. Major
'Microprocessors

A Unified Approach
using CALM

J.D. Nicoud
and F. Wagner

North - Holland

MAJOR MICROPROCESSORS
A Unified Approach using CALM

J.D.NICOUD

EPFL Lausanne
Lausanne, Switzerland

and

F.WAGNER

Balzers AG
Balzers, Liechtenstein

NORTH-HOLLAND
AMSTERDAM - NEW YORK - OXFORD - TOKYO

©ELSEVIER SCIENCE PUBLISHERS B.V., 1987

Allrightsreserved: No part of this publication may be reproduced, stored in a retrieval system,
or transmitted. in any form or by any means, electronic, mechanical, photocopying.
recording or otherwise, without the prior permission of the copyright owner.

ISBN: 0 444 70116 8

Publishers:
ELSEVIER SCIENCE PUBLISHERS B.V.
P.O. Box 1991
1000 BZ Amsterdam
The Netherlands

Sole distributors for the U.S. A. and Canada:

ELSEVIER SCIENCE PUBLISHING COMPANY, INC.
52 Vanderbilt Avenue
New York, N.Y. 10017
US.A.

Library of Congress Cataloging-in-Publication Data

Niccud, Jean-Daniel.
Major microprocessors.

Bibliography: p.

Includes index.)

1. Microprocessors. <. Microprocessors--Programming.
3. Assembler language (Computer progrem language)
L. CALM (Computer program language) I. Wagner, F.,
1941~ . II. Title.
QATL.5.N5125 1907 005.2u o=-2lLzg
ISBN O-L4L-T70110-0

PRINTED IN THE NETHERLANDS

MAJOR MICROPROCESSORS
A Unified Approach using CALM

PREFACE

The microprocessor field is one of the fastest moving industrial
fields but, if one considers the computer organization principles defined
by von Neumann more than forty years ago, its core has not changed
very much. The small number of transistors that could be put on an
integrated circuit limited the performance of the first microprocessors.
But the steady increase of chip transistor density has resulted in new
implementations, more or less software compatible with the earlier
devices, every three or five years. And although several less powerful
microprocessors having weak points or insufficient support have
disappeared, a limited number of microprocessors have had really great
impacts in the computing world. But even these are superseded by
new products, keeping however the same philosophy and partial
compatibility.

For years, efforts were made to establish a common assembler
notation which could become an internationally acknowledged standard
[BIEW79] [DUNC81] [FISCH79] [BALD84]. The Common Assembly Language
for Microprocessors CALM was designed at the Ecole Polytechnique of
Lausanne (Switzerland) and has been used since 1974 [NIC75] [NIC76]
[SCHN81] [NIC83] [STROH86] [ZELT86). It is applicable to the currently
available B8-bit, 16-bit and 32-bit microprocessors, has been
standardized by DIN [DIN84] and is under consideration by IEC. Over
the last ten years, CALM assemblers for more than 20 microprocessors
have been implemented, thousands of students have learned CALM,
assemblers running on widely spread systems are available [FAH85],
many companies have developed industrial software using CALM, and
several megabytes of code have been written. The educational and
professional efficiency gained through the use of CALM has been
proven many times over.

Assembly language is used in the development of system software
and in demanding applications such as those of real time control. The
knowledgable programmer must have a good understanding of the basic
features of each machine so that notations which are logical and easy
to remember are of major interest, especially now when he spends a
major part of his time writing in a high-level language such as
Fortran, C, Pascal, or Modula.

Vi Major Microprocessors

Each manufacturer has its own assembler mnemonics and
notations, though there are no essential reasons for doing so. Thus,
the programmer when using a different processor must simultaneously
understand the architecture and the features of the processor, and
learn the new specific notations describing these. Since each processor
implements a subset of what an ideal processor should do, a universal
notation could be used to describe any of them. Manufacturers restrict
their notation to the functions their processors execute; this means
that they contain fewer symbols than universal notations; these
short-hand notations are simple to use after several weeks of usage,
but they are quickly forgotten. CALM notations specify the data type
and all elements of the addressing mode; confusion and errors are
therefore minimized, especially for the programmer who uses assembly
language infrequently, or has to program different processors in the
same period of time.

This book covers the principles behind microprocessors and
describes the main features of seven of the more widely used devices.
It is primarily a book about programming in assembly language. CALM
is used to describe the basic assembly language concepts and the
machine languages of selected microprocessors. The machine languages
of other micros, minis and even large computers could be described
using the same notation, which focuses on operand sizes and
addressing modes.

Beginners may have difficulties understanding all concepts at first
reading. The reader should have some basic understanding of
computers and programming, especially in assembly language. The book
should help him to get a much better understanding of programming
microprocessors, and to convince him of the purpose and usefulness of
a standard software implementation of an assembler notation such as
CALM.

This book consists of two parts. The first part is introductory, and
the second part describes seven selected microprocessors. The four
chapters of the first part cover number representations, processor
operations and programming. They are not intended to teach the basics
of computers but rather to introduce and define the ideas and names
used in the following chapters. Programming is detailed in seventeen
examples for a hypothetically perfect processor. These seventeen
programs are rewritten in the following chapters for each of the
selected processors; this illustrates the features of each microprocessor,
and demonstrates that a good programming practice uses the
methodology of successive refinement; it however does not cover all
the techniques used when programming large programs.

Preface vii

The second part of the book consists of seven chapters, each of
which describes one processor. The 6809 is presented first, due to its
more complete features. The 6809 ended the line of true 8-bit
devices, but came too late to get the success it deserved. The 8085
is still very much in use and has some historical importance. With its
predecessors, the 8008 and 8080, it greatly influenced the
microprocessor world of the ‘70s. The Z80 and its CMOS versions
have been very successful not only among professionals, but also with
thousands of microprocessor fans. Two major monolithic
microcomputers are presented. The well known 8048 has a particular
architecture, but CALM notations are also adequate for this processor.
The 6801 is straightforward and easy to understand. Two widely used
16-bit microprocessors, the 8086 and the 68000 complete the book.
The 32-bit upward compatible versions bring only few new concepts at
the instruction level, but imply new system programming approaches
which are not the purpose of this book. The index covers only the
first four chapters, in order to help the readers who study a given
processor without having carefully read the definition chapters. The
appendix includes the CALM reference cards for the seven processors.
Reference cards for other processors may be obtained at the address
below or from the CALM assembler distributors.

It is hoped that each chapter of the second part will provide
enough material to allow the writing of complex programs with a
minimum of additional information about the CALM assembler used.
Learning to use the manufacturer’s notation and the assembler
pseudo-instructions simply requires a better familiarization with the
manufacturer’s notation and documentation.

We are grateful to the many friends who have carefully read
parts of the book and checked its content. We would like to mention
specially R. Beuchat, J. Borawski, P. Fah, K. Hoyer, E. Skodaralakis,
R. Sommer, B. Szafnicki and A. Wegmann. However, there is so much
precise and specific information in this book that the risk of minor
errors is high. The authors will be obliged to readers who signal
immediately these errors; please send comments to LAMI-EPFL, Cour
37, CH-1007 Lausanne.

This book was edited and printed as it is, using the equipment
developed at the “"Laboratoire de Microinformatique” of the Swiss
Federal Institute of Technology (EPFL). We thank cordially the
engineers who wrote the text formatting software and guaranteed the
maintenance of the equipment, especially D. Dumoulin, P. Fah,
A. Guignard and G. Vaucher.

J.D. Nicoud F. Wagner

14 INDEX

ADDC

ADD

AND

ASCII

ASL

ASR
Accumulator-based
Accumulator

Address or Index Register
Address specifier
Arithmetic and Logic Unit
Arithmetic numbers
BASE

BCD (Binary Coded
Decimal)

Based addressing
Based-indexed addressing
Binary file

Binary system

CALL

CHECK

CLR

CLR

COMP

CONV

Cache memory
Control Unit

Control register

DAA

DEC

DIV

DJ,NE

DMA Controller

Direct memory access

48
48
49
14
50
50
20
16
19
35
16

37

37
38
57

50
48
50
50
48
47
19
16
25
49
49
48
52
27
27

Direct memory addressing
Direct register addressing
Dynamic range

EX

Error file

Excess-2°""

Execution cycle
Exponent

Fetch cycle
Fixed-point numbers
Flag Register

Flags

Floating-point numbers
General-register

Half carry

Halt state

Harvard type
Hexadecimal system
Hold

INC

IOFF

ION

IS0-7

Immediate addressing
Index register

Indexed addressing
Indexed addressing
Indirect addressing
Inherent

Instruction Register
Interface circuits
Interrupt Controller
Interrupt request
Interrupt service routine

35
34

47
57
10
17

17

16
21

20
14
17
18

27
49
52
52
14
33
38
37
37
36
34
16
24
26
25
26

332

Major Microprocessors

JUMP

Label

Linker

Load effective address
Loader

Local label

Logical numbers
MOVE

MUL
Macroassemblers
Mantissa
Memory-mapped
NEG

NOP

NOT

OR
One’s-complement
Overflow

POP

PUSH

Page register

Paged addressing
Pass

Polling

Pop

Post-increment (register
indirect)
Post-indexed indirect
Pre-decrement (register
indirect)

Pre-indexed indirect
Prefetch queue
Processor

Program Counter
Programmed transfer
Programming model
Pseudo-instructions
Push

RESET

RESET

50
58
60
47
60
58

47
48
57

24
49
52
49
49

47
47
23
42
57
26
23

39
41

39
41
19
16
16
25
29
59
23
17
52

RET

RLC

RRC

Recursive

Reentrant

Register indirect
Relative addressing
Relocatable

SET

SET

SL

SR

SUBC

SuUB

SWAP

Short direct memory
addressing

Sign extension
Signed decimal integers
Signed decimal integers
Signed-magnitude
Software interrupt
Software interrupts

Source file
Stack Pointer
Stack

Static range
Status register
Symbol

TCLR

TEST

TNOT

TRAP

TSET

Trap

Traps
Two’s-complement

Von Neumann’s architecture

WAIT
XOR

50
50
50
64
63
37
44
62
50
50
50
50
48
48
47

35

8
12
12

5

7
27
57
19
23

9
25
57
50
50
50
52
50
76
27

5
15
52
49

1

CONTENTS

Binary Arithmetic

1.1

1.2
1.3
1.4
1.5

1.6
1.7

POSITIONAL NUMBER SYSTEMS
NUMBER CONVERSIONS
BINARY REPRESENTATION OF SIGNED INTEGERS

BINARY ARITHMETIC FOR INTEGERS

1.4.1 Unsigned Operations

1.4.2 Two’s-complement operation

1.4.3 Sign-extension

FIXED- AND FLOATING-POINT NUMBERS
1.5.1 Floating-point numbers

1.5.2 Arithmetic for floating-point numbers
SIGNED DECIMAL INTEGERS

REPRESENTATION OF NONNUMERICAL DATA

Microcomputer Operations

2.1
2.2

2.3
2.4
2.5
2.6
2.7

VON NEUMANN ARCHITECTURE

PROCESSOR
2.2.1 Basic architecture
2.2.2 Other features

REGISTERS

ARITHMETIC UNIT AND FLAGS
MEMORY

STACK

INPUT-OUTPUT OPERATIONS

2.7.1 Programmed transfer

2.7.2 Data transfer with interrupt
2.7.3 Direct memory access

Microprocessor Instructions

3.1
3.2
3.3

3.4

PROGRAMMING MODEL
REGISTERS

DATA TYPES

3.3.1 Data specification
3.3.2 B-bit microprocessors
3.3.3 16-bit microprocessors
3.3.4 Examples of data types

ADDRESSING MODES

OO OMONN U W — =

—_ o —
AN -

—_
(3]

—_
(6]

—_
oD

NN N —
w N - O

NN DNDN
NN

oo N
© © O

wWwwww
N——=0O

w
w

Major Microprocessors

3.5 IMMEDIATE ADDRESSING 33
3.6 DIRECT ADDRESSING 34
3.6.1 Direct register addressing 34
3.6.2 Direct memory addressing 35
3.6.3 Short direct memory addressing 35
3.7 INDIRECT ADDRESSING 36
3.7.1 Register indirect addressing 37
3.7.2 Post-increment and pre-decrement addressing 39
3.7.3 Memory indirect addressing 40
3.7.4 Paged addressing 42
3.8 RELATIVE ADDRESSING 44
3.9 INSTRUCTION FORMAT 45
3.10 INSTRUCTION SET 46
3.10.1 Data transfers 46
3.10.2 "Load Address" instruction 47
3.10.3 Arithmetic operations 48
3.10.4 Logical operations 49
3.10.5 Shift and rotate operations 49
3.10.6 Bit operations 50
3.10.7 Program control 50
3.10.8 Interrupt control 52
3.10.9 Specific instructions 52
3.11 DATA STRUCTURES 52
3.11.1 Tables and Arrays 53
3.11.2 Queues 53
3.11.3 Lists 54
3.11.4 Records 55
Assembly Language Programs S7
4.1 ASSEMBLER OPERATIONS 57
4.1.1 Symbols 57
4.1.2 Instructions 58
4.1.3 Code-generation pseudo-operations 59
4.1.4 Other pseudo-instructions 59
4.1.5 Comments 59
4.1.6 Linker and loader 60
4.2 PROGRAMMING 60
4.2.1 Processor model 60
4.2.2 Addressing modes 61
4.2.3 Programming techniques 62
4.2.4 Relocation 62
4.2.5 Register management 62
4.2.6 Parameter passing 63
4.2.7 Reentrance 63
4.2.8 Recursivity 64
4.2.9 Error handling 65

Contents Xi
4.3 BRANCH AND LOOP STRUCTURES 65
4.3.1 Initialization loop 65
4.3.2 Move block 66
4.3.3 Lower to uppercase conversion 67

4.4 TABLE HANDLING 68
4.4.1 General lower to uppercase conversion 68
4.4.2 Branch on value 69
4.4.3 Bubble sort 70

4.5 ARITHMETIC 72
4.5.1 Multiple increment 72
4.5.2 Binary to Gray conversion 73
4.5.3 Gray to Binary conversion 74
4.5.4 Binary to decimal (BCD) conversion 75

4.6 INDIRECT ADDRESSING MODES 76
4.6.1 System call 76
4.6.2 Linked list 79

4.7 Conclusion 80
5 Motorola 6809 81
5.1 HARDWARE 81
5.1.1 Data transfer and instruction execution 81

5.1.2 Memory and peripheral interface 82
5.1.3 Processor control 82
5.1.4 Bus control 83
5.1.5 Interrupt control 84

5.2 SOFTWARE 85
5.2:1 Programming model 85
5.2.2 Addressing modes 86
5.2.3 Immediate addressing 86
5.2.4 Register direct addressing 88

5.2.5 Memory direct and relative addressing 88
5.2.6 Register indirect addressing 89

5.2.7 Memory indirect addressing 90

5.2.8 Instruction format 90
5.2.9 Instruction set 92
5.2.10 Transfer instructions 92
5.2.11 2-operand arithmetic and logical instructions 94
5.2.12 1-operand arithmetic and logical instructions 95
5.2.13 Jump instructions 96
5.2.14 Miscellaneous instructions 97

5.3 PROGRAMMING EXAMPLES 98
5.3.1 Clear a bit-map window 99

5.3.2 Move non-overlapping block 100

5.3.3 Convert lowercase letter to uppercase 100
5.3.4 Convert any 7-bit code 101

xii

Major Microprocessors

WWwwwww
- ©OooO~NOO;

.10
3.1
.3.12
.3.13

6 Intel 8085

oot oot o

Jump according to input character
Jump according to consecutive values
Bubble sort

Multiple increment

Binary to Gray conversion

Gray to binary conversion

Binary. to decimal conversion

System call

Linked list

6.1 HARDWARE

®

[© RN

6.2 F

ODNDIAWN—=— OADWN -

RPN

6.3 R

@)

PPOOPPPPPPPOO VPPN OY DOD DD
OCONOOOThA WM —

WWWWWwwwwwwwww

13

Data transfer and instruction execution
Memory and peripheral interface
Processor control

Bus control

Serial /O

Interrupts

WARE

Programming model

Addressing modes

Instruction format

Instruction set

Transfer instructions

2-operand arithmetic and logical instructions
1-operand arithmetic and logical instructions
Jump instructions

Miscellaneous instructions

GRAMMING EXAMPLE

Clear a bit-map window

Move non-overlapping block

Convert lowercase letter to uppercase
Convert any 7-bit code

Jump according to input character
Jump according to consecutive values
Bubble sort

Multiple increment

Binary to Gray conversion

Gray to binary conversion

Binary to decimal conversion

System call

Linked list

7 Zilog 280 and National Semiconductor NSC800
7.1 780 HARDWARE

7.1.1
7.1.2

Data transfer and instruction execution
Memory and peripheral interface

101
102
103
105
106
106
108
108
109

111

111
112
114
114
115
115
115

117
117
118
120
121
121
122
123
123
124

125
125
126
127
127
128
129
129
130
132
132
133
135
136

139

139
140
141

Contents xiii
7.1.3 Processor control 141
7.1.4 Bus control 141
7.1.5 Interrupts 141

7.2 NSC800 HARDWARE 142
7.2.1 Data transfer and instruction execution 143
7.2.2 Memory interface and processor control 143
7.2.3 Bus control 143
7.2.4 Interrupts 143

7.3 SOFTWARE 143
7.3.1 Programming model 144
7.3.2 Addressing modes 145
7.3.3 Instruction format 147
7.3.4 Instruction set 147
7.3.5 Transfer instructions 147
7.3.6 Block transfer and compare instruction 149
7.3.7 2-operand arithmetic and logic instructions 151
7.3.8 1-operand arithmetic and logic instructions 151
7.3.9 Jump and call instructions 152
7.3.10 Miscellaneous instructions 153

7.4 PROGRAMMING EXAMPLES 154
7.4.1 Clear a bit-map window 154
7.4.2 Move non-overlapping blocks 155
7.4.3 Convert lower case to upper case 156
7.4.4 Convert any 7-bit code 156
7.4.5 Jump according to input character 157
7.4.6 Jump according to consecutive values 157
7.4.7 Bubble sort 158
7.4.8 Multiple increment 159
7.4.9 Binary to Gray conversion 160
7.4.10 Gray to binary conversion 161
7.4.11 Binary to decimal conversion 162
7.4.12 System call 163
7.4.13 Linked list 164

8 Intel 8048 167

8.1 HARDWARE 169
8.1.1 Initialization 170
8.1.2 Transfer control signals 170
8.1.3 Execution of instructions 171
8.1.4 External data memory 172
8.1.5 Input-output ports 173
8.1.6 Input-output port expansion 173
8.1.7 TO and T1 lines 174
8.1.8 Counter 175
8.1.9 Interrupts 176
8.1.10 External memories 177

Xiv Major Microprocessors
8.2 SOFTWARE 178
8.2.1 Programming model 178
8.2.2 Addressing modes 182
8.2.3 Instruction format 184
8.2.4 Instruction set 185
8.2.5 Transfer instructions 185
8.2.6 2-operand arithmetic and logical instructions 186
8.2.7 1-operand arithmetic and logical instructions 186
8.2.8 Jump instructions 187
8.2.9 1-bit logical instructions 188

8.3 PROGRAMMING EXAMPLE 189
8.3.1 Clear a bit-map window 189
8.3.2 Move non-overlapping block 190
8.3.3 Convert lowercase letters to uppercase 190
8.3.4 Convert any 7-bit code 191
8.3.5 Jump according to input character 191
8.3.6 Jump according to consecutive values 192
8.3.7 Bubble sort 192
8.3.8 Multiple increment 193
8.3.9 Binary to Gray conversion 195
8.3.10 Gray to binary conversion 195
8.3.11 Binary to decimal conversion 196
8.3.12 System call 197
8.3.13 Linked list 197
8.3.14 Interrupt handling 198

9 Motorola 6801 199
9.1 HARDWARE 200
9.1.1 Data transfer in modes 2 and 3 203
9.1.2 Processor control 203
9.1.3 Parallel 1/0 204
9.1.4 Serial I/O 205
9.1.5 Timer 205
9.1.6 Interrupts 206

9.2 SOFTWARE 207
9.2.1 Programming model 207
9.2.2 Addressing modes 208
9.2.3 Instruction format examples 209
9.2.4 Instruction set 209
9.2.5 Transfer instructions 210
9.2.6 2-operand arithmetic and logic instructions 211
9.2.7 1-operand arithmetic and logic instructions 211
9.2.8 Jump and call instructions 212
9.2.9 Miscellaneous instructions 213

9.3 PROGRAMMING EXAMPLES 213
9.3.1 Clear a bit-map window 214
9.3.2 Move non-overlapping block 215

Contents XV
9.3.3 Convert lowercase letter to uppercase 216
9.3.4 Convert any 7-bit code 216
9.3.5 Jump according to input character 217
9.3.6 Jump according to consecutive values 217
9.3.7 Bubble sort 219
9.3.8 Multiple increment 220
9.3.9 Binary to Gray conversion 221
9.3.10 Gray to binary conversion 222
9.3. 11 Binary to decimal conversion 223
9.3.12 System call 224
9.3.13 Linked list 226

10 Intel 8086 229

10.1 HARDWARE 230
10.1.1 Minimum and maximum mode 230
10.1.2 Data transfer and 'instruction execution 232
10.1.3 Memory and peripheral interface 234
10.1.4 Processor control 235
10.1.5 Bus control 236
10.1.6 Interrupt control 237

10.2 SOFTWARE 240
10.2.1 Programming model 240
10.2.2 Addressing modes 243
10.2.3 Instruction format 245
10.2.4 Instruction set 248
10.2.5 Transfer instructions 248
10.2.6 2-operand arithmetic and logical instructions 250
10.2.7 1-operand arithmetic and logical instructions 251
10.2.8 Jump instructions 252
10.2.9 String manipulation instructions 253
10.2.10 Miscellaneous instructions 254

10.3 PROGRAMMING EXAMPLES 255
10.3.1 Clear a bit-map window 256
10.3.2 Move non-overlapping block 257
10.3.3 Convert lowercase letter to uppercase 257
10.3.4 Convert any 7-bit code 258
10.3.5 Jump according to input character 258
10.3.6 Jump according to consecutive values 259
10.3.7 Bubble sort 259
10.3.8 Multiple increment 260
10.3.9 Binary to Gray conversion 261
10.3.10 Gray to binary conversion 262
10.3.11 Binary to decimal conversion 263
10.3.12 System call 264
10.3.13 Linked list 265

xvi

Major Microprocessors

11 Motorola 68000
11.1 HARDWARE

11.
1.
11.
11.
1.
11.
11.1.

11.2 SOFT

1"
11

11.
11.
11.
11.
11.

11

11.

—_ e s -

'cocn\tmmhwm—-g NO U D WN —

11.2.
11.2.
11.2.
11.2.
11.2.
11.2.

11

2.
2.
2.
2.
2,
2.
2.
2
2
2
2
2
2
2
2
2

Data transfers

Privileged modes

6800 compatibility mode
Interrupts

Processor control

Bus control

Vector assignment

ARE

Programming model

Data types

Addressing modes

Immediate and direct addressing

Register indirect addressing

Relative addressing

Generalized immediate addressing

Bit sub-addresses

Group of address mode

Instruction format

Instruction set

Transfer instructions

2-operand arithmetic and logic instructions
1-operand arithmetic and logic instructions
Jump and call instructions

Miscellaneous instructions

11.3 PROGRAM EXAMPLES

11.
1l
11.
11.
11.
11.
1.
11.
11.
11,
11.
11.
11.

WWWWwwWwwwwwwwww

12 Appendix
13 References

14 Index

OCONOZUTHA WN —

.10
.1

12

13

Clear a bit-map window

Move non-overlapping blocks
Convert lower case to upper case
Convert any 7-bit code

Jump according to input character
Jump according to consecutive values
Bubble sort

Multiple increment

Binary to Gray conversion

Gray to binary conversion

Binary to decimal conversion
System call

Linked list

267

267
268
270
270
270
271
272
272

273
273
274
275
275
277
277
278
278
279
280
281
281
283
285
287
288
288
288
289
290
290
291
291
292
293
294
294
295
296
297

299
329
331

