FUNDAMENTALS OF

- THREE-DIMENSIONAL
COMPUTER GRAPHICS

ALAN WATT

Fundamentals of
Three-Dimensional
Computer Graphics

Alan Watt

University of Sheffield

'Av ADDISON-WESLEY PUBLISHING COMPANY

Wokingham, England - Reading, Massachusetts - Menlo Park, California
New York - Don Mills, Ontario - Amsterdam - Bonn
Sydney - Singapore - Tokyo - Madrid - San Juan

© 1989 Addison-Wesley Publishers Ltd.
© 1989 Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without prior written
permission of the publisher.

The programs in this book have been included for their instructional value. They
have been tested with care but are not guaranteed for any particular purpose. The
publisher does not offer any warranties or representations, nor does it accept-any
liabilities with respect to the programs. '

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Addison-Wesley has made every attempt to
supply trademark information about manufacturers and their products mentioned
in this book. A list of the trademark designations and their owners appears on

p. XVi.

Cover designed by Crayon Design of Henley-on-Thames

using illustrations provided by Digital Pictures Ltd, London and
printed by The Riverside Printing Co. (Reading) Ltd.

Text designed by Lesley Stewart.

Typeset by Columns of Reading.

Printed and bound in Great Britain by The Bath Press, Avon.

First printed 1989.

British Library Cataloguing in Publication Data
Watt, Alan H.
Fundamentals of three-dimensional computer
graphics.
1. Computer systems. Graphic displays.
Three-dimensional images
I. Title
006.6

ISBN 0-201-15442-0

Library of Congress Cataloging in Publication Data
Watt, Alan H.
Fundamentals of three-dimensional computer graphics/Alan Watt.
p. cm.
Bibliography: p.
Includes index.
ISBN 0-201-15442-0
1. Computer graphics. 2. Three-dimensional display systems.
I. Title.
T385.W38 1989
006.6—-dc20 89-34110
CIP

Fundamentals of
Three-Dimensional
Computer Graphics

TITLES OF RELATED INTEREST

Parallel Processing for Computer Vision and Display P Dew, R Earnshaw and
T Heywood (eds)

Computer Graphics: Principles and Practice, Second Edition J Foley,
A van Dam, S Feiner and J Hughes

Computer Graphics: Systems and Concepts R Salmon and M Slater

Interactive Computer Graphics: Functional, Procedural and Device-Level Methods
P Burger and D Gillies

SIGGRAPH Conference Proceedings ACM Press

Preface

This text is a comprehensive introduction to the techniques needed to
produce shaded images of three-dimensional solids on a computer graphics
monitor. The aim of the book is to give a theoretical understanding of these
techniques together with the programming expertise required to implement
them.

Three-dimensional computer graphics now embraces a large number of
application areas, from the fantasy world of film and television to more
practical areas such as CAD of mechanical engineering parts. In this sense
three-dimensional graphics is possibly the most important aspect of computer
graphics. While certain aspects are locked into particular areas — parametric
surface techniques are used almost exclusively in engineering CAD — users as
diverse as architects, molecular scientists and television animators use three-
dimensional modelling and rendering techniques.

Many of the methods used in three-dimensional graphics are less than
10 years old and, while many excellent textbooks exist, these have mainly
been general texts that have dealt with most of the mainstream topic areas in
computer graphics. A good deal of the information needed in three-
dimensional graphics is to be found only in research papers. This is
particularly true of the techniques that have emerged in the last five years;
for example, ray tracing and new reflection models. Implementing computer
graphics methods from research papers is sometimes a difficult and tedious
business. Details that are important to the implementer are quite rightly
omitted from such publications, and would-be image synthesizers sometimes
find themselves spending an inordinate time rediscovering the important
practical tricks that are necessary to produce a rendered image.

Because computer graphics has spawned a large number of different

Vii

Preface

Viii

methods, as the applications have grown and diversified, it is now almost
impossible to write a comprehensive but standard-length text on the subject.
These observations point to the need for more specialist texts that
concentrate on important and unifying topics in the subject. This is such a
text. Its aim is to deal with one of the mainstream areas of computer
graphics and also to provide a level of detail important to implementers. In
this respect, nearly all of the technique illustrations have been produced by
the author using programs described in the text. Pascal procedures,
implementing the crucial parts of methods at their final level of detail, are
included. The inclusion of procedures also goes some way to solving the
problem of algorithm and method description.

Pascal is chosen for two reasons:

(1) Although it is not the lingua franca that its adherents often claim, it is
at least as good as a pseudo-code, and, with the exception of data
structures, its translation into other high level languages is
straightforward. (A language that has recently become fashionable in
computer graphics is C. Although appreciating the practical advantages
of C, it is not clear to your author that C offers any significant
advantages, as a vehicle for describing algorithms, over Pascal.)

(2) It enables effective data structures to be implemented. The shading
and representation of three-dimensional solids are inseparable topics
and a text that deals with rendering should also deal, at some length,
with three-dimensional data structures.

Currently the most popular hardware arrangement used in high quality
rendering applications is a host processor that performs high level
programming, driving a graphics terminal that is little more than a screen
memory. The host is either in the same box, in which case the term graphics
workstation is used, or it is in a separate enclosure and the graphics facility is
called a terminal. (By ‘high quality’ we mean 24-bit screen memories; the
most popular arrangement for 8-bit screen memories is the ubiquitous PC,
enhanced with some extra hardware.)

For rendering shaded three-dimensional objects the programmer
requires just one utility:

Write_Pixel (x, y, R, G, B)

which transfers a three component colour into location (x, y) in the screen
memory. Some algorithms also require the ‘opposite’ utility:

Preface

Read_Pixel (x,y, R, G, B)

which reads the current value of a location in the screen memory into a
program. This is an advantageous situation for authors of computer graphics
textbooks because it means that programming illustrations can be almost
completely device independent. Indeed, the programs given in this book will
run on any host that accepts standard Pascal and will drive, with trivial
alterations, any general-purpose graphics terminal. (Incidentally, since only
one or two graphics utilities are used in the entire text the question of
graphics standards does not arise. Furthermore, GKS-3D, the recently
adopted graphics standard, does not have a convenient equivalent to
Write_Pixel.)

The processing division between the host and graphics terminal
processors is changing rapidly. Terminal utility packages are beginning to
offer, for example, interpolative polygon shading and Z-buffer hidden
surface removal. The trend is towards integrated workstations and away
from the host terminal metaphor. This move is reflected in proposed
extensions to the graphics standard PHIGS. PHIGS+ is intended to reflect
this trend and includes lighting and shading as well as new three-dimensional
primitives.

Efficiency in computer graphics is an important topic. Studios
producing three-dimensional animated sequences always have a fixed
generation time limit per frame that is imposed by the length of the
sequence, the hardware available and the rendering technique used (not to
mention the budget). In this text the program procedures are written to
illustrate techniques and although efficiency considerations are touched on
from time to time, it is difficult to combine such factors with sound
theoretical explanations. Efficiency in graphics programming is extremely
context dependent and involves such factors as rendering at the lowest
appropriate spatial resolution, varying the rendering resolution as a function
of the size of the object, using the least expensive reflection model that is
appropriate, writing critical code in assembly language and increasing the
workload of the graphics terminal processor by loading heavily used routines
into it. Although it has been tried, in the text, to avoid gross abuse of
processing time, efficiency is generally sacrificed for programming
transparency. Efficiency in Phong shading is treated as a topic in its own
right.

A significant proportion of the text is devoted to reflection or shading
models. The current thrust of research in this area is towards greater and
greater realism. Reflection models are continually being refined. The oft-
stated goal of such efforts is to produce images that are indistinguishable

Preface

from images obtained from, say, a television camera. The price that is always
paid for more accurate reflection models is, of course, significant increases in
computation time. This may not be such a vital consideration in the future,
with the continuing decrease in the cost of processing units, but the relentless
pursuit of reality in computer graphics does seem to be, in one sense,
aimless.

The explosive demand for processor power in computer graphics is also
driven by the related factor of increased resolution. Not only do algorithms
increase their complexity, but at the same time the spatial resolution of
graphics terminals increases, resulting in resource requirements that tend to
obey a growth law with an index somewhere between 2 and 3.

One of the major application areas of computer graphics is in the
entertainment and advertising industry. Here accurate reality is not
necessarily a desirable goal. The appeal of computer graphics in a television
commercial or title sequence is the super-reality or computer signature of the
images. Images are striking partly because they are recognizably computer
generated. To ‘reduce’ this effect by increasing their authenticity is to reduce
their appeal and utility. After all, it is much easier to digitize real scenes
using a television camera. In this respect a recent trend is to mix video and
computer graphics images.

The treatment in this text of reflection models is restricted to the
commonly used methods, although the more advanced and recent methods
are not totally ignored. Reflection models are introduced in a sequence that
reflects both their historical emergence and their complexity. This is certainly
not the best approach from the viewpoint of mathematical propriety and a
mathematical unification and discussion of reflection models is given in
Appendix E. This can be safely ignored by the reader interested only in
implementing a particular method, rather than understanding the
mathematical relationship of the model to physical reality.

One of the main aims of the book is to provide implementation details
and this means selecting a particular method to implement each part of the
rendering process, rather than cataloguing processes and briefly describing
each. Hidden surface removal, for example, is a good illustration of a stage
in rendering where a choice of algorithms is possible. Where there is such a
choice the selection of technique has been motivated by its popularity,
acceptance and ease of implementation. In most cases these aims do not
conflict with programming efficiency.

Nearly all the screen images in the text have been produced using the
basic software described in the text. Some of the images are based on simple
and effective ideas or illustrations produced by other computer graphics
workers. In such cases accreditation is given to the producer of the original
image.

Preface

The chapter structure enables the book to be read in any order. Most
chapters are self contained. Anti-aliasing is dealt with both in a separate
chapter, where the underlying theory is discussed, and in Chapters 7, 10 and
13.

Finally, although the book aims at being a ‘how to do it’ manual rather
than a ‘how it has been done’ book, there are certain topics which, because
of their nature, resist this approach. In particular, the chapter on three-
dimensional animation is a description of the major approaches to this topic.

Programs, teaching and learning

The code in this book is in one of three forms; Pascal pseudo-code for the
algorithms where this seems appropriate, Pascal procedures for all other
algorithms and a complete rendering system in Appendix B and Appendix
C. This consists of a wireframe program complete with a viewpoint interface
and a comprehensive data structure. Appendix C contains the additional
procedures required for a Z-buffer based rendering system with Gouraud
shading. The data for the Utah teapot is reproduced in Appendix D — even
novice graphics programmers tire of cubes and spheres.

Appendices A, B and C are intended to be an integral part of the book
that can be used for more detailed further study. In particular, Appendix A
is an example of the use of three-dimensional linear transformations.
Appendix B is a study of data structures, wireframe drawing and general
viewing systems. Appendix C extends the second appendix with rendering
techniques described in Chapter 5.

The software is designed to be a learning aid to the techniques in the
text and, with the single exception of ray tracing, all techniques can be
grafted onto the supplied rendering system.

If the text is used for teaching or self-study, the student can be
supplied with the rendering software to gain basic viewpoint experience, and
the techniques covered in each chapter used as exercises. All the procedures
have been integrated into the basic rendering system and in most cases no
modifications are required to the data structure. Except where otherwise
stated all the colour pictures were produced by this software.

Projects, notes and suggestions

The projects are meant to be an integral part of the text and can be usefully
read, even if you do not implement them. Many important points are
examined that expand on topics in the chapters. Implementation points that

are too detailed to be covered in the chapters are dealt with in the context of
Xi

Preface

Xii

a project. Some useful background information is also given — Gauss—Seidel
in the context of radiosity and Fourier theory for anti-aliasing.

Each project is classified with a heading. Projects marked (*) are fairly
lengthy, contain some scope for original work and could be used as a major

course assignment.
Have fun.

Acknowledgements

It would have been difficult to have produced this book without the
prodigious contributions made by my research students; Keith Harrison,
Dave Mitchell and Steve Maddock. They wrote the code, produced the line
plotter illustrations and generated all the original colour plates. I am
indebted to them for many useful suggestions and criticisms and for the
donation of their time. Dave made extensive contributions to Chapter 5 and
he and Keith developed the H-test. Steve assisted with Chapter 6. My
colleague, Jim McGregor, wrote a recursive ray tracer as an example of
recursion for undergraduates and contributed to Chapter 8. Sometime
undergraduates — Andy Price and Nigel Rasberry developed the ASL
animation project. Bill Sproson (formerly of the BBC, and author of the text
Colour Science in Television and Display Systems) checked Chapter 14.

But I should mention my collaborators at Addison-Wesley. Sarah
Mallen has been a source of encouragement in a world of slipped deadlines;
the production staff and Lynne Balfe coped with the usual tiresome
preproduction problems and endless author alterations with great efficiency
and cheerfulness; and finally, Kathryn Kergozou — the world would be a
duller place without her sox.

Alan Watt

University of Sheffield
August 1989

Contents

Preface

Chapter One Basic three-dimensional theory

1.1 Manipulating three-dimensional structures

1.2 The basics: linear transformations

1.3 Structure-deforming transformations

1.4 Projecting three-dimensional objects onto a view plane

1.5 Viewing systems

1.6 Three-dimensional viewing pipeline

1.7 An aside on graphics languages

1.8 Polygon mesh models and wireframe representation
Projects, notes and suggestions

Chapter Two A baslic reflection model
2.1 Simple reflection — the Phong model
2.2 Diffuse reflection
2.3 Ambient light
2.4 Distance
2.5 Specular reflection
2.6 Geometric considerations
2.7 Colour
2.8 Summary of the Phong model
2.9 The 20 spheres — an example
2.10 Using look-up tables with reflection models
2.11 Empirical transparency
Projects, notes and suggestions

vii

10
13
16
26
29
31
38

45
46
48
49
50
50
53
55
35
56
59
62
63

Xiii

Contents

Xiv

Chapter Three A more advanced reflection model

3.1
3.2

Chapter Four Incremental shading techniques

4.1
4.2
4.3
4.4

The Cook and Torrance model
Illumination source models
Projects, notes and suggestions

Gouraud shading
Phong interpolation

Comparison of Gouraud and Phong shading

Speeding up Phong shading
Projects, notes and suggestions

Chapter Five The rendering process

5.1
5.2
5.3
5.4

Chapter Six Parametric representation of three-dimensional objects
Parametric representation of three-dimensional curves
Parametric representation of three-dimensional surfaces

6.1
6.2
6.3

Rasterization

Order of rendering

Hidden surface removal

Compositing three-dimensional images
Projects, notes and suggestions

Scan converting parametric surfaces
Projects, notes and suggestions

Chapter Seven Ray tracing

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10

Basic algorithm

A historical digression — the optics of the rainbow

Recursive implementation of ray tracing
A remark on efficiency
Ray tracing geometry — intersections

Ray tracing geometry — reflection and refraction

Reflection—illumination model
Shadows and ray tracing

Distributed ray tracing

Ray tracing and anti-aliasing operations
Projects, notes and suggestions

Chapter Eight Advanced ray tracing

8.1
8.2
8.3
8.4
8.5
8.6

Adaptive depth control

Bounding volume extensions

First-hit speed up

Spatial coherence

Data structures for ray tracing: octrees
Data structures for ray tracing: BSP trees
Projects, notes and suggestions

65
65
78
81

83
84
87
89
90
93

97
98
102
104
111
112

115
116
127
139
147

151
152
154
156
161
162
165
167
173
174
176
178

181
181
184
187
187
190
195
198

Contents

Chapter Nine Diffuse lllumination and the development of the
radiosity method
9.1 Radiosity theory
9.2 Form factor determination
9.3 Further development of the radiosity method
Projects, notes and suggestions

Chapter Ten Further realism: shadows, texture and
environment mapping
10.1 Shadows
10.2 Texture
10.3 Environment mapping
Projects, notes and suggestions

Chapter Eleven Functionally based modelling

11.1 Particle systems

11.2 Fractal systems

11.3 Functions suitable for three-dimensional texture
Projects, notes and suggestions

Chapter Twelve Anti-aliasing techniques
12.1 Aliasing artefacts and Fourier theory
12.2 Supersampling or postfiltering
12.3 Prefiltering or area sampling techniques
12.4 A mathematical comparison
12.5 Stochastic sampling

Projects, notes and suggestions

Chapter Thirteen Three-dimensional animation
13.1 Approaches: three-dimensional key frame systems
13.2 Approaches: parametric systems
13.3 Approaches: programmed animation and scripting systems
13.4 Approaches: simulated or model-driven systems
13.5 Temporal anti-aliasing
Projects, notes and suggestions

Chapter Fourteen Colour science and computer graphics
14.1 Applications of colour in computer graphics
14.2 Monitor models
14.3 Television transmission spaces
14.4 Colour models
14.5 Basic colorimetry concepts
14.6 The CIE standard
14.7 Realistic rendering and reflection models
Projects, notes and suggestions

201
202
205
209
216

219
219
227
247
251

255
256
257
261
264

267
269
273
275
277
278
281

285
288
291
292
295
300
301

309
311
313
315
318
331
339
353
354

XV

Contents

Appendix A Viewing transformation for a simple four-parameter
viewing system

Appendix B A wireframe system
B.1 Introduction

B.2 Data structure

B.3 Program

Appendix C An impiementation of a renderer
Appendix D The Utah teapot

Appendix E Some theoretical concepts
E.1 Introduction

E.2 Useful definitions

E.3 Hall’s model

E.4 The rendering equation

Appendix F Highlight detection — the H test
F.1 Introduction

F.2 The tests

F.3 Example timings

References

Index

Trademark notice
Luxo™ is a trademark of Jac Jacobson Industries.

XVi

357

363
363
364
371

389

395

399
399
400
400
403

405
405
407
410
413

421

CHAPTER ONE

Basic Three-Dimensional
Theory

Linear transformations are important tools in generating three-dimensional
scenes. They are used to move objects around in an environment, and also
lo construct a two-dimensional view of the environment for a display
surface. This chapter deals with basic three-dimensional transformations,
introduces some useful shape-changing transformations, looks at viewing
techniques and considers techniques for representing and displaying a
wireframe of an object.

1.1 Manipulating three-dimensional
structures

In computer graphics the most popular method for representing an object
is the polygon mesh model. This form of representation is either exact or
an approximation depending on the nature of the object. A cube, for
example, can be represented exactly by six squares. A cylinder, in
contrast, can only be approximated by polygons; say six rectangles for the
curved surface and two hexagons for the end faces. The number of
polygons used in the approximation determines how accurately the object
is represented and this has repercussions in modelling cost, storage and
rendering cost and quality. The popularity of the polygon mesh modelling
technique in computer graphics is undoubtedly due to its inherent
simplicity and the development of inexpensive shading algorithms that
work with such models.

A polygon mesh model consists of a structure of vertices, each

Basic Three-Dimensional Theory

Figure 1.1

(a) Right-handed
coordinate system and
(b) left-handed system.

z

vertex being a three-dimensional point in so-called world coordinate
space or definition space. Later we shall be concerned with how vertices
are connected to form polygons and how polygons are structured into
complete objects, but to start with we shall consider objects just as a set
of three-dimensional vertices and look at how these are transformed in
three-dimensional space using linear transformations.

1.2 The basics: linear transformations

Objects are defined in a world coordinate system which is conventionally
a right-handed system. Right-handed and left-handed three-dimensional
coordinate systems are shown in Figure 1.1. As we shall see later, objects
in the right-handed world coordinate system are transformed into a left-
handed view plane and view surface coordinate system.

It is sometimes convenient to define objects in their own local
coordinate system. There are three reasons for this. When a three-
dimensional object is modelled it is useful to build up the vertices with
respect to some reference point in the object. In fact a complex object
may have a number of local coordinate systems, one for each subpart. It
may be that the same object is to appear many times in a scene and a
definition with a local origin is the only sensible way to set this up.
Instancing an object by applying a mix of translations, rotation and
scaling transformations can then be seen as transforming the local
coordinate system of each object to the world coordinate system. Finally,
when an object is to be rotated, it is easier if the rotation is defined with
respect to a local reference such as an axis of symmetry. (This philosophy
is adopted, for example, in the graphics standard PHIGS where the
programmer defines structures in the modelling coordinate system.
Modelling transformations define the mapping from this coordinate space
to world coordinate space.)

A set of vertices or three-dimensional points belonging to an object
can be transformed into another set of points by a linear transformation.

Y z Y z
z X
or or
X Y X Y
X

(a) (b)

