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Preface

This book is a thorough introduction to linear algebra, for the graduate
or advanced undergraduate student. Prerequisites are limited to a
knowledge of the basic properties of matrices and determinants.
However, since we cover the basics of vector spaces and linear
transformations rather rapidly, a prior course in linear algebra (even at
the sophomore level), along with a certain measure of “mathematical
maturity,” is highly desirable.

Chapter 0 contains a summary of certain topics in modern algebra
that are required for the sequel. This chapter should be skimmed
quickly and then used primarily as a reference. Chapters 1-3 contain a
discussion of the basic properties of vector spaces and linear
transformations.

Chapter 4 is devoted to a discussion of modules, emphasizing a
comparison between the properties of modules and those of vector
spaces. Chapter 5 provides more on modules. The main goals of this
chapter are to prove that any two bases of a free module have the same
cardinality and to introduce noetherian modules.  However, the
instructor may simply skim over this chapter, omitting all proofs.
Chapter 6 is devoted to the theory of modules over a principal ideal
domain, establishing the cyclic decomposition theorem for finitely
generated modules. This theorem is the key to the structure theorems
for finite dimensional linear operators, discussed in Chapters 7 and 8.

Chapter 9 is devoted to real and complex inner product spaces.
The emphasis here is on the finite-dimensional case, in order to arrive
as quickly as possible at the finite-dimensional spectral theorem for
normal operators, in Chapter 10. However, we have endeavored to
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state as many results as is convenient for vector spaces of arbitrary
dimension.

The second part of the book consists of a collection of independent
topics, with the one exception that Chapter 13 requires Chapter 12.
Chapter 11 is on metric vector spaces, where we describe the structure
of symplectic and orthogonal geometries over various base fields.
Chapter 12 contains enough material on metric spaces to allow a unified
treatment of topological issues for the basic Hilbert space theory of
Chapter 13. The rather lengthy proof that every metric space can be
embedded in its completion may be omitted.

Chapter 14 contains a brief introduction to tensor products. In
order to motivate the universal property of tensor products, without
getting too involved in categorical terminology, we first treat both free
vector spaces and the familiar direct sum, in a universal way. Chapter
15 is on affine geometry, emphasizing algebraic, rather than geometric,
concepts.

The final chapter provides an introduction to a relatively new
subject, called the umbral calculus. This is an algebraic theory used to
study certain types of polynomial functions that play an important role
in applied mathematics. We give only a brief introduction to the
subject — emphasizing the algebraic aspects, rather than the
applications. This is the first time that this subject has appeared in a
true textbook.

One final comment. Unless otherwise mentioned, omission of a
proof in the text is a tacit suggestion that the reader attempt to supply
one.

Steven Roman Irvine, Ca.
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CHAPTER 0
Preliminaries

In this chapter, we briefly discuss some topics that are needed for the
sequel. This chapter should be skimmed quickly and then used primarily
as a reference.

Contents: Part 1: Preliminaries. Matrices. Determinants.
Polynomials.  Functions.  Equivalence Relations. Zorn’s Lemma.
Cardinality. Part 2: Algebraic Structures. Groups. Rings. Integral
Domains.  Ideals and Principal Ideal Domains. Prime Elements.
Fields. The Characteristic of a Ring.

Part 1 Preliminaries

Matrices

If F is a field, we let M (F) denote the set of al mxn
matrices whose entries lie in F. When no confusion can arise, we
denote this set by b, or simply by fb. The set ./ﬂan’n(F) will be
denoted by M (F) or M.

We expect that the reader is familiar with the basic properties of
matrices, including matrix addition and multiplication. If A € b, the
(i,j)-th entry of A will be denoted by A;;- The identity matrix of size
nxn is denoted by I .

Definition The transpose of A € .Ahmm is the matrix AT defined by

(A);; = Aj;

A matrix A is symmetric if A =A" and skew-symmetric if
AT=-A. D
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Theorem 0.1 (Properties of the transpose) Let A, B € M. Then
1) (A" =A

2) (A+B) =AT+B"

3) (rA)" =rAT,forallreF

4) (AB)" =B"A", provided that the product AB is defined

5) det(AT) =det(A). 1

Recall that there are three types of elementary row operations.
Type 1 operations consist of multiplying a row of A by a nonzero
scalar (that is, an element of F). Type 2 operations consist of
interchanging two rows of A. Type 3 operations consist of adding a
scalar multiple of one row of A to another row of A.

If we perform an elementary operation of type k ( = 1,2 or 3) to
an identity matrix I, we get an elementary matrix of type k. It is
easy to see that all elementary matrices are invertible.

If A has size m xn, then in order to perform an elementary row
operation on A, we may instead perform that operation on the identity
I, to obtain an elementary matrix E, and then take the product EA.
Note that we must multiply A on the left by E, since multiplying on
the right has the effect of performing column operations.

Definition A matrix R is said to be in reduced row echelon form if

1)  All rows consisting only of 0s appear at the bottom of the matrix.

2) In any nonzero row, the first nonzero entry is a 1. This entry is
called a leading entry.

3) For any two consecutive rows, the leading entry of the lower row
is to the right of the leading entry of the upper row.

4)  Any column that contains a leading entry has 0Os in all other
positions. 00

Here are the basic facts concerning reduced row echelon form.

Theorem 0.2 Two matrices A and B in ./ﬂ:mm are row equivalent if
one can be obtained from the other by a series of elementary row
operations. We denote this by A ~ B.
1) Row reduction is an equivalence relation. That is,
a) A~A
b) A~B=>B~A
¢c) A~B,B~C=A~C.
2)  Any matrix A is row equivalent to one and only one matrix R
that is in reduced row echelon form. The matrix R is called the
reduced row echelon form of A. Furthermore, we have

A=E,;-ER
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where E; are the elementary matrices required to reduce A to
reduced row echelon form.

3) A is invertible if and only if R is an identity matrix. Hence, a
matrix is invertible if and only if it is the product of elementary
matrices. 1

Determinants
We assume that the reader is familiar with the following basic
properties of determinants.

Theorem 0.3 Let A be an nxn matrix over F. Then det(A) is an

element of F. Furthermore,

1) det(AB) = det(A)det(B), for any B € M (F).

2) A is nonsingular (invertible) if and only if det(A) # 0.

3) The determinant of an upper triangular, or lower triangular,
matrix is the product of the entries on its main diagonal.

4) Let A(i,j) denote the matrix obtained by deleting the ith row and
jth column from A. The adjoint of A is the matrix adj(A)
defined by

(adj(A));5 = (-1)Hdet(A(i,j))
If A isinvertible, then

ATl = detl(A)adj(A) 1

Polynomials

If F is a field, then F[x] denotes the set of all polynomials in
the variable x, with coefficients from F. If p(x) € F[x], we say that
p(x) is a polynomial over F. If

p.(x) =ajtax+---+ auxn

is a polynomial, with. a_  # 0, then a is called the leading coefficient
of p(x), and the degree deg p(x) of p(x) is n. We will set the
degree of the zero polynomial to —oco. A polynomial is monic if its
leading coefficient is 1.

Theorem 0.4 (Division algorithm) Let f(x) € F[x] and g(x) € F[x],
where deg g(x) > 0. Then there exist unique polynomials q(x) and
r(x) in F[x] for which

f(x) = q(x)g(x) +r(x)

where r(x) =0 or 0 <degr(x) < degg(x). 1
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If p(x) divides q(x), that is, if there exists a polynomial f(x)
for which
q(x) = f(x)p(x)
then we write p(x) | q(x).

Theorem 0.5 Let f(x) and g(x) be polynomials over F. The
greatest common divisor of f(x) and g(x), denoted by ged(f(x),g(x)),
is the unique monic polynomial p(x) over F for which

1) p(x) [f(x) and p(x)|g(x)

2) if r(x)|f(x) and r(x)|g(x), then r(x)|p(x).

Furthermore, there exist polynomials a(x) and b(x) over F for
which

ged(f(x),g(x)) = a(x)f(x) + b(x)g(x) i

Definition Let f(x) and g(x) be polynomials over F. If
ged(f(x),g(x)) = 1, we say that f(x) and g(x) are relatively prime. In
particular, f(x) and g(x) are relatively prime if and only if there exist
polynomials a(x) and b(x) over F for which

a(x)f(x) + b(x)g(x) =1 o

Definition A nonconstant polynomial f(x) € F[x] is irreducible if
whenever f(x) = p(x)q(x), then one of p(x) or q(x) must be
constant. []

The following two theorems support the view that irreducible
polynomials behave like prime numbers.

Theorem 0.6 If f(x) is irreducible and f(x)|p(x)q(x), then either
f(x) [p(x) or f(x)]q(x). O

Theorem 0.7 Every nonconstant polynomial in F[x] can be written as
a product of irreducible polynomials. Moreover, this expression is
unique up to order of the factors and multiplication by a scalar. 0

Functions
To set our notation, we should make a few comments about
functions.

Definition Let f:S—T be a function (map) from a set S to a set T.
1) The domain of f is the set S.

2)  The image or range of f is the set im(f) = {f(s) |s € S}.

3) f is injective (one-to-one), or an injection, if x #y = f(x) # f(y).
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4) f is surjective (onto T), or a surjection, if im(f) = T.
5) f is bijective, or a bijection, if it is both injective and surjective. 0

If f:S—T is injective, then its inverse f~l:im(f)—S exists and is
well-defined. It will be convenient to apply f:S—T to subsets of S
and T. In particular, if X CS, we set f(X)={f(x)|x € X} and if
YCT, we set f1(Y)={s€S|f(s)€Y}. Note that the latter is
defined even if f is not injective.

If X CS, the restriction of f:S—T is the function f|y:X—T.
Clearly, the restriction of an injective map is injective.

Equivalence Relations
The concept of an equivalence relation plays a major role in the
study of matrices and linear transformations.

Definition Let S be a nonempty set. A binary relation ~ on S is
called an equivalence relation on S if it satisfies the following
conditions.
1)  (reflexivity)
a~a
for all a €S.
2)  (symmetry)
- a~b = b~a
for all a, b €S.
3)  (transitivity)
a~b,b~c = a~c
for all a, b,c€S. 0

Definition Let ~ be an equivalence relation on S. For a € S, the set
[a] ={b€S|b~a}

is called the equivalence class of a. [

Theorem 0.8 Let ~ be an equivalence relation on S. Then
1) bela] & a€eb] & [a] =[b]
2) For any a, b €S, we have either [a] =[b] or [a]N[b]=0. &

Definition Let S be a nonempty set. A partition of S is a collection
{A{,...,A,} of nonempty subsets of S, called blocks, for which

1)  A;NA;=0, forall ij

2) S=AU---UA.. D
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The following theorem sheds considerable light on the concept of
an equivalence relation.

Theorem 0.9

1) Let ~ Dbe an equivalence relation on S. Then the set of distinct
equivalence classes with respect to ~ are the blocks of a partition
of S.

2)  Conversely, if P is a partition of S, the binary relation ~

defined by
a~b & a and b lie in the same block of %

is an equivalence relation on S, whose equivalence classes are the
- blocks of .
This establishes a one-to-one correspondence between equivalence
relations on S and partitions of S. 1

The most important problem related to equivalence relations is
that of finding an efficient way to determine when two elements are
equivalent.  Unfortunately, in most cases, the definition does not
provide an efficient test for equivalence, and so we are led to the
following concepts.

Definition  Let ~ be an equivalence relation on S. A function
f:S—T, where T is any set, is called an invariant of ~ if

a~b = f(a) =1(b)
A function f:S—T is a complete invariant if
a~b & f(a) =1(b)

A collection fj,...,f;, of invariants is called a complete system of

invariants if
a~b & fi(a)=f(b) forall i=1,...,n 0

Definition Let ~ be an equivalence relation on S. A subset CCS 1is
said to be a set of canonical forms for ~ if for every s €S, there is
ezactly one ¢ € C such that c~s. [

Example 0.1 Define a binary relation ~ on F[x] by letting
p(x) ~ q(x) if and only if there exists a nonzero constant a € F such
that p(x) = aq(x). This is easily seen to be an equivalence relation.
The function that assigns to each polynomial its degree is an invariant,
since

p(x) ~ q(x) = deg(p(x)) = deg(q(x))

However, it is not a complete invariant, since there are inequivalent
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polynomials with the same degree. The set of all monic polynomials is
a set of canonical forms for this equivalence relation. 0

Example 0.2 We have remarked that row equivalence is an equivalence
relation on b, ,(F). Moreover, the subset of reduced row echelon
form matrices is a set of canonical forms for row equivalence, since
every matrix is row equivalent to a wunigue matrix in reduced row
echelon form. 0

Example 0.3 Two matrices A, B€ M (F) are row equivalent if and
only if there is an invertible matrix P such that A = PB. Similarly,
A and B are column equivalent (that is, A can be reduced to B
using elementary column operations) if and only if there exists an
invertible matrix Q such that A = BQ.

Two matrices A and B are said to be equivalent if there exists
invertible matrices P and Q for which

A =PBQ

Put another way, A and B are equivalent if A can be reduced to B
by performing a series of elementary row and/or column operations.
(The use of the term equivalent is unfortunate, since it applies to all
equivalence relations —not just this one. However, the terminology is
standard, so we use it here.)

It is not hard to see that a square matrix R that is in both
reduced row echelon form and reduced column echelon form must have
the form

10 0
0 - 0

1
000000

with 0s everywhere off the main diagonal, and k 1s, followed by
n—k 0s, on the main diagonal.

We leave it to the reader to show that every matrix A in M is
equivalent to exactly one matrix of the form J,, and so the set of these
matrices is a set of canonical forms for equivalence. Moreover, the
function f defined by f(A) =k, where A ~ J,, is a complete invariant
for equivalence.

Since the rank of J, is k, and since neither row nor column
operations affect the rank, we deduce that the rank of A is k. Hence,
rank is a complete invariant for equivalence. [
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Example 0.4 Two matrices A, B € b (F) are said to be similar if
there exists an invertible matrix P such that

A = PBP!

Similarity is easily seen to be an equivalence relation on b . As we
will learn, two matrices are similar if and only if they represent the
same linear operators on a given n-dimensional vector space V. Hence,
similarity is extremely important for studying the structure of linear
operators. One of the main goals of this book is to develop canonical
forms for similarity.

We leave it to the reader to show that the determinant function
and the trace function are invariants for similarity. However, these two
invariants do not, in general, form a complete system of invariants. [

Example 0.5 Two matrices A, B € M (F) are said to be congruent if
there exists an invertible matrix P for which

A = PBP"

where PT is the transpose of P. This relation is easily seen to be an
equivalence relation, and we will devote some effort to finding canonical
forms for congruence. For some base fields F (such as R, C or a
finite field), this is relatively easy to do, but for other base fields (such
as Q), it is extremely difficult. [

Zorn’s Lemma

In order to show that any vector space has a basis, we require a
result known as Zorn’s lemma. To state this lemma, we need some
preliminary definitions.

Definition A partially ordered set is a nonempty set P, together with
a partial order defined on P. A partial order is a binary relation,
denoted by < and read “less than or equal to,” with the following
properties.
1)  (reflexivity) For all a € P,

a<a

2) (antisymmetry) For all a,b € P,
a<b and b<a implies a=Db
3)  (transitivity) For all a,b,c € P,
a<b and b<c impliess a<c 1]



