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Preface

- This book is the result of more than fourteen years’ continuous

labor. I am submitting the material now for publication, not
because I feel that it represents the ideas in perfected form, but
because there has to be an end of revising and supplementmg if
the book is to reach its readers.

One problem, which led to frequent rewriting, was the choice
of the method of presentation. The best way to write the book
would have been to start with the law of Fermat, or the equiva-
lent Forrfiula (14.4), and derive from it all the laws systematically.
This would lead to an esthetically more pleasing treatment, but
one that would require a considerable amount of mathematlcal_
knowledge on the part of the reader.

Those who most need a thorough knowledge of the theory of
optics are the designers of optical lenses. I have a great admi-
ration for the achievements of commercial designers, but lens
design is still more an art than a science and, unfortunately, the
acquaintance of the average designer with higher mathematics
is limited. Since I hope that, in addition to setting forth a con-
sistent theoretical system, this book will be of use in the practical
design of optical instruments, it was necessary to accomplish
the desired results with a minimum of mathéhatical technique.
Moreover, the mathematical methods that are used are explained
in detail in an appendix prepared by my colleague, Dr. Erich
Marchand. I have limited the problems to those which can be
treated by these methods. ' ' '

The aim of the book is nb‘thmg less than to develop a mathema-
tical model of an optical system that is complex enough so that
all the characteristics of the geometrical optical image can be
obtained from it and at the same time simple enough to be in+
telligible. It-may be mentioned that the same model might also
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be used as a basis for calculatmg the diffraction i image, since it
gives the phase relationships in the exit pupil, but this is outsxde
the scope of this beok.

Part I concerns the problem of tracing rays through an optlcal

- system. Much of the extensive literature on this subject is now
obsolete; the particular type of formulae used always depends on
the computational tools at the disposal of the designer, and while
the manuscript was in preparation, methods of computation that
reduce many fold the tlme‘requlred for tracing a ray came into
widespread use. The formulae in this book were developed to be
suitable for high-speed electronic computers. To these formulae
are added independent controls that are carried along in order to
check the correctness of the machine operations.

Part II gives the first-order approximation theory (Gaussian
optics), for which a new tool, the so-called Gaussian brackets, is
introduced. This new tool enables us to investigate the effect of
a variation of system data on the constructional elements of the
system (focal length, back focus, magnification, etc.). We can
thereby compute an approximate system (a system of thin lenses
separated by finite distances) which has, in the realm of Gaussian

_optics, the desired specifications and is also corrected for Petzval
sum and longitudinal and lateral color abetrations.

The ideas of Hamilton are derived in Part III as well as other
laws of optical image formation. Special emphasis is laid on the -
study of the different ¢ypes of imagery

Concentric systems are taken up in Part IV, and it is shown
that, for this limited field, a complete mathematical treatment
can-be given so that all optical systems with specified charac- .
teristics can be specified by the system data. If it were possible
to extend the methods of this chapter to systems with rotational -
symmetry, the problem of lens design would change from an art
to a science.

Part V emphasizes the spec1ﬁc form which the methods and "

. general laws of Part III assume in systems with symmetry of
» ‘rotation. A general theorem (22.5) of many applications enables -
us to investigate the limitations of optical image formation.

~ In Part VI most of the results of Allvar Gullstrand’s work are
derived by the method developed in this book. This gives rise to
an approximation theory for normal systems along a principal ray, -
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The results are used in Part Vil to develop a new image-error

theory that combines third- and fifth-order aberratlons for the
ne1ghborhood of the axis.
. Finally, in Part VIII we develop a mathematical model of
an optical system. The results of tracing a few rays, both merid-
ional and skew, from several object points are fitted to a fifth-
order formula equivalent to the theory discussed in Part VI.
This formula is then used as an interpolation formula to calculate
the intersection points of a large number of rays with one or more
image planes. The rays are evenly spaced over the exit pupil, and
therefore the plots of the intersection points, called spot diagrams,
give a record of the distribution of light over the selected image
planes. These spot diagrams are treated as vector sums of sxmple
diagrams, and they serve as a new tool in lens design, giving a
record of the behavior of all rays from each of the selected object
points.

The last chapter indicates how the methods can be apphed to
the case of mhomogeneous media. The mathematical techmques
are developed in an appendix, while other appendices give nu-
merical examples and some remarks on the history of geometrical
optics. The book ends with an extensive bibliography of source
material. '

Some of the mathematical tools used in this book are worthy
of special mention. The treatment is simplified by considerations
of symmetry. The introduction of the concept of the diapoint
(the intersection of the image ray with the plane that passes
through the object point and the axis of symmetry) also results in
a simplification. The treatment of the chromatic aberrations is
facilitated by using dispersion formulae that are linear functions
of the indices.

A future edition of this book should contain some of the mte»
gral laws of optical systems, so important for energy considera-
tions, a more detailed study of the dependence of image errors on
the system data, and difference formulae for ray tracing. A chapter
should alsq be added on the evaluation of the image of lines and
objects of nonuniform density. In recent years much interest has
been aroused in this field, and the many papers now being pub-
- lished will undoubtedly further the development of our science.
I want to thank Dr. Fred Perrin and Dr. Erich Marchand for
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their help in the difficult task of editing and proofreading this
book; Miss Nancy McClure for her help in preparing the index;
Miss Helene Donnelly and Miss McClure for preparing and
checking the numerical examples; Mr. James Watts for the prep-
aration of the difficult optical drawings; as well as Mr. Stephen
Insalaco, who prepared the drawings for Chapter 12.

I am greatly indebted to my publisher for his patience and to
him and the printer for their painstaking care in setting in type

. such difficult material.

Finally, I want to thank the Eastman Kodak Company, who
not only gave me the time to write this book, but put all their
many facilities at my disposal.

Rochester, New York M. H.
March 1, 1958
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CHAPTER ONE

The Laws of Refraction and Reflection

Geometrical optics is based on two simple physical assump-
tions. The first has to do with the behavior of light within a given
medium and the other with its behavior in passing from one
medium to another.

The velocity of light depends on the medium through which
the light passes. Since optical systems are comnionly used in air,
we may take the velocity in air as the standard and call it ¢; if the
velocity in another medium is designated v, the ratio ¢/v is defined
as the refractive index of the second medium with respect to‘air.
The index with respect to vacyum would be only slightly differ-
cnt, since the index of air with respect to free space is only 1.0003.

Except in free space, the velocity of light and therefore the
refractive index of the medium varies with wavelength 4, by
which is meant the wavelength in space or, practically, in air.
This variation of index with wavelength, known as dispersion, is
negligible for air but is great enough to be very serious for the
materials used in optical systems. Unless the contrary is stated
or implied, the light will be assumed to be monochroinatic, which
means that the refractive index of a given medium is constant.

If the refractive index is independent of the location of the
point under consideration in the medium, the latter is said to be
homaogeneois ; if the index is independent of the direction of travel
of the light through the point, the medium is said to be zsotropic.
Except when the contrary is stated, all media will be assumed to
be both homogeneous and 1sotropic.

The first basic assumption of geometrical optics is that, in a
homogeneous, isotropic medium, light of a given wavelength
travels in straight lines called rays. The second basic assumption
is the law of refraction and reficction. Light rays change their
direction in passing from one homogeneous, isotropic medium to

3



4 MODERN GEOMETRICAL OPRTICS

another of different refractive index. The surface separating two
such media will be assumed to be smooth, that is, it will be con-
sidered to be continuous with a continuously varying tangential
plane. At such a surface, a light ray is generally split into two
parts, one being refracted into the second medium and the other
being reflected backwards into the first medium.

The laws relating to reflection and refraction have a long and
interesting history.

The law of reflection—that the angle of reflection equals the
angle of incidence—appears as early as 300 B.C. in the “Catop-
trics” of Fuclid. This is very probably the first book on optics,
although there is some doubt of its authenticity.

Around 60 B.C., Hero of Alexandria ‘‘derived’’ the law of
reflection from a minimum principle: ‘“The light path is the short-
est way between two of its points.” It is interesting that he
draws only planes and convex mirrors to prove his point, and not
concave mirrors, for which the principle does not always apply.

The phenornenon of refraction was also known to the Greeks.
There is a famous passage in Plafo’s ‘“Timaios’ in which Plato
tries to prove the unreliability of our perceptions by demon-
strating that a stick submerged in water seems to be shorter than

_in air, whereas, by withdrawing it, one can 1mn1ed1ately see that
its length has not changed. :

Ptolemy of Alexandria (A.D. 150) tried to find the law of re-
fraction by measuring the angle between the incident and the
refracted rays for combinations of air and glass, air and water,
and water and glass at 10 intervals for the incident angle.
Boegehold has shown that all his values may not have been observed
because they obey too accurately a second-order interpolation
formula.

Witelo (Vitellius), about 1270, edited a ten-volume ““Handbook
on Optics” containing tables for the combinations studied by
Ptolemy. The values in these tables certainly could not have
been obtained experimentally becatise some of them go beyond
the angle of totzal reflection. These erroneous tables were unfor-
tunate for Kepler when he studied the phenomenon of refraction,
about 1610. His account of his numerous unsuccessful attempts
to find the law of refraction is worth reading. Eventually he
reduced the problem to one of finding a surface which refracts a
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parallel bundle of rays so that they come to a focus (cf. Chapter 5).
He investigated a hyperbolit surface of rotation and obtained the
" right answer, but dismissed it on the grounds that it did not lead
to Witelo’s values.

* The credit for discovering the law of refraction must be divided
between the Dutch physicist Snell (Snellius, 1591 ~-1626) and the
French mathematician, physicist, and philosopher Descartes.
Unfortunately, Snell’s book that was said to have contained the
law was destroyed by fire, so that Descartes’ ““‘Dioptrique’ (1637)
is the first extant publication containing the refraction law.
‘Descartes has been posthumously attacked by I. Voss, who
claimed that Descartes had seen Snell’s book before its publi-
cation. Possibly; but recent studies of some of Descartes’ letters
by H. Boegehold indicate that Descartes probably knew the law
of refraction before his visit to Leyden, where he first became
acquainted with Snell.

The law of refraction, as dlscovered by Snell and Descartes, may
be stated as follows:

The incident ray and the refracted ray lie in a plane that con-
tains the normal to the refracting surface at the point of incidence
(the incidence normal), and the directions of the two rays are
related by the equation

nsin ¢ = »n'sin 7/, (L.1)
where # and #’ are the refractive indices of the first and second
media respectively, ¢ is the angle between the incidént ray and

Refraocted Ray

—

Surta

incident Ray Normal

Fig. 1.1. Refraction.

the surface normal (Fig. 1.1), and ¢’, the angle between the re-
fracted ray and the normal. The light will always be assumed to
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travel from left to right in the drawings (except in certain cases
of reflection, to be considered later) and the surface normals will
always be drawn from left to right. The positive direction of a
ray will always be taken as the direction in which the light travels.
Then ¢ will be defined as the angle between the direction of the
incidence normal and the positive directicn of the'incident ray,
and #' will be defined correspondingly with respect to the re-
fracted ray. Since two 1nter>ect1ng lines form four angles, we shall
assume that 0<:<. There is no lack of generality if we assume
that sin # and sin 7' are positive since the calculation formulae
involve only the squares of ihese quantities. (One exception will
be made to obtain the traditional formula for meridional rays
from our development.)

It should be noted that Equation (1.1) has two solutions, the
sum of the two being 180° or 7. Only one makes scise physically,
however, becausce the refracted ray.must enter the second medium.
The ambiguity is avoided if one adds to Equation (1.1) the con-
dition that both cos 7 and cos ¢’ shall have the same sign in the

case of refraction.
' {ﬂemd Ray

Incident Roy

Fig. 1.2. Reflectivn.

. The complete /aw, of reflection can be stated as follows: The

* incident ray and the reflected ray lie in a plane containing the

incidence normal, and this normal bisects the angic between the
two rays.

This law can be treated as a special case of the refraction law.
The direction of the incident ray will be assumed tQ be from left
to right in the drawings, whereas the reflected ray will go from
right to left after one or an odd number of reflections. If we set
n = 1" in Equation (1.1), we obtain  ~

sin ¢ == sin ", (1.2)
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This equation again has two possible solutions, namely, ¢’ = 7
and ¢’ = & —7, but only the second solution makes sense physi-
cally since the reflected ray must return into the same medium as
the incident ray. This requireruent can be cxpreseed mathe-
matically by demanding that the cosine change its 51gn or that
simaltaneously (Fig. 1.2)

sin i’ = sin 4 (1.3)
and :
. COS 2’ = —CO0S 7,
whence ,
i =3 — 1. (1.4)

The author considers that this treatment of the law of reflection
is more logical than the widely used convention of postulating a
negative refractive index in the case of reflection, since a negative
index could have no physical significance.

The case of normal incidence, when 7z = 0, gives ¢/ = 0 for the
refracted ray from Equdtion (1.1) and ¢ = =z for the reflected
ray from Equations (1.2) and (1.3). The reflected and the re-
fracted rays therefore lie along the direction of the surface normal.

When a ray goes from an opticaily dense medium into a less
dense medium, # > »’ and Equation (1.1) shows that sin 2’ may
then.become greater than unity. This is mathematically impossi-
ble, so, for incidence angles greater than 7. as defined by

sin g == n'[n, (1.5)

no light is refracted and all the incident light is reflected. The
angle tc is called the critical angle, and any ray with a greater
angle of incidence is tofajly reﬂected This phenomenon was dis-
covered by Kepler.

The laws of refraction and reflection are the only physical laws
required for geometrical optics. All that follows can be crmsu:lered
to be cnnply an evaluation of their consequences. :

The two parts of the law of refraction—relating to (a) the mag-
nitude and () the coplanarity of angles 7 and #'—can be com-
bined into a single formula in vector notation.* This is the sim-
plest form for analyzing optical problems.

* The fundamental opcrations of vector analysis are outhned ii: the
Appendix. <
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Let § be a vector in the direction of the entering ray, its length
being equal to the refractive index # of the first medium. Let 5’ be
a vector in the direction of the refracted ray, its length being
equal to the refractive index »' of the second medium. Let the
direction of § and §’ be positive when the vectors point to the

- right andlet & be a vector of unit length normal to the refracting
surface at the point of incidence and drawn to the right (Fig. 1. 3).
Then the complete law of refraction can be written as

§X =8 X75=7, (1.8)

1 c¢

where the symbol “ X"’ designates the cross or vector product.

I

Fig. 1.3. Refraction (vector description).

That this equation represents both parts of the refraction law
can be easily seen. The product § X 6 represents a vector normal
to the plane of incidence while §' X & represents a vector normal
to the piane of refraction. The equation states that the two planes
coincide, thus fulfilling the first part of the law. Furthermore, the
magnitude of §' X § is equal to the value of # sin ¢ and the
magnitude of §’ X J is equal to #’ sin ¢/, and thus the equality of
the vector products in Equation (1.6) gives the equation

nsin i = »n’ sin 7', ' (1.7

But this is merely a restatement oi Equation (1.1) and thus
Equation (1.6) fulfills the second part of the refraction law.

The problem involved in applying the refraction law is to find
§ when §.and 7 are given. Now (1.6) can be written

@ —3) x5=0, (1.8)

which means that the vector (5§’ — 3) lies along the direction ot
d since the sine of the angle between (' — 3) and ¢ must equal



RAY-TRACING 9

zero. That being the case, it must be possible to multiply the unit
vector & by some scalar I” to obtain (3" — 3), or

§ —§=1TI3. (1.9)

The quantity I'is frequently called the astigmatic consiani in the
literature because it was first found in connection with the
formulae for tracing astigmatism along a ray (c¢f. Chapter 25).
We prefer to call it the deviation constant.

By the rules of scalar multiplication, it follows from Equation
(1.9) that '

I'=03 — 35 = n'cosi’ — ncosi. (1.10)

Introducing the refraction law,

08" = n'cost = Vn'? —n'2sin2y’
= Vn'2 — n2sin2s = Vn'? — n2 + n2cos?s
= Vn'? — »n? 4 (33)2, (1.11)

where the sign of the root is positive in the case of refraction.
Therefore

I'= Vn'® —n? + (63)2 — 3. (i.12)

With I" found, the direction of the refracted ray can be deter-
mined from Equation (1.9) to be

§ =5+ I (1.13)

Fig. 1.4. Reflection (vector description).



