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PREFACE

The microprocessor field is one of the fastest moving industrial
fields but, if one considers the computer organization principles defined
by von Neumann more than forty years ago, its core has not changed
very much. The small number of transistors that could be put on an
integrated circuit limited the performance of the first microprocessors.
But the steady increase of chip transistor density has resulted in new
implementations, more or less software compatible with the earlier
devices, every three or five years. And although several less powerful
microprocessors having weak points or insufficient support have
disappeared, a limited number of microprocessors have had really great
impacts in the computing world. But even these are superseded by
new products, keeping however the same philosophy and partial
compatibility.

For years, efforts were made to establish a common assembler
notation which could become an internationally acknowledged standard
[BIEW79] [DUNC81] [FISCH79] [BALD84]. The Common Assembly Language
for Microprocessors CALM was designed at the Ecole Polytechnique of
Lausanne (Switzerland) and has been used since 1974 [NIC75] [NIC76]
[SCHN81] [NIC83] [STROH86] [ZELT86). It is applicable to the currently
available B8-bit, 16-bit and 32-bit microprocessors, has been
standardized by DIN [DIN84] and is under consideration by IEC. Over
the last ten years, CALM assemblers for more than 20 microprocessors
have been implemented, thousands of students have learned CALM,
assemblers running on widely spread systems are available [FAH85],
many companies have developed industrial software using CALM, and
several megabytes of code have been written. The educational and
professional efficiency gained through the use of CALM has been
proven many times over.

Assembly language is used in the development of system software
and in demanding applications such as those of real time control. The
knowledgable programmer must have a good understanding of the basic
features of each machine so that notations which are logical and easy
to remember are of major interest, especially now when he spends a
major part of his time writing in a high-level language such as
Fortran, C, Pascal, or Modula.
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Each manufacturer has its own assembler mnemonics and
notations, though there are no essential reasons for doing so. Thus,
the programmer when using a different processor must simultaneously
understand the architecture and the features of the processor, and
learn the new specific notations describing these. Since each processor
implements a subset of what an ideal processor should do, a universal
notation could be used to describe any of them. Manufacturers restrict
their notation to the functions their processors execute; this means
that they contain fewer symbols than universal notations; these
short-hand notations are simple to use after several weeks of usage,
but they are quickly forgotten. CALM notations specify the data type
and all elements of the addressing mode; confusion and errors are
therefore minimized, especially for the programmer who uses assembly
language infrequently, or has to program different processors in the
same period of time.

This book covers the principles behind microprocessors and
describes the main features of seven of the more widely used devices.
It is primarily a book about programming in assembly language. CALM
is used to describe the basic assembly language concepts and the
machine languages of selected microprocessors. The machine languages
of other micros, minis and even large computers could be described
using the same notation, which focuses on operand sizes and
addressing modes.

Beginners may have difficulties understanding all concepts at first
reading. The reader should have some basic understanding of
computers and programming, especially in assembly language. The book
should help him to get a much better understanding of programming
microprocessors, and to convince him of the purpose and usefulness of
a standard software implementation of an assembler notation such as
CALM.

This book consists of two parts. The first part is introductory, and
the second part describes seven selected microprocessors. The four
chapters of the first part cover number representations, processor
operations and programming. They are not intended to teach the basics
of computers but rather to introduce and define the ideas and names
used in the following chapters. Programming is detailed in seventeen
examples for a hypothetically perfect processor. These seventeen
programs are rewritten in the following chapters for each of the
selected processors; this illustrates the features of each microprocessor,
and demonstrates that a good programming practice uses the
methodology of successive refinement; it however does not cover all
the techniques used when programming large programs.
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The second part of the book consists of seven chapters, each of
which describes one processor. The 6809 is presented first, due to its
more complete features. The 6809 ended the line of true 8-bit
devices, but came too late to get the success it deserved. The 8085
is still very much in use and has some historical importance. With its
predecessors, the 8008 and 8080, it greatly influenced the
microprocessor world of the ‘70s. The Z80 and its CMOS versions
have been very successful not only among professionals, but also with
thousands of microprocessor fans. Two major monolithic
microcomputers are presented. The well known 8048 has a particular
architecture, but CALM notations are also adequate for this processor.
The 6801 is straightforward and easy to understand. Two widely used
16-bit microprocessors, the 8086 and the 68000 complete the book.
The 32-bit upward compatible versions bring only few new concepts at
the instruction level, but imply new system programming approaches
which are not the purpose of this book. The index covers only the
first four chapters, in order to help the readers who study a given
processor without having carefully read the definition chapters. The
appendix includes the CALM reference cards for the seven processors.
Reference cards for other processors may be obtained at the address
below or from the CALM assembler distributors.

It is hoped that each chapter of the second part will provide
enough material to allow the writing of complex programs with a
minimum of additional information about the CALM assembler used.
Learning to use the manufacturer’s notation and the assembler
pseudo-instructions simply requires a better familiarization with the
manufacturer’s notation and documentation.

We are grateful to the many friends who have carefully read
parts of the book and checked its content. We would like to mention
specially R. Beuchat, J. Borawski, P. Fah, K. Hoyer, E. Skodaralakis,
R. Sommer, B. Szafnicki and A. Wegmann. However, there is so much
precise and specific information in this book that the risk of minor
errors is high. The authors will be obliged to readers who signal
immediately these errors; please send comments to LAMI-EPFL, Cour
37, CH-1007 Lausanne.

This book was edited and printed as it is, using the equipment
developed at the “"Laboratoire de Microinformatique” of the Swiss
Federal Institute of Technology (EPFL). We thank cordially the
engineers who wrote the text formatting software and guaranteed the
maintenance of the equipment, especially D. Dumoulin, P. Fah,
A. Guignard and G. Vaucher.

J.D. Nicoud F. Wagner
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