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PREFACE

The seventh edition of Burger's Medicinal
Chemistry resulted from a collaboration es-
tablished between John Wiley & Sons, the
editorial board, authors, and coeditors over
the last 3 years. The editorial board for the
seventh edition provided important advice to
the editors on topics and contributors. Wiley
staff effectively handled the complex tasks of
manuscript production and editing and effec-
tively tracked the process from beginning to
end. Authors provided well-written, compre-
hensive summaries of their topics and re-
sponded to editorial requests in a timely
manner. This edition, with 8 volumes and
116 chapters, like the previous editions, is
a reflection of the expanding complexity of
medicinal chemistry and associated disci-
plines. Separate volumes have been added
on anti-infectives, cancer, and the process of
drug development. In addition, the coeditors
elected to expand coverage of cardiovascular
and metabolic disorders, aspects of CNS-
related medicinal chemistry, and computa-
tional drug discovery. This provided the
opportunity to delve into many subjects in
greater detail and resulted in specific
chapters on important subjects such as bio-
logics and protein drug discovery, HIV, new
diabetes drug targets, amyloid-based targets
for treatment of Alzheimer’s disease, high-
throughput and other screening methods,
and the key role played by metabolism and
other pharmacckinetic properties in drug
development.

vii

The following individuals merit special
thanks for their contributions to this complex
endeavor: Surlan Alexander of John Wiley &
Sons for her organizational skills and atten-
tion to detail, Sanchari Sil of Thomson Digital
for processing the galley proofs, Jonathan
Mason of Lundbeck, Andrea Mozzarelli of the
University of Parma, Alex Tropsha of the
University of North Carolina, John Block of
Oregon State University, Paul Reider of Prin-
ceton University, William (Rick) Ewing of
Bristol-Myers Squibb, William Hagmann of
Merck, John Primeau and Rob Bradbury of
AstraZeneca, Bryan Norman of Eli Lilly, Al
Robichaud of Wyeth, and John Lowe for their
input on topics and potential authors. The
many reviewers for these chapters deserve
special thanks for the constructive comments
they provided to authors. Finally, we must
express gratitude to our lovely, devoted wives,
Nancy and Mary Beth, for their tolerance as
we spent time with this task, rather than with
them.

As coeditors, we sincerely hope that this
edition meets the high expectations of the
scientific community. We assembled this edi-
tion with the guiding vision of its namesake
in mind and would like to dedicate it to
Professor H.C. Brown and Professor Donald
T. Witiak. Don collaborated with Dr. Witiak
in the early days of his research in sickle cell
drug discovery. Professor Witiak was Dave’s
doctoral advisor at Ohio State University
and provided essential guidance to a young
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scientist. Professor Brown, whose love for
chemistry infected all organic graduate stu-
dents at Purdue University, arranged for
Don to become a medicinal chemist by secur-
ing a postdoctoral position for him with Pro-
fessor Alfred Burger.

It has been a real pleasure to work with all
concerned to assemble an outstanding and up-
to-date edition in this series.

DonaLp J. ABRAHAM
Davip P. RoTELLA

March 2010
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VIRTUAL SCREENING

INGO MUEGGE
Scort OLOFF
Boehringer Ingelheim
Pharmaceuticals,
Inc., Ridgefield, CT

1. INTRODUCTION

Since the 6th edition of Burger’s Medicinal
Chemistry and Drug Discovery went to print
six years ago, the field of virtual screening
(VS) has expanded dramatically in scope as
well as in breadth of application. Figure 1
attests eloquently to the increased use of VS
in medicinal chemistry-related research and
drug discovery. In 2008 alone, there are more
than 404 articles in journals published by the
American Chemical Society that contain the
phrase “virtual screening”; 50 of them main-
tain this phrase in its title (compared to only 6
in 2002). These numbers amount to a >2.5-
fold increase in yearly publications related to
VS over these 6 years. New areas of interest
surfaced during the past few years including a
resurgence of fragment-based screening tech-
niques often guided by VS8, the virtual screen-
ing of trillions of combinatorial compounds, a
growing interest in the in silico screening of
synthetically accessible compounds (also often
know as de novo design), the increased use of
machinelearning techniques, the emphasison
scaffold hopping, and combining ligand-based
and structure-based approaches in synergy to
name a few. In addition to highlighting some
of these new developments in VS, we have
revised the topics presented in the last edition
and include more recent examples for VS
successes.

Virtual screening, sometimes also called in
silico screening, is an established branch of
medicinal chemistry that represents a fast
and cost-effective tool for computationally
screening virtual compound databases in
search for novel drug leads. The roots for
virtual screening go back to structure-based
drug design and molecular modeling. In the
1970s, researchers hoped to find novel drugs
designed rationally using a fast growing num-
ber of diverse protein structures being solved

by X-ray crystallography [1,2] or nuclear mag-
netic resonance spectroscopy (NMR) [3]. How-
ever, only very few drugs resulted from those
early efforts. Examples include captopril as an
angiotensin-converting enzyme inhibitor [4]
and metothrexate as a dihydrofolate reductase
inhibitor [5]. The reasons for this somewhat
disappointing drug yield lie in the low resolu-
tion of the protein structures as well as limita-
tions in compute power and methods. Re-
searchers have often tried to de novo design
the final drug candidate on a computer screen.
The compounds suggested have often been
difficult to synthesize; initial failure in exhibit-
ing potency has often resulted in the termina-
tion of structure-based projects. At the end of
the 1980s, rational drug design techniques
became somewhat discredited due to the high
failure rate in drug discovery projects.

In the 1990s, drastic changes occurred in
the way drugs are discovered in the pharma-
ceutical industry. High-throughput synth-
esis [6,7] and screening techniques [8] chan-
ged the lead identification process that is now
governed not only by large numbers of com-
pounds processed but also by fast prosecution
of many putative drug targets in parallel. The
characterization of the human genome has
resulted in a large number of novel putative
drug targets. Improved screening techniques
make it also possible to look at the entire gene
families, at orphan targets, or at otherwise
uncharacterized putative drug targets. In this
environment of data explosion, rational de-
sign techniques experienced a comeback [9].
While the growing number of solved protein
structures at high resolution makes it possible
to embark on structure-based design for many
drug targets, virtual screening—the computa-
tional counterpart to high-throughput screen-
ing—has become a particularly successful
computational tool for lead finding in drug
discovery.

Proprietary screening collections typically
hold approximately 10° compounds. This is
only a tiny fraction of the conceivable drug-
like chemical space that is estimated to hold
more than 10%° compounds [10,11]. Even if
this space is reduced to compounds that are
comparably easy to access synthetically it is
still an astronomiecal number. Virtual screen-
ing attempts to suggest which compounds
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Figure 1. Number of ACS publications with the phrase “virtual screening” in the text (gray patterned bars)

or in the title (black bars).

should actually be synthesized or tested
against a drug target of interest. Large virtual
libraries of up to 10*? individual compounds or
10!* combinatorial chemistry compounds or
10'8de novo compounds reassembled from
fragments [12] can be screened today using
a cascade of various screening tools to reduce
the chemical space.

This chapter describes the different con-
cepts and tools used today for virtual screen-
ing. They reach from the assessment of the
overall “drug-likeness” of a small organic mo-
lecule to its ability to specifically bind to a
given drug target. Ligand-based as well as
structure-based approaches are described and
illustrated with specific examples. The ability
of virtual screening to assist in scaffold hop-
ping (identifying isofunctional molecular
structures with significantly different mole-
cular backbones [13]) is also discussed. Addi-
tional topics include the triaging of VS hit sets,
the use of machine learning techniques, and
finding synergies between different VS ap-
proaches. For additional information, the in-
terested reader is referred to a selection of
recent books and reviews on the subject of
virtual screening [14—25].

2. LIGAND-BASED VIRTUAL SCREENING

Casting a wide net, ligand-based virtual
screening (LBVS) encompasses all techniques
to computationally screen for novel compounds

using ligand information only without includ-
ing any information of the target structure.
LBVS ranges from compound similarity meth-
ods for which only a single template molecule
needs to be known to very sophisticated phar-
macophore elucidation and machine learning
methods using a multitude of information on
multiple compounds. The interested reader is
referred to recent reviews on the topic of simi-
larity searching [21,26], pharmacophore eluci-
dation methods [27,28], and machine learn-
ing [29,30] for virtual screening.

2.1. Compound Similarity

Compound similarity as basis for wvirtual
screeningrelies on the assumption that similar
compounds exhibit similar biological activ-
ities. The degree to which this is true varies
substantially, however. Martin et al. showed
from the analysis of a series of HTS experi-
ments at Abbott Laboratories that only ap-
proximately 30% of compounds with Daylight
fingerprint Tanimoto similarities >0.85 show
activity against the same drug target [31].
Compound similarity is generally measured
in either structural terms or property terms.
Topological fingerprints such as Daylight fin-
gerprints [32] or atom pair descriptors [33],
circular fingerprints such as SciTegic finger-
prints [34], and structural keys such as ISIS
keys [35] encode structural features of the
molecules. MolconnZ descriptors [36] present
a mixture of molecular connectivity and prop-



erty description, graph theoretical description,
and topological description. Properties such as
lipophilicity (calculated logP), molecular
weight, the number of rotatable bonds, hydro-
gen-bond acceptors and donors, pK, values etc.
form a group of property descriptors that can
link compounds that are structurally quite
different. Using such molecular descriptors is
quite popular for virtual screening purposes.
Especially 2D fingerprints have performed
very well in virtual screening [37—41]. How-
ever, 3D descriptors have gained in popular-
ity [42—44]. Jenkins et al. showed that 3D
pharmacophore feature descriptors called FE-
POPS can outperform standard 2D descriptors
in a virtual screening protocol [43]. Similarly,
Good et al. have demonstrated applying a
variety of 2D and 3D descriptors that 3D phar-
macophore fingerprints are better suited than
2D descriptors for scaffold hopping [45]. 3D
descriptors used in the context of similarity
searching often capture pharmacophore fea-
tures such as hydrophobic or aromatic moi-
eties, hydrogen-bond (HB) acceptors or donors,
and both negative and positive ionizable
groups. 3D pharmacophore fingerprints store
the information of pairs, triplets, or quartets of
these pharmacophore features for multiple
conformations in the form of binned distance
ranges [46-53]. 3D pharmacophore finger-
prints are used more often now as descriptors
for QSAR as well as for the design of compound
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libraries [52). The usefulness of 3D pharmaco-
phore fingerprints in finding new chemotypes
through virtual screening has recently been
demonstrated [54]. The use of fingerprints to
describe chemotypes and biological effects are
described in Chapter 12 of Volume 1.

2.1.1. Example 1: Virtual Screening for 15-
Lipoxygenase Inhibitors Weinstein et al. re-
ported the identification of a new 15-lipoxy-
genase inhibitor from the virtual screen of a
corporate database of compounds [55]. Start-
ing from the literature compound PD-146176
as a template, 4-point pharmacophore finger-
prints [48] were generated for the template
compound as well as for all database com-
pounds and then compared. Figure 2 shows
the template compound as well as the result-
ing virtual screening hit. The figure illustrates
how structurally different the virtual screen-
ing hit is from the template molecule. Some
resemblance of the indole moiety is noticeable.
This example illustrates the scaffold hopping
abilities of 3D pharmacophore fingerprints.

2.2. Pharmacophore Screening

Pharmacophore models are built more often
based on small-molecule information. They
are a preferred filter tool for virtual screen-
ing [56]. Feature-based pharmacophore eluci-

0
Il
e

N
\ \
N
H
VS hit: dansyl tryptamine

ICsg = 3.8 UM

Optimized 15-LO inhibitor
ICsp = 0.006 M

Figure 2. Discovery of a new class of 15-lipoxygenase inhibitors through virtual screening using a 3D

pharmacophore fingerprint similarity technique.
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dation algorithms such as HipHop [67] and
other automated pharmacophore query
builders [58] allow for the fast generation of
pharmacophore hypotheses. Today sophisti-
cated tool such as LigandScout [59] are avail-
able that extract pharmacophore models from
one or more protein-ligand crystal structures
making pharmacophore modeling a hybrid
between ligand-based and structure-based
modelings. Traditionally, however, pharma-
cophore modeling has been most often applied
to the target class of GPCRs [60] where until
very recently structural information [61-65]
of the target receptors was unavailable. Phar-
macophore filters are generally much faster
than molecular docking approaches and can,
therefore, greatly reduce the number of com-
pounds screened further using more expen-
sive docking applications. Today, pharmaco-
phore features are guiding most 3D virtual
screening approaches including docking in the
form of constraints or prefilters. Most time
consuming is still the generation of 3D con-
formations for small molecules—a task that
can only be solved for a small number of
molecules when precalculation and storage is
necessary.

An interesting aspect of pharmacophores
in virtual screening is 3D pharmacophore di-
versity. While the diversity concept for virtual
compounds in general is not applicable be-
cause of the enormity of the chemical space,
diversity in pharmacophore space is a feasible
concept. Virtual libraries can therefore be op-
timized to cover a wide pharmacophore
space [66].

2.2.1. Introduction to Pharmacophores In
1894, Emil Fischer proposed the “lock and
key” hypothesis to characterize the binding of
compounds to proteins [67]. This can be con-
sidered the first attempt to explain binding of
small molecules to a biological target. Proteins
recognize substrates through specific interac-
tions, forming the pharmacophore. Inhibitors
intended to block substrate binding to the
protein, should also capture these interac-
tions. The first definition of the pharmaco-
phore formulated by Paul Ehrlich was “a mo-
lecular framework that carries (phoros) the
essential features responsible for a drug’s
(pharmacon) biological activity” [68]. This

definition was slightly modified by Peter Gund
to “a set of structural features in a molecule
that is recognized at a receptor site and is
responsible for that molecule’s biological
activity” [69]. An example is shown in Fig. 3.
An X-ray structure of CDK2 complexed with
the adenine-derived inhibitor H717 [70-72]
was solved. Interactions that are essential to
substrate and inhibitor binding to the enzyme
will form the pharmacophore that should be
captured by inhibitors binding the same way
H717 does. As shown in Fig. 3, the inhibitor
binds to the hinge region (Phe82 and Leu83)
through two hydrogen bonds, to a hydrophobic
region through the cyclopentyl group, and to
Aspl45 and Asn132 through hydrogen bonds.
The pharmacophore that reflects these inter-
actions has a hydrogen-bond donor and a hy-
drogen-bond acceptor pair that ensures bind-
ing to the hinge region, a hydrophobic group
that corresponds to the cyclopentyl binding
site, and a hydrogen-bond donor that ensures
binding to Aspl145 and/or Asnl132. Pharmaco-
phore hypotheses can be generated using
structural information from ligands or from
the protein active site itself. Pharmacophore-
based drug design is further elaborated in
Chapter 11 of Volume 1.

2.2.2. Databases of Organic Compounds It is
much more practical to virtually screen data-
bases of compounds that have already been
synthesized than to operate in a completely
virtual chemical space. If no information
about possible lead structures is available, if
in-house efforts such as HTS were not success-
ful, and if cost and time are an issue, virtual
screening of vendor databases and the subse-
quent purchase of hits is the method of choice
for the generation of novel lead chemical
matter.

There is a wealth of databases of available
chemical matter including academic sources
such as the ZINC database [73] and the Na-
tional Cancer Institute Database [74,75] as
well as commercial vendor databases such as
eMolecules [76] that holds approximately 10
million commercially available compounds,
Chemspider [77] that is publicly available
holding approximately 20 million compounds,
and the Available Chemicals Directory screen-
ing collection [78]. Some vendors maintain
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to the
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Figure 3. Pharmacophore derived based on the interactions between human cyclin-dependent kinase 2 and
the adenine-derived inhibitor H717 as observed in the X-ray structure of the complex (PDB ID 1g5s). Dashed
lines highlight hydrogen-bonding interactions. HBD: hydrogen-bond donor, HBA: hydrogen-bond acceptor,
and the hinge region is linking the N- and C-terminal domains of a kinase.

databases of virtual compounds that can be
custom synthesized. Enamine’s REAL data-
base of close to 10 million compounds is an
example [79]. In addition, many vendors of
chemicals also provide searchable databases
with 2D-structure and property information of
their compounds. Sometimes, compounds are
coded in linear representations such as the
SMILES [80,81] notation. The SMILES codes
obtained using CACTVS and Daylight pro-
grams for 4-benzyl pyridine and R-cocaine are
shown in Fig. 4.

Managing compound collections from differ-
ent sources is not trivial. Chemical databases
frequently contain incorrect structures. Care-
ful treatment and curation of compound collec-
tions is therefore important to assure optimal
virtual screening outcomes. This includes the

appropriate assignment of charges, chirality,
and tautomerization states, filtering for dupli-
cates, and unwanted structures.

The primary source of 3D experimental
structures of organic molecules is the Cam-
bridge Structural Database [82]. Alterna-
tively, 2D databases of organic compounds can
be converted into 3D databases using several
software programs [83]. Each program starts
with generating a crude structure that is sub-
sequently optimized using a force field. To
mention the most commonly used programs,
CONCORD [84] applies rules derived from
experimental structures and a univariate
strainfunctionforbuilding aninitial structure;
CORINA [85] generates an initial structure
using a standard set of bond lengths, angles,
and dihedrals and rules for cyclic systems.
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C1=CN=CC=C1CC2=CC=CC=C2

'CACFVS
=
lDaylight

o
C(cleeeccl)c2eenec2
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' CACTVS

N 0

lDaylight

COC(=0)CIC2CCC(CClc3ccecec3)N2C

Figure 4. Examples of SMILES notations for two
compounds obtained using CACTVS and Daylight.

2.2.3. 2D Pharmacophore Searching Differ-
ent strategies are pursued to search a 2D
database. An exact structure search is applied
to find out if a compound is present in the
database. Substructure searches are used to
find larger molecules with the query im-
bedded. Superstructure searches are used to
find smaller molecules that are embedded in
the query. Similarity searches are used to find
compounds that are structurally related to the
query. Some searching software combines si-
milarity with substructure or super structure
searches. Flexible match searches are used for
identifying compounds that differ from the
query structure in user specified ways. In
addition, isomer, tautomer, parent molecule
searches may be done to find in a database
isomers, tautomers or parent molecules of the

query.

2.2.4. Ligand-Based 3D  Pharmacophore
Generation Ligand-based pharmacophores
are typically used when the crystallographic,
solution structure, or modeled structure of a
protein cannot be obtained. When a set of
active compounds is known and it is hypothe-
gized that all compounds bind in a similar way
to the protein, then common groups should
interact with the same protein residues. Thus,

a pharmacophore capturing these common
features should be able to identify from a
database novel compounds that bind to the
same site of the protein as the known com-
pounds do. The process of deriving a pharma-
cophore, called pharmacophore mapping, con-
sists of three steps: (1) identifying common
binding elements that are responsible for bio-
logical activity, (2) generating potential con-
formations that active compounds may adopt,
and (3) measuring distances between binding
pharmacophore elements in each conforma-
tion. To build a pharmacophore based on a set
of active compounds, two methods are usually
applied. One method generates a set of mini-
mum energy conformations for each ligand
and searches for common structural features.
Another method considers all possible confor-
mations of each ligand to evaluate shared
orientations of common functional groups.
Analyzing many low energy conformers of
active compounds can suggest a range of dis-
tances between key groups that will take into
account the flexibility of the ligands and of the
protein. This task can be performed manually
or automatically.

Pharmacophore generation through con-
formational analysis and manual alignment
is a time-consuming task especially when the
list of active ligands is large and the elements
of the pharmacophore model are not obvious.
There are several software products and algo-
rithms such as HipHop [86], HypoGen [87],
PHASE [88], MOE [89], and older tools such as
Disco [90], Gasp [91], Flo [92], APEX [93] that
can automatically generate potential pharma-
cophores from a list of known inhibitors. A
collection of views on pharmacophore elucida-
tion can be found in Chapter 11 of Volume 1 as
well as in the book by Gliner [94]. The pro-
grams use algorithms that identify common
pharmacophore features in the training set
molecules that are ranked with a scoring func-
tion. Common pharmacophore features in-
clude: hydrogen-bond donors, acceptors, nega-
tive and positive charges or ionizable centers,
and surface accessible hydrophobic regions
that can be aliphatic, aromatic, or nonspecific.
Most of the programs incorporate ligand flex-
ibility when generating pharmacophores
since compounds may not bind to the protein
in the minimum energy conformation.



2.2.5. Example 2: Virtual Screening for
Dopamine Transporter Inhibitors The dopa-
mine transporter (DAT) is a 12 transmem-
brane helix protein that plays a critical role in
terminating dopamine neurotransmission by
taking up dopamine released into the synapse.
DAT is involved in several diseases such as
drug addiction and attention deficit disor-
der [95]. DAT inhibitors share one or more
common 3D pharmacophore models [96-98].
A pharmacophore model was derived based on
two known potent DAT inhibitors R-cocaine
and WIN-35065-2 (Fig. 5) [98]. The common
binding elements of these compounds are a
ring nitrogen that may be substituted, a car-

R-cocaine
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bonyl oxygen, and an aromatic ring that can be
defined by the position of its center. A systema-
tic conformational search followed by confor-
mer clustering was performed to obtain all
possible conformations these compounds could
assume when bound to DAT. The resulting 3D
pharmacophore model (Fig. 5) was used to
search the NCI 3D-database [75] of 206,876
compounds using the program Chem-X [99]. A
total of 4094 compounds, 2% of the database,
were identified as hits. After further reduction
using molecular weight, structural novelty,
simplicity, diversity, and hydrogen-bond ac-
ceptor nitrogen filters, 70 compounds were
selected for testing in biochemical assays.

WIN-35065-2

Conformational search

clustering

CorH

*—3

Ring N

50-7.0A

Aromatic
ing center

Figure 5. Pharmacophore proposed for identifying DAT inhibitors. The pharmacophore was obtained based
on two known DAT inhibitors, R-cocaine and WIN-35065-2. Distance ranges between pharmacophore points
were obtained through systematic search of all possible conformations that the two compounds may adopt
when bound to DAT. (This figure is available in full color at http:/mrw.interscience.wiley.com/emrw/

9780471266945/home.)
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Forty-four compounds displayed more than
20% inhibition at 10puM in a [*H]mazindol
binding assay. Figure 6 shows selected DAT
inhibitors found in the virtual screen.

2.2.6. Receptor-Based 3D Pharmacophore
Generation If the 3D structure of a receptor
is known a pharmacophore model can be de-
rived directly from the receptor active site.
The presence of a cocrystallized ligand in the
active site can greatly help with the identifica-
tion of the pharmacophore. The program Li-
gandScout generates pharmacophore hypoth-
eses in a fully automated way from protein—
ligand complexes [59]. In the absence of a

ligand costructure, biochemical data can be
used for identifying key residues that are im-
portant for substrate and/or inhibitor binding.
Most ligands bind to proteins through non-
bonded interactions such as hydrogen-bond
and hydrophobic interactions. Programs such
as LUDI [100] or GRID [101] can use the
structure of the protein to generate interac-
tion sites or grids to characterize favorable
positions that ligand atoms should occupy.
Since proteins are not rigid, Carlson et al. [102]
proposed using molecular dynamics simula-
tion for generating a set of diverse protein
conformations to include protein flexibility in
the pharmacophore development. In this case,

H3C\N 0 O

R-cocaine

o

Hsc ~N (o)

[
O
%
H

WIN-35065-2

| |

o
N
CH,
(Ki =(.49 £ 0.03 uM)

(K= 1.420.1 pM)

@

N

(K, = 5.1+ 02 M)

HaC cH,
O HO Q F@x

(K;=1.5£0.06 uM)

0 0.0 O
E50RP R& )

(K,=2.640.1 uM)

o0 4ND

(K,= 8.9+ 0.4 uM)

(K;=5.6=0.7uM)

540

(K, =102 uMy

Figure 6. Selected DAT inhibitors identified from the NCI database through virtual screening.



distance ranges between pharmacophores are
obtained by examining several conformations
of the protein. This technique is similar to the
one used for the generation of flexible phar-
macophores based on active compounds when
several conformations of compound(s) are con-
sidered for pharmacophore mapping.

2.2.7. Example 3: Virtual Screening for Novel
PPAR Ligands To illustrate how receptor-
derived pharmacophore models are used in
virtual screening we discuss here a recent ex-
ample ofidentifying novel PPAR ligands [103].
AseriesofLigandScout models were generated
based on agonist-PPAR complex structures
from the PDB. In addition, ligand-based Hi-
pHop models were generated. The pharmaco-
phore models were evaluated using 357 PPAR
ligands and 12,775 PPAR decoys. The most
selective PPAR« agonist model was obtained
from LigandScout applied to the PPAR« com-
plex structure with PDB ID 1k71. The best
PPARS agonist model was generated likewise
using the PDB complex 1gwx. The best PPARy
agonist model was obtained from a HipHop
model. More than one million compounds were
screened in Catalyst [104] using all three
PPAR-agonist models. A total of 14,311 virtual
screening hits were obtained. Filtering by phy-
sicochemical properties as found in 321 PPAR
agonists retained 5898 hits. 3D shape screen-
ing, electrostatic similarity to known PPAR
agonists, diversity clustering, visual inspec-
tion, and elimination of compounds with re-
ported PPAR activity led to 21 compounds of
which 10 were purchased and tested. Several
novel PPAR agonists with varying PPAR se-
lectivity were discovered (Fig. 7).

PPARa ICs = 1.0 pM
PPARy ICs3 =40 uM
PPARS IC5q = 390 uM
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2.2.8. 3D  Pharmacophore-Based  Virtual
Screening Techniques Pharmacophore-based
virtual screening is the process of matching
atoms and/or functional groups and the geo-
metric relations between them to the pharma-
cophoric query. Once a pharmacophore model
is generated, virtual screening of a database
against such a query model becomes straight-
forward. Programs that perform pharmaco-
phore-based searches include Catalyst [104],
UNITY [105], ROCS [106], PHASE, and
MOE. There are also some Web-based appli-
cations that can perform pharmacophore
searches [107,108]. Usually pharmacophore-
based searches are done in two steps. (1) The
software checks if the compound contains the
atom types and/or functional groups pre-
scribed by the pharmacophore. (2) It checks
if the spatial arrangement of these elements
matches the query. Since most small mole-
cules are flexible, multiple conformations
have to be checked. These conformations can
be either precomputed and stored (such as in
MOE and Catalyst) or calculated on the fly.
Precalculating conformations will speed up
the virtual screen tremendously. Therefore,
this is the method of choice for databases of
existing compounds that are screened repeat-
edly. On the other hand, for larger virtual
libraries the data handling requirements be-
come too complex. Therefore, generating con-
formations on the fly and discarding them
after the pharmacophore query has been
checked remains an important option for
pharmacophore screening programs. Gener-
ating a representative ensemble of conforma-
tions is essential for the success of a virtual
screen using a 3D pharmacophore query.

PPARY ICs0 = 13 uM
PPARS IC5q = 7.2 uM

0
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Figure 7. Novel PPAR agonists identified through structure-based pharmacophore screening.



10 VIRTUAL SCREENING

Many ligands do not adopt a minimum energy
conformation as the binding pose [109-111].
Therefore, continued research is necessary to
represent a conformational ensemble of a li-
gand including higher energy conformations
with a limited number of conformations.

2.3. Application of Machine Learning for
Virtual Screening

2.3.1. QSAR Model Generation and Validation
Machine learning is a form of ligand-based VS
that builds predictive quantitative struc-
ture—activity relationship (QSAR) models
that are based on available assay data. Com-
pounds are described with various molecular
descriptors to provide numerical representa-
tions of a compound’s properties. There are
numerous types of 2D and 3D descriptors that
are commonly used but will not be discussed in
detail here [112—-117]. Particular descriptors
and machine learning methods are chosen
because they are believed to be linked or di-
rectly correlated to the property being mod-
eled. The process for model generation, vali-
dation, and application to virtual screening is
shown in Fig. 8 (figure adapted from a recent
review by Tropsha and Golbraikh [118]).
Many different algorithms and computer soft-
ware are available for the purpose of predic-

tive modeling; they are based on linear as well
as nonlinear methods. In all approaches, de-
scriptors serve as independent variables, and
biological activities as dependent variables.

To establish the ability of a QSAR model to
predict biological activities the model needs to
be thoroughly validated. This is arguably the
most important part of QSAR model develop-
ment [119,120]. Most QSAR modeling meth-
ods implement a leave-one-out (LOO) (or
leave-some-out) cross-validation procedure.
The outcome of this procedure is a cross-vali-
dated R? (¢°), which does not always guaran-
tee the predictive ability of the model [119,121]
illustrating the necessity for thorough model
validation. A widely used approach to estab-
lish the model’s robustness is called y-rando-
mization (randomization of the dependent
variable, that is, biological activities). Y-ran-
domization consists of repeating the calcula-
tion procedure with randomized activities and
subsequent probability assessment of the re-
sults. Often, it is used along with the LOO
cross-validation to ensure the model is not
based on a chance correlation.

2.3.2. Machine Learning Algorithms Commonly

Used in QSAR Models Collections of vali-
dated QSAR models can be useful tools for VS

l_’l Y-randomization |

Multiple
training sets

A\ 4

Original
data set

[

Predicted
hits

l [ Build asar
Split into i models
=»1 training and
test sets I
L Multiple Select acceptable
Randomly exclude test sets | | moge>ls
20% for external (e.g..q*>0.7)
validation 1]
- Validate selected
pﬁ:‘g&n +|  models with
external sets
Use models Select predictive models
for database e with high internal and |
screening external accuracy

Figure 8. Workflow for generating and validating QSAR models for virtual screening



