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PREFACE

The word tomography means “a technique for making a picture of a plane section of a
three-dimensional body.” For example, in x-ray computerized tomography (CT), the picture
in question is a representation of the distribution in the section of the body of a physical
property called x-ray attenuation (which is closely related to density). In CT, data are gathered
by using multiple pairs of locations (in the plane of the section) of an x-ray source and an
x-ray detector (with the body between them) and measuring for each pair of locations the
total attenuation of x-rays between the source and the detector. Mathematically speaking, each
measurement provides an approximate value of one sample of the Radon transform of the
distribution. (Roughly, the Radon transform of a two-dimensional distribution is a function
which associates with any line in the plane the integral of the distribution along that line.)
Therefore, the mathematical essence of CT is the reconstruction of a distribution from samples
of its Radon transform.

Over the years, “tomography” became to be used in a wider sense, namely for any technique
of reconstructing internal structures in a body from data collected by detectors (sensitive to
some sort of energy) outside the body. Tomography is of interest to many disciplines:
physicists, engineers, bioscientists, physicians, and others concern themselves with various
aspects of the underlying principles, of equipment design, and of medical or other applications.
Mathematics clearly enters in the field where inversion methods are needed to be developed
for the various modes of data collection, but we also find mathematicians busily working in
many other diverse aspects of tomography, from the theoretical to the applied.

This book contains articles based on selected lectures delivered at the August 1990 confer-
ence on Mathematical Methods in Tomography held at the Mathematisches Forschungsinstitut
(Mathematical Research Center) at Oberwolfach, Germany. The aim of the conference was to
bring together researchers whose interests range from the abstract theory of Radon transforms
to the diverse applications of tomography. This was the third such conference at Oberwolfach,
with the first one held just over ten years earlier [S]. Much has happened in the field of
tomography since that first meeting, including the appearance of a number of books (such as
(3, 2, 7, 6]) and many special issues (including [4, 1]).

Oberwolfach is a remote place in the Black Forest with excellent conference and housing
facilities. Mathematical conferences of one week duration take place there nearly every week.
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Participation is by invitation only and there are usually 20-60 participants. The meeting on
which this book is based had 41 participants; seventeen came from the USA, seven from

Germany, five from France, two from each of Brazil, Sweden, and USSR, and one from

each of Belgium, Hungary, Israel, Italy, Japan, and the Netherlands. The lively international
scientific atmosphere of the conference resulted in many stimulating discussions; some of

which are reflected in the papers that follow.

Thus our book is a collection of research papers reporting on the current work of the
participants of the 1990 Oberwolfach conference. Those desiring to obtain an overview of
tomography, or even only of its mathematical aspects, would be better served by looking at
the already cited literature [3, 2, 4, 7, 6]. However, the collection that follows complements
this literature by presenting to the reader the current research of some of the leading workers
in the field.

We have organized the articles in the book into a number of sections according to their main
topics. The section entitled Theoretical Aspects contains papers of essentially mathematical
nature. There are articles on Helgason’s support theorem and on singular value decomposition
for Radon transforms, on tomography in the context of Hilbert space, on a problem of integral
geometry, and on inverting three-dimensional ray transforms. The section entitled Medical
Imaging Techniques is devoted to the mathematical treatment of problems which arise out
of trying to do tomography with data collected using various energies and/or geometrical
arrangements of sources and detectors. Thus, there are articles on using backscattered photons,
on cone-beam 3D reconstruction, and on tomography for diffraction, for diffusion, for scattering.
and on biomagnetic imaging. The section on Inverse Problems and Optimization discusses
mainly the algorithmic aspects of inversion approaches for tomographic data collections. This
section contains articles on various formulations of the inverse problems in terms of optimization
theory, as well as on iterative approaches for solving the problems. Finally, the section on
Applications contains articles that have been closely motivated by some practical aspect of
tomography; for example, on the determination of density of an acrosol, on nondestructive
testing of rockets, and on evaluating the efficacy of reconstruction methods for specific tasks.

Finally, we would like to thank Prof. Martin Barner, the director of the Mathematisches
Forschungsinstitut, and his splendid staff for providing us with all the help and just the right
ambiance for a successful mathematical conference. We are also grateful to Springer-Verlag
for their kind cooperation in publishing this volume.
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Helgason’s su ort theorem for Radon transforms —
a new pI‘OOf and a gCllCl‘&llZ&thﬂ

JAN BOMAN

Department of Mathematics, University of Stockholm
Box 6701, S-11385, Stockholm, Sweden

1. Denote by Rf the Radon transform of the function f, 1. ¢. Rf(H) = fH fdsu
for, say, continuous functions f on R™ that dccay at least as |z|™" as |z| — oo, and
H ¢ G,, the set of hyperplanes in R"; the surface mcasure on H is denoted dsy. The
well-known support theorem of Helgason [Hel], [He2] states that if Rf(H) = 0 for all
H not intersecting the compact convex set I and f(z) = O(|z|™™) as |z| — oo for all
m, then f must vanish outside . In [He3] Helgason extended this theorem to the case
of Riemannian manifolds with constant negative curvature. Helgason’s proofs depend
in an cssential way on the strong symmetry properties of the Radon transform. Here
we will extend the theorem just cited to the case when a real analytic weight function
depending on H as well as z is allowed in the definition of the Radon transform (seec
below), a situation without symmetry. For C'° weight functions analogous theorems arce
not truc in gencral [B2]. Our method depends on the microlocal regularity properties
of the Radon transform, a method we have alrcady used in [BQ1] and [BQ2]. The casc
when f is assumed to have compact support was considered in [BQ1]. TFor rotation
invariant (not nccessarily rcal analytic) Radon transforms support theorems were given

by E. T. Quinto [Q3].

2. Let p = p(z, H) be a smooth function on the set Z of all pairs (z,H) of H € G,
and z € H. We define the generalized Radon transform IR, by

Rof(H) = [ FOpi H)dsn, H € G
H

If p is constant, I2, is of course the classical Radon transform. To describe our assump-
tions on p we shall consider R™ as sitting inside the projective space P*(R) in the usual
way:

(1) RS (21,...,20) = (La1,...,2n) € PY(R).

The manifold Z then becomes imbedded in the manifold

Z ={(x,H);x € H, H hyperplanc in P*(R)}.

Note that P*(R) and Z are compact real analytic manifolds. Our assumption will be
that p can be extended to a positive real analytic function on Z. This assumption is of
course fulfilled for the constant function, which is the case considered by Helgason in
[Hel].



THEOREM. Assume p is a positive, real analytic function on Z that can be extended to
a positive, real analytic function on Z. Let K be a compact, convex subset of R"™. Let
f be continuous on R™ and

(2) f(z) =0(]z|™™) as |z| - o0

for all m, and assume R, f(H) = 0 for all H disjoint from K. Then f = 0 outside K.

As pointed out by Helgason, the assumption that f tends to zero rapidly as |z| — oo
cannot be omitted, even in the case of constant p.

The assumption that p is analytic at infinity cannot be omitted, even if the decay as-
sumption is considerably strengthened. In fact, using ideas from [B2] one can construct
examples where p is real analytic on Z, 1 < p < C, f not identically zero, R,f = 0,
and, for instance, f(z) = O(exp(—e¢l®!)) as |z| — co.

The approach adopted here is suggested by the following facts. First, if p is analytic
and different from zero, it is known that any solution f to R,f = 0 must be real
analytic, hence vanish if it vanishes in some open set [B1], [BQ1]. Second, if one could
prove that f, considered as a function on the projective space P*(R), must be analytic
at infinity, then the assumption that f decays rapidly at infinity would imply that f
vanishes identically. Third, the examples showing that the decay assumption cannot be
omitted, in two dimensions the functions Re(z; +222) ™™, arc in fact analytic at infinity.
An advantage with this approach is, in addition to the fact that the weight function p is
allowed to be non-constant, that the role of the decay assumption on f is "explained”.

We prove the theorem by considering R, as an operator on functions on P"(R). The
crucial fact is that f, considered as a function on P"*(R), must have a certain regularity
property along the hyperplane at infinity, Ho.; in precise terms, the conormal manifold
to Heo, N*(Hoo), must be disjoint from the analytic wavefront set of f (Proposition 1).

3. We arc now going to express R, in terms of a Radon transform on P"*(R). For this
purpose we need to introduce some more notation. Set X = R", Y = G,,, denote P*(R)
by X and the set of hyperplanes in P*(R) by Y. Denote the map (1) from X to X by
«. This map induces maps ¥ — Y and X x Y — X x Y, which we will also denote
by a. As models for X and Y we shall use the unit sphere S™ with opposite points
identified. Thus a model for Z C X x Y will consist of all pairs (u,w) € S™ x S™ such
that v -w = 0, all four pairs (fu, +w) identified. On the plane L(w) = {u; u-w = 0}
we choose the measure dsy equal to the (push-forward of ) n — 1-dimensional surface
mecasurc on S™. We use the notation w = (wg,w’), and we note that the plane at infinity,
Lo, is represented by w = (£1,0,...,0).

Examples of functions p satisfying the hypothesis of the thcorem can casily be con-
structed as follows. Let a(z,w) be real analytic and positive on {(z,w);z -w = 0} C
R*"*2 | even and homogencous of degree zero in both variables (separately), let Hy, be
the planc -0 =p, 8 € S™ !, and sct

(3) p(I,HG,p) :a(17l‘7—p76)7

for 2 € Hygp. Then a (restricted to S™ x S™) represents the extension, g, of p. Conversely,
every p satisfying our assumptions can obviously be represented in the form (3).



Let 7 be a positive real analytic function on Z. For continuous functions ¢ on X we
define the generalized Radon transform R, by

Re(g)(L) = /L g()r(L)ds,, LeY.

If fis a function on X, sufficiently small at infinity, f = foa™!, p = poa~!, and

L = a(H), then
/f do”——/f L)CL (d.‘:”)
(4) - /L F(YA( LYV, L) dsi;

here a,(dsy) = b(u, L)ds is the push-forward of the measure dsy under a. It is very
important for us that the density b(u, L) can be factored, b(u, L) = bo(u)b;(L), into a
function depending only on v and one depending only on the plane L. This fact is well
known; see e. g. [GGG], pp. 64-66.

LEMMA 1. The measure a.(dsy) Is equal to b(u, L) dsr, where

(5)  blu,w) = b(u, L(w)) = clug]™"/1 —w§ = clug| "w'|, uo #0, ||#0.
for some positive constant c.

Formula (5) shows that the measure a,(dsr) has a strong singularity along the plane
at infinity. However, the fact that the density function b(u, L) factors as expressed by
(5), b(u,L) = bo(u)by (L), implies that this singularity is harmless in our context. In
fact, using (4) and (5) we can write

R,f(H) = by(L) /L Flw)bo(w)p(u, L) dsg, = by(L)(Frg)(L),

where g(u) = f(u)bo(u) = f(u)|uo|™™, and 7(u,L) = p(u,L). Note that g(u) tends
to zero as ug — 0, since f is rapidly decreasing; hence ¢ 1s extendible to a continuous
function on all of X, which vanishes on Lo,. Thus, in particular, if R,f(H) =0 for all
H not intersecting I, then R,.g must vanish in some neighbourhood of L,

4. We will now turn our attention to the microlocal regularity properties of solutions
to the equation R,¢ = 0. The result that we shall nced, Proposition 1 below, is well
known, but it is not casy to find it in the literature. The analogous statement for the
C® category is clearly contained in the very gencral theory in [H1] as well as in [GS].
The additional arguments needed for the real analytic case can be found for instance in
[Bj], ch. 4. Genecralized Radon transforms as Fourier integral operators are discussed
in [GS]; sce also [GU] and [Q2]. In particular, Radon transforms on projective spaces
are considered in [Q1]. For definition and basic properties of the analytic wavefront
set, see [H2], ch. 8. If E is a smooth submanifold of the manifold M, one denotes by
N*(E) the conormal manifold to E, that is, the set of all (z,£) € T*(M)\ 0 such that
z € E and € is conormal to the tangent space to E at z.



PROPOSITION 1. Assume 7(u, L) is real analytic and positive on Z and that
R,g(L)=0
for all L in some necighbourhood of Ly € Y. Then

N*(Ly) N WFA(g) = 0.
We finally need the following lemma, related to an important thecorem of Hérmander,
Kawai, and Kashiwara ([H2], Theorem 8.5.6.).
LEMMA 2. Let S be the spherical surface {z; |z| = 1} in R™, and let f be continuous
in some neighbourhood of 5. Assume
(6) fz)=0(z] - 1Y) as |a|—>1+0 forall N,
(or as |z| = 1 —0), and

(7N N*(S)NWFa(f) = 0.
Then f =0 in some neighbourhood of S.
Proor: Let S; be the sphere with radius ¢t and define the function 2t by

h(t) = i f ds,

where ds is surface measurc on S;. By basic facts about the wavefront set it follows
from (7) that none of the elements above t = 1 can be contained in WFA(h), 1. e. his
analytic at t = 1. But (6) implies that % is rapidly decreasing as t — 1+ 0. Hence &
must vanish in some neighbourhood of ¢ = 1.

Let (z) be any real analytic function defined on a neighbourhood of S. Multiplying
f by ¢ clearly preserves the properties (6) and (7). Applying our rcasoning to ¢ f we

conclude that
/ pfds=0
St

for ¢ near 1 and for all bounded and analytic functions ¢. This implies that f = 0 in
some neighbourhood of S. The lemma is proved.

PROOF OF THE THEOREM: Let f be afunction satisfying the hypothescs of the theorem,
and consider again the function ¢ on X defined by

g(w) = Juo| ™" f(u) = Juo| ™" f(a ™! ().

We have seen that R, g(L) must vanish for L near L. But then Proposition 1 implics
that

(8) N*(Leo) N WFa(g) = 0.



Now we want to use Lemma 2 to infer that ¢ vanishes ncar Lo,. The fact that L.,
considered as a hypersurface in X, is non-orientable is a slight inconvenience for us; we
therefore move up to S™, the double cover of X. We will use the same notation on S*
as on X, so that points will be denoted by u and the function ¢ pulled back to S™ will
again be denoted g¢; this will cause no confusion. Thus ¢ is an even function defined in
a neighbourhood of the equator & = {u; ug = 0} C S™. It is clear that (8) holds with
¥ in place of L. Now, the stereographic map takes S™ with the north pole removed
into R® and ¥ into an n — 1l-sphere in R™. An application of Lemma 2 now proves
that ¢ = 0 in a neighbourhood of ¥, hence f = 0 outside some compact sct in R™®. An
application of the thcorem in [BQ1] therefore finishes the proof. We prefer, however, to
complete the proof with another application of the arguments already used here. Since
a compact, convex set is equal to the intersection of all closed balls that contain it, we
may assume that K is a ball. We may also assume that its center is the origin; let R be
its radius. Let S, be the sphere with radius 7, centered at the origin, and let ry be the
smallest r for which f = 0 outside S,. Assume 9 > R. Applying Proposition 1 (or the
analogous statement for the Radon transform R, on R™) to all tangentplances to Sy, we
find that N*(S,,) N WEFA(f) must be empty. Lemma 2 now shows that f must vanish
in some necighbourhood of S,,. This contradicts the definition of rg, hence the proof is
complete.
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Singular Value Decompositions for Radon
Transforms
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1 Introduction

In this paper simple techniques are developed for the construction of singular
value decompositions (SVD) for rotationally invariant Radon transforms in euc-
lidean spaces. First we introduce the definition of a SVD.

Definition 1. Let A be a linear operator between (separable) Hilbert spaces
XY
A: X =Y

The triple {un,vn,on}nzo is called a Singular Value Decomposition (SVD)
of the operator A if

{Un}nZl i1s a complete orthonormal system in X,

{vn}n>1 is an orthonormal system in Y,

{on} is a set of non-negative real numbers,

Auy, = OnUn and A*Un = OnlUn
The singular values ¢, arc usually ordered such that oy > 05> .. > 0.

Sometimes one refers to the singular functions {u,} as generalized Eigenfunc-
tions, since
* 2
(A"Ayu,, = o.u,

The importance of a SVD comes form its ability to express the action of A by
orthogonal series expansions, f = 5 fou, with f,, =< fiu, >x

Af = A(anun) = Zf7107lvll

From this one immediately obtains an inversion formula, range characterizations
and results on the ill posedness of the inverse problem.

SVD’s for Radon transforms have a long history in computerized tomography.
The early results of Marr [6] and Cormack [2] show that the 2-dimensional Ra-
don transform maps a set of certain orthogonal functions to products Um(s)e”“’
of Tchebycheff polynomials with trigonometric functions. Subsequently these re-
sults have been extended to arbitrary dimensions, weighted La-spaces, functions



of unbounded support and Radon transforms modelling limited data problems in
tomography, see Perry [8], Quinto [9], Louis [3,4], Maass [5]. Quite different tech-
niques have been used in these papers. Our aim is to demonstrate two elementary
and general ways of obtaining SVD’s for Radon transform with rotational sym-
metry, e.g. for full, exterior and interior Radon transforms.

It will be more convenient to work with the adjoint of the Radon transform,
the backprojection operator, and to translate the results to the original Radon
transform at the end. The next section recalls the invariance of the spherical har-
monics under the action of the backprojection operator for rotationally invariant
Radon transforms. This reduces the original problem posed for the n-dimensional
Radon transform to finding SVD’s for 1-dimensional integral operators.

Even in a simple construction of a SVD we must be able to define the sets of
orthogonal functions {u,} and {v,}. Since they are built from special functions,
e.g. orthogonal polynomials, they are usually defined by either 3-term recurrence
relations or differential equations.

Chapter 3 starts with the definition of the functions {u,} as solutions of
differential equations Dju, = 0. From there a second differential operator D,
intertwining with the action of the adjoint Radon transform, is constructed. This
determines the images of {u,} as solutions of differential equations and imme-
diately gives the desired orthogonality properties. The procedure is examplified
by carrying out the computations for the full Radon transform.

At the beginning of Chapter 4 the functions {u,} are introduced by 3-term
recurrence relations. The corresponding recurrence relations for the functions
{vn} can be obtained in a surprisingly simple way. Examples include a SVD for
the interior Radon transform.

2 The adjoint operator R*

We use the standard notation for the Radon transform as a map between weigh-
ted Lo-spaces, 1.e. a real valued function f is mapped to its integrals over hy-
perplanes, which are parametrized by a normal unit vector w and the signed
distance s from the origin. The function f may either be defined on IR™ or on
a subset, e.g. the unit ball. For the full Radon transform, the integrals over all
hyperplanes are measured. For limited data problems, the integrals over some
hyperplanes are missing.

R Ly(2, W) = Ly(Z,w™ 1)
fooe [ sty dy
w_L

There are many meaningful choices for £2 and Z. We are interested in Radon
transforms where the set of accessible hyperplanes is rotationally invariant, 1.c.

R =R" or 2 =B, ={zeR"|||z]||<a}

and Z=S""'x1 ICIR



The following cases are of particular importance.

RN=mI |, I=1IN: the full Radon transform for
functions with unbounded support,,
=B, I=[-1,1]: the full Radon transform for

functions with compact support,
R=IR" , I={s€ IR ||s|>1} :the exterior Radon transform,
I 1,1] : the mnterior Radon transform .

Since {2, Z are both invariant under rotations it is natural to assumec that the
weight functions W, resp. w, only depend on |z], resp. s. It will be more conveni-
ent to work with the adjoint operator. Obviously a SVD for the adjoint operator
also gives a SVD for the operator itsell.

The adjoint Radon transform is a continuous linear opcrator hence we can com-
pute the transform of g for cach term in the sum scparatcly. The following
Lemma, states the well known property that spherical harmonics arc invariant
under the action of R*.

Lemma2. Let g € Lo(I,w) then
z

R* (wgYo)(x) = |57 W(lz)) /il 2 [) "x(|—)

Xr

where .
fi(r) :/ qi(rs)(w,CY)(s)ds
-1
the integral extending over those values of s where gi(| & | 5) is defined. Here
(w,CY) is the weighted Gegenbauer polynomial with v = (n—2)/2.

This Lemma is a direct consequence of the Funk-Hecke Theorem, e.g. sce [7].
We will call 77 the radial operators of the Radon transform. The orthogonality
relations for spherical harmonics of different degree reduce the problem of finding
a SVD for R* to the construction of SVDs for the integral opertors transforming
the radial parts in the expansion g = > wgY;. The weight funcLion IV will
be choosen appropriately later and we ignore the constant factor 2. The
radial tranforms are then given by

1
M) = [ alw.crwa

Again the integration extends only over those values of s where the integrand is
defined. For the interior Radon transform this yiclds

min(1l/r,1)
To)0) = | S, GO

nazr(—1/r,—1)

and for the exterior Radon transform
(Tig)(r) := / g () (w0, CV)(1)dt
1/r<]t|<1

In any of these cases the Radon transform decomposes into a scrics of 1-dimensional

integral operators.



Corollary 3. Let g € La(Z,w™1), i.e. g(w,s) = Y w(s)gi(s)Y (w) ,
then

(R*g)(x) = W(z) | S| Z(ngz)(lwl))’x(%) ,

this implies that given SVD’s {umi, Vmi,omi} for the radial transformsT; we have
a SVD for the adjoint Radon transform by, {Yix} enumecrates an orthonormal
basis for the spherical harmonics,

{tmi()Yik(w), vt (| 2 I)sz(li—l), |52 | omi) -

3 Intertwining differential operators

In the previous chapter the original problem, i.e. how to find a SVD for Radon
transforms, was reduced to the construction of SVD’s for the integral transforms
T;, see Corollary 4. The idea is to construct intertwining pairs of differential
operators (D1, D2) such that

TiD1 = DTh

Then given a function g, which satisfies Dyg = 0, its transform T}g is the solution
of Dy f = 0 with appropriate boundary conditions. Thus if we can find a complete
set of intertwining differential operators, i.e. a pair (Dp, D2) for any element of
an orthogonal basis {u;,}; the images {Tju,} are characterized as solutions
of ordinary differential equations. The structure of these differential equations
will not only allow to compute Tju,, explicitly it will also determine the weight
function W(| z |) for which the transformed functions are orthogonal. This
procedure was used to obtain a SVD for the interior Radon transform; see [5].
We will demonstrate this technique with the full Radon transform. The operator
T; is defined by

1

(Tig)(r) = / g(rt) C’I("'z)/z(t)(l _ tz)(n—s)/zdt

-1

Functions ¢ which have a parity opposite to the parity of [ are mapped to zero.
Let us start with a general class of differential operators Dy :

(D1g)(t) = (1= 1")g"(t) + oty (t) + Bo(t) - (1)

For example all classical polynomials obey differential equations built with ope-
rators of this kind. We aim to combine derivatives of T;g in such a way that D¢
occurs under the integral. From the definition of T;g it follows

%[(Tm)](r) = (1/n)[Ti(tg"(r) (2)

and

%[(ng)](v’) = (1/7)T(Eg")(r) - (3)



