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PREFACE
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W. A. Strauss for their unfailing encouragement during the
preparation of this work.

I thank very much Miss Sandra Spinacci for her efficience
in the material realization of the manuscript which representgd

quite a heavy task.

-May, 1980 : Alain Haraux



INTRODUCTION

The .main purpose of this book is to survey some recent advances concerning
the Cauchy problem, the periodic problem and asymptotic behavior of solu-
tions for some nonlinear “time" -dependent partial differential equations
or systems. Thus the equations will involve a privileged variable denoted
by t, which generally describsRt but can represent something else than

physical time.

We take the point of view of topological dynamics which associates to such
equations an ordinary differential equation in a Banach space of functions.

In order that this work be more or less self-contained, the nonlinear problems
treated here are chosen jn such a way that most of the relevant information
can be derived through the only use of general principles from Functional
Analysis and simple properties of Sobolev spaces of functions in an open
subset of RN. However a long chapter is devoted to the theory of monotonicity
in Hilbert space. This theory is illustrated by examples and then used syste-

matically throughout the text.

Emphasis is also made on the method of a priori estimates which governs our
strategy to establish the existence of solutions to periodic problems as well

as to Cauchy problems.

a) In Chapter A, we give some general ideas concerning existence and unique-
ness for the solution of Cauchy problem : since an extensive literature already
exists concerning this problem, we do not insist very much on general ideas

and our study is centered on semi-linear, quasi autonomous systems. This
chapter includes a rather complete study of the dissipative case following
closely H.Brezis's book. Examples are given to illustrate every abstract
notion, and we close this chapter with the study of special (logarithmic)
equations recently introduceq by I. Bialynicki-Birula as a model for nonlinear

quantum mechanics.
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b) In chapter B, concerning the existence of periodic solutions to quasi-

autonomous s, stems, we study with some detail the linear and dissipative

cases. The nonlinear, non dissipative case is merely outlined through typi- *

cal examples.

c) Chapter C is intended to include the main novelties of thisvbook. After
recalling some basic features of almost-periodic functions, we méntion the
results of Dafermos-Slemrod on autonomous dissipative systems. In a second
part, we study the asymptotic behavior of quasi-autonomous dissipative perio-
dic systems. Some broofs here are quite technical and make an essential use

of the monotonicity theory (Chapter A).

Exampies are given in the autonomous and the quasi-autonomous case, especially
the hyperbolic case which turns out to be much harder than the parabolic one.
Most of the convergence results could be generzlized to the case of an almost
periodic forcing term, but the existence of almost-periodic solutions still

remains unknown in most cases (Cf.Chapter D).

d) Chapter D is devoted to recent, somewhat technical developpements in the
field of asymptotic behavior for quasi-autonomous dissipative systems. Seve-

ral results mentionned here did nbt appear previously in the literature.

A good knowledge of elementary Banach space theory and some previous acquain-
tance with Cauchy problem in nonlinear partial differential equations are
suitable to read this book. We hope that the reader,farfrom being afraid

by the technical appearance of some chapters, will discover for himself that
very few, simple principles lead naturally to the methods developped here.
Then this book can play its anticipated role of providing a unified under-

standing of some classical problems in nonlinear partial differential equations.



Introduction

A. THE CAUCHY PROBLEM

I.

3 (8

Generalities

Lecture 1:

Lecture 2:

The Global Existence Problem ............. Lrgs

Lecture 3:

Lecture 4:

TABLE OF CONTENTS

I I I T R I T RSP

and Local Theory ..... S OV T

Generalities, the continuous and

JIACCY PEASeS - poicscii Y s s P FEes

Quasilinear evolution equations ..

Generalities, first integrals and

Ligpunoy functions .= ... .vis PR LB

Methods relying on the Gronwall lemma ..

D

Lecture 5: A singular generalized '"Gronwall lemma"
and application to a special nonlinear .
Schrodinger problem .........ce...
BIBLIOGRAPHY FOR CHAPTER A-I.II ........ L L ST IR

III.

Theory of Monotone Operators and Applications

Lecture 6:

Lecture 7:

Lecture 8:

Lecture 9:

Lecture 10:

1. Nonlinear semi-group generated by -A ...

2. Quasi-

Lecture 11:

1. The re

StYong - SGIUtIoNS i oldar oot

D

General properties, Minty's theorem,

Yoshida's regularization .........

Examples of maximal montone

OPETATOTS oo eccocvioiesion b eAlE e misuy s

Sums of maximal monotone operators

The range of a max1ma1 monotone

OPeRAEOY JisSeraniivd. 2ai eLiva, e

oo s

Quasi-autonomous systems generated by a

maximal monotone operator ........

autonomous systems tressacsasacsas

Further properties of solutions

lationship between weak and

2. The Benilan-Brézis characterization of
glutiagne o s PR L S B R SR L L G

weak s

......

XI

10

19

19

27

32

38

39

40

47
54

60

70
70
75

80

80

83



vi

Page
3. Dependence upon the operator A ............ 85
... Lipschitzian perturbations - ... . S&GLLD Wmxeial, 86
. Lecture 12: Examples of nonlinear dissipative
SYStEMS. i vudi Kunns ke wabttbuvhian 88
17 - Parabolic case.’ sis - o ol Buila i SWie on mismres 88
2. A dissipative hyperbolic system S o g 88
BIBLIOGGRAPHY FOR CHAPTER A, IFL -........... Sl e S S : 94
IV. Smoothing Effect for Some Nonlinear Evolution
Bquatigns ssewecs B st asnras TR S A 96
Lecture 13: Smoothing effect associated with
: monotone operators ......... S RTHEINN J 96
1. The parabolic autonomous case ...... TN 96
2. The parabolic quasi-autonomous case ........ 99
3. The finite dimensional case ...... ShFY B8V W 104 a
Lecture 14: Smoothing effect for .a nonmonotone
pardabolic SyStem .......cc.cc0000ns0s 105
Lecture 15: Generalized solutions for a special
nonlinear Schrodinger equation ...... 851
BIBLIOGRAPHY FOR CHAPTER A, IV .... ... ATV L e, AT
V. Schrodinger and Wave Equations with a
Logarithmic Nonlinearity ...... aaer TP n i b 118
Lecture 16: An unexpected use of the monotonicity
Wle €ROd = <3, sVPTRUPIVE 0 I POY Ve LU PTHIPD 118

Lecture 17: Solutions in H1 for the nonlinear
logarithmic Schrodinger equation .... 126

Lecture 18: The wave equation with logarithmic
noRlinearity . o.iciiisivis vt et i 137

BIBLIOGRAPHY FOR CHAPTER A.V STTRETERTEE e O R e




vil

St Page
¢
. B. THE QUASI-AUTONOMOUS PERIODIC PROBLEM ................... 148
I. The Linear Case: Hilbertian Theory
ARG ADPI ROt IS - [P0, O B8, SRR B L . 148
Lecture 19: Some general TeSULtS .....oceeccccncns 148
Seetare 20: Examples: : 000 0, BEED, Feile s, #oid e < 2167
BIBLIOGRAPHY FOR CHAPTER B,I ..eevvvvivvnnnnnns 2 ik A |
II. Some Nonlinear Monotone CaseS .........eoeeceeennes 164
Lecture 21: The parabolic ‘monotone case .......... 164
Lecture 22: The general monotone case and the
: example of the dissipative nonlinear
WaYE. eqQUATION: . o i nigicrimisie o/s « ool oirinre ®recn b ¢ g
1. Generalities ..:.¢. i A S cy daad i o b aters 173
2. Application to the dissipative
WAVE OqUAtION i it i i ees s s e e e 176
BIBELIOGRARHY FOR CHAPIER Bill- - iiiici oo iiiviivis siviinaeosen 183
III. Some Nonlinear, Non Monotone Caseés ........cvcccc.. 184
Lecture 23: Some.results in the non monotone
FEAMBWOTE 50, ici v oo s e nivis s 184
1. A result of Mawhin-Walter for first order
OrABr DD B rusiatunis nidnissatvnsslh sapminsd 184
2. A second order differential equation of
L A e S B e e e e S e R 187
3. A type of second order O0.D.E. ............... 190
4. A nonlinear wave equation with periodic
TORRAngE ... Lot SRR e Rt UM RO Sa g 192
BIBLIOGRAPHY FOR CHAPTER B,III .......... B e I 198
* C.- ASYMPIOTIE BEMRRHGR i i . 80ar . Silodroqud. .. coionovins 200
1. Autonomous.Dissipative-Systems. .::...:: b, ud. 200

Lecture 24: Some simple facts about almost
PEPIOOIE TUBCLIONS . viaensssnivssnine 200



Vii

Page
Lecture: 25::- The linear dissipative €ase. . .....ao a0 204
0. Preldninary. reshlts st itin: corr s i nae s |
1. Some results in the complex framework ..... 205
2. General ‘results in the real framework ..... 207
Lecture 26: The case of nonlinear
SEMi PR TONPS TG AE RS IE s snhis asoieien 215
BIBL1BGRAPHY FOR CHABEER 0.1 o oo apsvvooransanniionasi 239
II. General Results for Quasi-Autonomous Periodic
T R R R e R R T T R g e P 241
Lecture 27: General dissipative parabolic -
5 2 5oL O g B R T e R S L 241
Lecture 28: A general method for non parabolic
dissipative SYSLems = [ ... . . i eivave 249
Lecture 29: Continuous perturbations of
dissipative linear systems ........n 255
BIBEIOGRAPHY EOR-CHAPTER € 11l . casidoioaisicoccsoscnnininis 265
D.- MORE SPECIALIZED TOPICS & .. .. dediiaiteia oo csaiin e 266 %
I. More on Asymptotic Behavior for Solutions of the
Nonlinear Dissipative Forced Wave Equation ...... 266 |
Lecture 30: Case of a strictly monotone ?
dampifig . iiaias s s Saisina bt s s ap 267 1
Lecture 31: Case of a single valued damping i
TETR .. i swmied i al o L e 276 j
BIBLIOGRAPHY FOR CHAPTER Dil: cvcceiosvevincsiansnssnncnnne 283
II. Boundedness of Trajectories for Quasi-Autonomous
'  Dissipative Systems ......ccc0000000 o R PR R R 284
Lecture 32: The coercive and parabolic
cases  iiiilu.siiisistiaint el iae o @4 o 284

Lecture 33: A method of G. Prouse for
hyperbolic case ....cc0cc00 sV R .33 291

\

BIBLIOGRAPHY FOR CHAPTER DI +vevenesennenensnnsnenencs 294




Page
III. Almost-Periodic Quasi-Autonomous Dissipative

SRR HIEIDETt Space ... ii. i ieeeiiansnnisus 295
IO Ropeneral result Gl il i eee 6~ 280

Lecture 35: Applicatioﬁ to strongly dissipative
nonlinearswaverequationranhivl auidtionsg. . 301
B R R CHAPTER D T . o o s o s 308
Rt e INARX . i iR R Y e G b e e e s 310

TR T T S ] o SR e RARSIRE A IR S B o R e 313



A. THE CAUCHY PROBLEM

I. Generalities and Local Theory

Lecture 1: Generalities, the continuous and linear cases

1. Let X be a real Banach space. Throughout this course we
shall be concerned with operators "in X", defined ‘on pa?t of the
space X and which may be multivalued at particular points of the
domain where they are defined.

The most convenient'way of defining such operators is to

jdentify them with a graph
G = GAY c X K
For x € X, we then define:
Ax:= {y € X, (x,y) € G(A)}.
And the domain of A is denoted by D(A)
D(A) = {x € X, Ax # ¢}
The range of A is denoted by R(A)

.

R(A) = U {Ax}.
x€X

We define A~} by the. formula: (x,y) € G(A'l) <> (y,x) € G[A].



It is immediate to check that R(A) = D{A"}) and then
R(A™H = pca 'l = pay.

A and A2 are two operators, their sum A, + A

1 1 3 is

defined by the formulas
D(A1+A2) = D(Al) n D(Az)
and

(A1+A2)(x) = Al(x) + Az(x), Vx € D(A1+A2)

= U (zl+zz}.
zleAlx,ZZEAzx

When X € R, the operator AA is defined in the obvious way. We
recall that a function f: [0,T] - X is said "absolutely

continuous' if there exists g € Ll([O,T]) such that

t
VGt € (0,T), s s e = £t - )] < [ go)do.
s
If X is reflexive, every functionvwhich is absolutely continuous
is differentiable at almost every point of [0,T]. For proof,
cf. for example [ 3], Appendix.
Now let X be reflexive, and consider gA(t))tE[O,T] a family
of operators depending on the parameter t. We suppose that A(t)
depends '"mildly'" on t and define a strong solution of the

abstract evolution equation:

(1) R = A(t)u(t)

s e L i e




as a.Bunction. B '€ C(0,T;X).:such-that

HPY oub s absolutely continuous on [€,T-€], Ve > 0
2) u(t) € D(A(t)) for almost every t € [0,T]
du .
3] It € Agtju(t) a.e. on [0,T].
Notice that for ug € X, it is generally impossible to find a

1

solution u of (1) such that:
L 4e) u(0) = up-

For instance, if A(t) = A, with G(Ap) =9, for none of

Uy € X can the equation (1), (2) be solved.

The system (1), (2) is called the Cauchy problem on [0,T]

for equation (1) with initial data ug -

When A(t) = A, we say that (1)4is autonomous.

When A(t) A+ £(t), we Speak of a quasi-autonomous equation.

2. The continuous case

We now recall some classical results when A(t)x = FeE X
with f continuous on the product space [0 13 -% %A

In this case, we can get local existence theorems relying on

fixed-point arguments. Thus, we first recall two well-known fixed

point results.

Theorem 1 (Picard) V Banach space, F € V' closed.

FiE W E



such that ‘ /.

ak < 1, [|9u - Fvl| < kl|u-v]|

Yiu v F % P,

€onclusions 3% 0 £ ¥y Fatrwing

Theorem 2 (Leray—Schauder) We assume that F is bounded, closed and
convex, Z is continuous and maps F into a precompact subset

of. E.

Conclusion: 3u € F, Ju = u,

From these fixed point results we deduce two existence

theorems.

Theorem 3.  f continuous on [0,T] * X and locally lipschitzian
with respect to x, uniformly with respect to t. For every

t. € [0,T[ and each ¢ € X, there exists § > 0 and a unique

0
strong solution on [to,to+6] of the Cauchy problem:

%% = £(t,u(t)), ulty) = o.

Theorem 4. X = EN, f continuous on [0,T] X X. Same existence

result, but u need not be unique.




Example. f£(t,x) = |X|1/2

with X =R. Two solutions

4 2 ’
u, (£) = 0, uy(t) = %r such that wu(0) = 0.

Method of Proof: We look for a solution of the integral equation

; 3
u(t) = ¢ + It Flsqu(s)) dsn
0

Setting V6 = C([to,t0+6],X), we may consider
F=luev,, ||u-¢|]v6 < a}.

For « small enough, we have

sup [ 1£(s,u)|| € M < #=,
s€(0,T]
| u-0] [ <o

t
Introducing (I v)(t) = ¢ + f f(s,v(s))ds, we therefore see
o
that if M6 <o, 9 maps F into F., Furthermore, if © and &
are small enough under the hypotheses of Theorem 3, < is a
strict contraction from F to F. Under the hypothesis of
Theorem 4, Ascoli's theorem gives the.necessary compactness

property.

Remark 5. In the conclusions of Theorems 3-4, one may add that

1 .
u € C(ty,t)*+8;X).

Remark 6. If f is lipschitzian in X, uniformly with respect to
t, we can take to =0 and ¢ = T. This fact will be proved

later (Lecture 4).



It is not true in general for non-lipschitzian f. For

example, the solution of the equation in X = R

is given by ‘u(t) = T~J;—— » which "blows up" for ¢t = %— s+ For
%0

instance if u, =1, T = 2, it is impossible to solve (L Yeu £2.)
on---[0,T].

3. Linear semi-groups

When X =ZRN and A(t) = A linear, the Remark 6 provides
the existence and uniqueness of a solution of (1), (2) with T

arbitrarily large. This solution is well-known to be given by

the formula: wE : '

u(t) = exp(tA)uo.

Setting T(t) = exp(tA) for ¢t > 0, we have the following

properties

T(0) = I
(3) Titesyr = TL)sX(s), v(s,b) e R np’
ey || o< etHALL e > 0.

When dim X = +=, it is very important to solve some equations

where A is linear, single valued but unbounded. In many cases of




interest, it can be solved by a formula u(t) = T(t)u0 where the
family T(t) has properties analogous to (3). More precisely,
we shall say that a single valued linear operator ey X 48

a generator in X if the equation:

W - Lu(t), u(0) = uy € D(L)

has a unique strong solution for t > 0 of the form u(t) = T(t)uo,
and T(t) extends on X = D(L) by a continuous operator such

that:

1} 10 > )
2) T(t+s) = T(t)°T(s), V(s,t)€ R xR
wt
3 1ITR)] < Me o, vt > 0.
There exists a complete characterisation of generators called
the Hille-Yosida theorem (cf. [6], p.624). When L' is a generator
and X = Hilbert space, L can be constructed from T(t) by the

following formulas:

fx e X, Iim LELI%ElEL < +w}

t+0

D(L)

Lx = 1im T)XX 46 x € D(L)
=0
£0

moreover, if - u, €:D(L), then: u(t):s T(t)u0 € CI(O,T;X).

In the Hilbert framework, it is possible to get convenient

sufficient conditions for L to be a generator.



