foundations in
probability theory. Reference [KO1] is an elementary text on statistics while refer-
ences [FI1] and [LE1] are intermediate and advanced level texts, respectively.
Fisz’s book [FI1] may be considered as the primary reference for both probability
theory and statistics. Queuing theory is required in only one chapter of the book and
only the most elementary concepts are needed. For a more extensive treatment and
a guide to the literature in queueing theory as applied to networks one can refer to the
work of Kleinrock [KL1].

Mathematical programming is useful in the study of communication networks,
first because it is an efficient computational tool and second because it enables one to
place many algorithms and results in a general framework. We regard mathematical
programming as a secondary discipline for this book, since we can derive most of our
results without resorting to it. Furthermore, where flow techniques are applicable,
they are usually more efficient than general programming methods. The few theorems
we do need are given in the next chapter without their proofs. The proofs of the
theorems and the general theory of mathematical programming are expounded in a
number of excellent books among which are those of Dantzig [DA1], Hadley [HA1,
HA?2], Berge and Ghouila-Houri [BE4], and Simonard [SI1]. The relationship be-
tween programming techniques and flow problems is developed in the books by
Kaufmann [KAI] and Hu [HU1]. Further generalizations of graph theory and pro-
gramming techniques using matroids appear in a book being written by E. Lawler.
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