(P)

(@)
(@)

)

8565789

The Problem
and Its Solutions

MANATAY

JAMES MARTIN
CARMA MCCLURE

i

PRENTICE-HALL, INC., Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging in Publication Data

Martin, James
Software maintenance.

Includes bibliographical references and index.

1. Software maintenance. I. McClure, Carma L.
II. Title. i
QA76.9.S65M37 1983 001.64 2 82-25180
ISBN 0-13-822361-0

TO
CORINTHIA
AND
CONSTANCE

Editorial/production supervision by Linda Mihatov
Jacket design by Diane Saxe
Manufacturing buyer: Gordon Osbourne

Software Maintenance: The Problem and Its Solutions
James Martin and Carma McClure

© 1983 by James Martin and Carma McClure

All rights reserved. No part of this book
may be reproduced, in any form or by any means
without permission in writing from the publisher.

Printed in the United States of America

O FORER e 6 o 4 80 L]

ISBN 0-13-8223k1-0

PRENTICE-HALL INTERNATIONAL, INC., London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
EDITORA PRENTICE-HALL DO BRASIL, LTDA., Rio de Janeiro
PRENTICE-HALL CANADA INC., Toronto

PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo

PRENTICE-HALL OF SOUTHEAST ASIA PTE. LTD., Singapore
WHITEHALL BOOKS LIMITED, Wellington, New Zealand

SOFTWARE MAINTENANCE

PREFACE

Software maintenance claims an extremely large share of the software dollar
and is becoming the most expensive part of the software life cycle. Yet, al-
though there are countless books and courses on systems analysis and design,
the very important subject of software maintenance has been almost totally
neglected. There is little understanding of what can be done to lessen the
crippling maintenance problem.

In fact much can be done. Widespread use of the techniques described
in this book would cut the maintenance costs in most organizations to a frac-
tion of what they are today.

To solve the software crisis the tasks of developing, using, and maintain-
ing software must be simplified and automated. Software technologies
typically have focused on the development phases of the software life cycle—
in short, programming methods and tools. Following the development of
high-level programming languages in the early 1960s, the predominant soft-
ware advance has been the introduction of software engineering, and in
particular structured techniques. Unfortunately, we have grossly underesti-
mated the need to change programs and the difficulties of doing so.

The cost of failing to design systems for maintenance is very high.
Often this is calculated to be the overt cost of doing the maintenance. There
is, however, a hidden cost which is often higher. The system becomes so
fragile that programmers and their managers are reluctant to change it. Any
change has unforeseen consequences which often cause problems in other
parts of the system, annoy users, and consume precious software personnel
time.

A fundamental problem with software maintenance is that when a
change is made it often introduces unforeseen side effects. Fixing a bug has a
great chance of introducing a new bug.

While the worst maintenance stories are nightmares, we should also

vii

85585789

Over $20 billion per year are being spent worldwide on mainte-

nance. If the techniques in this book had been employed every-
where they were appropriate, at least half of the $20 billion would
have been saved.

CONTENTS

Preface vii

PART I INTRODUCTION

1 The Maintenance Mess 3

2 State of the Art of Software Maintenance 77

PART II DESIGNING FOR MAINTENANCE

Measures of Program Maintainability 43
Methods for Building in Maintainability 75
The Significance of Data Base 707
Normalization of Data 735

Creating Stable Data Structures 759

Documentation 773

0w 0 N O o1 AW

Source Code Style 795

PART Iv
15

16

PART v

17
18
19
20
21

PART VI
22

23

Contents

THE METHODOLOGY REVOLUTION
Making the Mice Go Away 275

Use of Fourth-Generation Languages 237
User-Driven Computing 255

Prototyping 285

Information Engineering 297

PACKAGES

Preprogrammed Application Packages 325

Contracting for Maintainable Software 339

PERFORMING THE MAINTENANCE
FUNCTION

Performing Program Maintenance 367
Debugging 387

Tools for Maintenance 393

Managing the Maintenance Function 473

Maintenance Teams 425

VIEWING THE FUTURE
Planning for Future Maintenance 437
Strategic Planning and Migration 453
Index 466

PART I INTRODUCTION

e 10 A i e 3
g F L R : 4 :
73 ¥ e b o
7 3 3 Bl s A A REG Ce
R o0 i
STy 4 Tl it Sy
4]) ¢ o
i
i
v
]

1 THE MAINTENANCE MESS

INTRODUCTION We are accelerating into the computer age. Articles

about computerization appear everywhere, from
business journals to fashion magazines. By the end of the decade executives,
secretaries, and consumers will all use computers as part of their daily
activities, with an explosion of new applications such as electronic funds
transfer, power facilities maintenance, exotic new weapons systems, auto-
mated design engineering, and robot production lines.

Yet when top business managers ask for information they know to be
in their computers, they frequently cannot obtain it. When executives want
to change procedures, they are told they cannot do that because the com-
puter cannot make the change. Giant insurance companies have to resort to
processing claims by hand after a change in government regulations. What is
wrong?

The problem is that we have created computer programs that are very
difficult to maintain.

WHAT IS We use the term maintenance to refer to changes
MAINTENANCE? that have to be made to computer programs after

they have been delivered to the customer or user.
We perform maintenance for a variety of reasons:

® To correct errors and design defects
® To improve the design

® To convert the programs so that different hardware, software, system features,
telecommunications facilities, and so on, can be used

® To interface the programs to other programs

4 Introduction Part |

® To make changes in files or data bases
® To make enhancements or necessary changes to the applications

Program maintenance is different from hardware maintenance. Hard-
ware maintenance for a computer consists of replacing deteriorated com-
ponents, putting in engineering changes that correct defects and make
design enhancements, and lubricating and cleaning mechanical parts. This
does not affect how the computer is supposed to behave, so the user usually
sees no change.

Program maintenance not only corrects defects and makes design en-
hancements; it also makes enhancements that change how the program
behaves. Users constantly want to make adjustments in program behavior.
Most maintenance work is caused by changing requirements rather than by
reliability problems [1] (see Fig. 1.1).

Software systems used in industry are continually modified to adapt
to changing data, and to meet changing user needs. Even a system that is
totally reliable, completely meets user requirements, and is well structured
will frequently be changed during the maintenance phase. Unless software
systems of the future are designed to be changed more easily without
jeopardizing their quality, maintenance of these systems will continue to be
a time-consuming and costly activity.

If we push the analogy with hardware maintenance, the term “main-
tenance” seems inappropriate when referring to enhancements in program
function. It might be better to use a different word. However, the word
“maintenance” is now firmly embedded in common usage to mean all
forms of software enhancement. Designing software for ease of maintenance

SOFTWARE MAINTENANCE ACTIVITIES

BUG
CORRECTION
(20%)

Figure 1.1 The major portion of mainte-
nance work performed in most organiza-
tions is spent enhancing and improving
software systems.

Chap. 1 The Maintenance Mess]

is the same problem whether we are talking about ‘‘engineering changes”
or application enhancement.

INABILITY TO Computers have plunged in cost dramatically. It
MEET APPLICATION is clear that the spectacular cost reductions will
NEEDS continue, accompanied by mass production of

computers used in all walks of life. Can anything
slow the momentum of the computer revolution? Certainly: ill-designed
software.

Software has become the dominant factor in computerization. The
success of computerization in many organizations hinges on the supply of
software. The gap between the supply and demand of programs is rapidly
growing. Most companies currently have a three- to four-year backlog of
computer applications waiting to be programmed.

In addition, there is an invisible backlog of user needs which have not
formally entered the queue of pending applications. A study by the Sloan
School Center for Information Systems Research found that the invisible
backlog of major enterprises studied averaged 164% of the declared back-
log. The total backlog measured in this study represented 179% of the
entire base of installed applications [2].

Programming accounts for an ever-increasing proportion of computer
costs. Most software efforts of any magnitude are fraught with problems
and failure. Programming projects take longer to complete and cost more
than planned. As shown in Fig. 1.2, instances of actual costs running 300%

OVERRUN

SCHEDULE

e
ESTIMATED
OVERRUN

BUDGET

B ——
ESTIMATED

Figure 1.2 Instances of actual schedules running 200% over estimates
and actual costs running 300% over budgeted costs are the rule rather
than the exception in software projects.

6 Introduction Part |

over budget and actual schedules running 200% over estimates are the rule
rather than the exception [3]. Managers are bewildered by their inability to
apply normal management practices to the data-processing function. Users
are frustrated and antagonized by applications that are difficult to change
and do not work as expected. Software professionals are at a loss to under-
stand why one project succeeds and the next one fails.

The economic stability of many nations is now being threatened by
productivity lags. Computerization is seen as perhaps the best way to de-
crease production and office costs. Computer-aided design and manufac-
turing are rapidly being introduced. Major changes in paperwork procedures
are needed. But the necessary changes need rapid increases in program
production at the same time that there is an increasing shortage of analysts
and programmers. A front-page Wall Street Journal article stated that “Oil
and software are the two principal obstacles to economic progress” [4].

Advances in software technology have not kept pace with those in
hardware technology. Installations that buy the latest computers often
program in 20-year-old languages with ad hoc methods far removed from
engineering discipline.

CLOSING THE Fundamental to the future of computerization is
SOFTWARE SUPPLY closing the supply and demand gap in programs.
AND DEMAND GAP To solve the software crisis the tasks of developing,

using, and maintaining programs must be simplified
and automated.

Software technologies typically have focused on the development
phases of the software life cycle—in short, programming methods and tools.
Following the development of high-level programming languages in the early
1960s, the predominant software advance has been the introduction of
software engineering, in particular structured techniques.

Like the software technologies of the 1960s and 1970s, those proposed
for the 1980s mostly focus on the technical aspects of software develop-
ment, for the most part ignoring the end user, management issues, and
maintenance problems [5]. However, a closer look reveals that the latter
problems overshadow the more technical problems of software development,
Users are dissatisfied not only because of system bugs and failures but also
because of poor documentation, inadequate training, and the inability of
programs to be responsive to their changing requirements.

Past software failures and current cost trends explain the reason for
doubting the effectiveness of software solutions that focus primarily on
technical and development issues. Although valuable, they do not directly
address a major cause of software crisis. Maintenance of existing software
systems is diverting valuable and scarce resources away from new develop-
ment efforts. It is a major contributor to the growing backlog of applications

Chap. 1 The Maintenance Mess 7

SOFTWARE COSTS

LIFE CYCLE
ANALYZE
DESIGN
CODE
TEST

Figure 1,3 Software maintenance dominates the software life cycle.
In many organizations, software maintenance activities consume three-
fourths of the total life-cycle expenditures and over one-half of the
data-processing personnel resources.

waiting to be programmed. Maintenance dominates the software life cycle
in terms of effort and cost (Fig. 1.3).

We have grossly underestimated the need to change programs and the
difficulties of doing so.

OPPORTUNITY The cost of failing to design systems for main-
COSTS tenance is very high. Often this is calculated to be

the overt cost of doing the maintenance. There is,
however, a hidden cost which is often higher. The system becomes fragile so
that data-processing managers are reluctant to change it. Any change has un-

8 Introduction Part |

foreseen consequences which often cause problems elsewhere, annoy users,
and waste precious personnel resources.

So business executives are told that programs cannot be changed. “You
cannot do that—the computer can’t handle it.”” Even trivial changes are
resisted. Executives cannot obtain the information they need for decision
making. Improvements in procedures do not occur. Better forms of customer
service are avoided. The business should be changing rapidly but the data-
processing department is digging in its heels. Dynamic executives become
frustrated. They constantly perceive changes they want to make but have
increasing difficulty doing so. It is like swimming in slowly solidifying
gelatin.

Computers offer the promise of enormous improvements in business
efficiency. The promise will not be fulfilled unless the best techniques are
used for achieving maintainability.

CHAIN REACTIONS A fundamental problem with program maintenance

is that when a change is made it often introduces
unforeseen side effects. Fixing a bug has a substantial chance of introducing
a new bug.

Often a change has system-wide ramifications which are not obvious,
Attempts are made to affect a local change with minimum effort but this
sets off a chain reaction of problems elsewhere. Unless the system is very
well documented, these side effects will not be anticipated, or even known,
until they cause problems in operation.

This situation is made worse because the maintainer or repairer is often
not the person who wrote the original code. The change may affect the work
of multiple coders.

Because of the side effects, maintenance needs far more program testing
per line of code than other programming. When a change is made it may be
necessary to run an entire bank of test cases to ensure that other areas still
work correctly. Such regression testing to check for side effects can be
costly. How costly depends on how convoluted the structure of the system
is. In large entangled systems the chain-reaction effects can be very severe.

Maintenance changes tend to deteriorate the structure of programs,
often making them more complex and more difficult to maintain next
time. They are often done in an atmosphere of crisis. A quick patch is
needed rather than any elegant restructuring. Patches accumulate, We get
patches on top of patches on top of patches.

As flaw-fixing introduces new flaws, more and more time is spent on
fixing these secondary problems rather than on correcting the structure
that caused the original problem. The system steadily becomes less and less
well ordered. Some complex systems reach a point where the maintainers
cease to gain ground. Each fix introduces new problems. The system has
become too unstable to be a base for progress.

Chap. 1 The Maintenance Mess 9

Fred Brooks, philosophizing about his experience in managing the
building of OS/360, wrote:

Systems program building is an entropy-decreasing process, hence inherently
metastable. Program maintenance is an entropy-increasing process, and even
its most skillful execution only delays the subsidence of the system into
unfixable obsolescence [6].

Lehman and Belady studied the history of successive releases of a large
operating system [7]. It became steadily larger, the number of modules in-
creasing linearly with the release number. However, the number of modules
affected by maintenance changes grew exponentially with release number.

In corporate data processing (DP) the number of programs and files
steadily grows. As this happens, the cost of maintenance tends to become a
steadily larger part of the DP budget unless strong measures are taken to
control it.

Figure 1.4 shows how maintenance has tended to grow in typical
installations, becoming a larger portion of the DP budget. In many DP or-
ganizations, program maintenance activities consume nearly three-fourths
of total life-cycle expenditures [8] and over half of the DP personnel re-
sources [1]. Those organizations moving fastest into on-line and interactive
systems are often spending as much as 80% of their time on maintenance.
Using the types of techniques discussed in this book, this figure has been
lowered to about 20% in some organizations.

A few organizations have reached a state where 100% of their effort
is spent maintaining existing programs. No new applications are being

Expenditures ($)

Total

programming
costs
Expenditure
on application
development

Time (years) ———>

Figure 1.4 New application progress is often deferred by the rising
cost of modifying existing programs and files. Some corporations spend
more than 80% of their programming budget just keeping current and
only 20% forging ahead.

10 Introduction Part |

written. One large government body froze all application development
for 14 years while it tried to redesign its data structures. Such a situa-
tion is intolerable for end users, who often find means to bypass the DP
organization.

FILE PROBLEMS Many DP organizations have built up vast libraries

of files on tape or disk. When the business needs
change, programs are often modified in a way that causes a change in the
structure of a record. Unfortunately, some other program also uses the same
record, so, somewhat by surprise, that program also has to be modified.
In an old installation many other programs use the file and they all have to
be changed.

A seemingly trivial change in a file environment sets off a chain reaction
of other changes that have to be made. This upheaval is expensive and the
necessary programmers are doing other work. Sometimes the modifica-
tions are difficult to make because the applications were not adequately
documented.

As time goes on this problem becomes worse because more and more
programs are created. More programs have to be changed whenever a file
is changed.

It is often thought by systems analysts and data-processing managers
that existing programs which work well can be left alone. In reality, how-
ever, the data that they create or use are needed for other applications and
almost always needed in a slightly different form. New data-item types
are added. New record types are needed with data-item types from several
previous records. The data must be indexed in a different way. The physical
layout of data is improved. Data for different applications are merged, and
so forth.

An old file environment is like a bowl of spaghetti. Every time you pull
one piece of spaghetti it shakes all the others in the bowl. As time goes
by it becomes steadily worse because the number of pieces of spaghetti
increase and they become more interwoven. The maintenance difficulties of
file systems grow geometrically with the number of applications produced.

As we discuss later, data-base technology was invented to deal with
this problem. In well-managed data-base installations it has succeeded to
a large extent. In badly managed ones it has made the problem worse.

The maintenance mess has become a nightmare for some organizations.
It is alarming to reflect what it may be like in 20 years time as more and
more applications and systems are developed. Microbes under appropriate
conditions can multiply exponentially like today’s computers. But if they
multiply when shut in an enclosed laboratory dish they eventually drown
in their own excrement. One top DP executive compared this to his
maintenance problems. New growth, he said, was being stifled by the ex-

